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Abstract. In a graph G, k vertex disjoint paths joining k distinct source-
sink pairs that cover all the vertices in the graph are called a many-to-
many k-disjoint path cover(k-DPC) of G. We consider an f -fault k-DPC
problem that is concerned with finding many-to-many k-DPC in the
presence of f or less faulty vertices and/or edges. We consider the graph
obtained by merging two graphs H0 and H1, |V (H0)| = |V (H1)| = n,
with n pairwise nonadjacent edges joining vertices in H0 and vertices in
H1. We present sufficient conditions for such a graph to have an f -fault
k-DPC and give the construction schemes. Applying our main result to
interconnection graphs, we observe that when there are f or less faulty
elements, all of recursive circulant G(2m, 4), twisted cube TQm, and
crossed cube CQm of degree m have f -fault k-DPC for any k ≥ 1 and
f ≥ 0 such that f + 2k ≤ m− 1.

1 Introduction

One of the central issues in various interconnection networks is finding node-
disjoint paths concerned with the routing among nodes and the embedding of
linear arrays. Node-disjoint paths can be used as parallel paths for an efficient
data routing among nodes. Also, each path in node-disjoint paths can be utilized
in its own pipeline computation. An interconnection network is often modeled as
a graph, in which vertices and edges correspond to nodes and links, respectively.
In the rest of this paper, we will use standard terminology in graphs (see [1]).

Disjoint paths can be categorized as three types: one-to-one, one-to-many,
and many-to-many. One-to-one type deals with the disjoint paths joining a single
source s and a single sink t. One-to-many type considers the disjoint paths joining
a single source s and k distinct sinks t1, t2, . . . , tk. Most of the works done on
disjoint paths deal with the one-to-one or one-to-many. For a variety of networks
one-to-one and one-to-many disjoint paths were constructed, e.g., hypercubes [3],
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star networks [2], etc. Many-to-many type deals with the disjoint paths joining k
distinct sources s1, s2, . . . , sk and k distinct sinks t1, t2, . . . , tk. In many-to-many
type, several problems can be defined depending on whether specific sources
should be joined to specific sinks or a source can be freely matched to a sink.
The works on many-to-many type have a relative paucity because of its difficulty
and some results can be found in [4, 7].

All of three types of disjoint paths in a graph G can be accommodated with
the covering of vertices in G. A disjoint path cover in a graph G is to find disjoint
paths containing all the vertices in G. A disjoint path cover problem originated
from an interconnection network is concerned with the application where the full
utilization of nodes is important. For an embedding of linear arrays in a network,
the cover implies every node can be participated in a pipeline computation. One-
to-one disjoint path covers in recursive circulants[8, 12] and one-to-many disjoint
path covers in some hypercube-like interconnection networks[9] were studied.

Given a set of k sources S = {s1, s2, . . . , sk} and a set of k sinks T =
{t1, t2, . . . , tk} in a graph G such that S ∩ T = ∅, we are concerned with many-
to-many disjoint paths P1, P2, . . . , Pk in G, Pi joining si and ti, 1 ≤ i ≤ k,
that cover all the vertices in the graph, that is,

⋃
1≤i≤k V (Pi) = V (G) and

V (Pi) ∩ V (Pj) = ∅ for all i 6= j. Here V (Pi) and V (G) denote the vertex sets of
Pi and G, respectively. We call such k disjoint paths a many-to-many k-disjoint
path cover (in short, many-to-many k-DPC) of G.

On the other hand, embedding of linear arrays and rings into a faulty in-
terconnection network is one of the important problems in parallel processing
[5, 6, 11]. The problem is modeled as finding as long fault-free paths and cycles
as possible in the graph with some faulty vertices and/or edges. A graph G is
called f -fault hamiltonian (resp. f -fault hamiltonian-connected) if there exists
a hamiltonian cycle (resp. if each pair of vertices are joined by a hamiltonian
path) in G\F for any set F of faulty elements such that |F | ≤ f . For a graph G
to be f -fault hamiltonian (resp. f -fault hamiltonian-connected), it is necessary
that f ≤ δ(G) − 2 (resp. f ≤ δ(G) − 3), where δ(G) is the minimum degree of
G.

To a graph G with a set of faulty elements F , the definition of a many-
to-many disjoint path cover can be extended. Given a set of k sources S =
{s1, s2, . . . , sk} and a set of k sinks T = {t1, t2, . . . , tk} in G\F such that S∩T =
∅, a many-to-many k-disjoint path cover joining S and T is k disjoint paths Pi

joining si and ti, 1 ≤ i ≤ k, such that
⋃

1≤i≤k V (Pi) = V (G)\F , V (Pi)∩V (Pj) =
∅ for all i 6= j, and every edge on each path Pi is fault-free. Such a many-to-many
k-DPC is denoted by k-DPC[{(s1, t1), (s2, t2), . . . , (sk, tk)}|G,F ]. A graph G is
called f -fault many-to-many k-disjoint path coverable if for any set F of faulty
elements such that |F | ≤ f , G has k-DPC[{(s1, t1), (s2, t2), . . . , (sk, tk)}|G,F ] for
every k distinct sources s1, s2, . . . , sk and k distinct sinks t1, t2, . . . , tk in G\F .

Proposition 1. For a graph G to be f-fault many-to-many k-disjoint path cov-
erable, it is necessary that f + 2k ≤ δ(G) + 1.

Proposition 2. (a) A graph G is f -fault many-to-many 1-disjoint path cover-
able if and only if G is f -fault hamiltonian-connected.
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(b) If G is f -fault many-to-many k(≥ 2)-disjoint path coverable, then G is f -fault
many-to-many k − 1-disjoint path coverable.

Proposition 3. If a graph G is f-fault many-to-many k(≥ 2)-disjoint path cov-
erable, then for any pair of vertices s and t and any sequence of pairwise nonad-
jacent k−1 edges ((x1, y1), (x2, y2), . . . , (xk−1, yk−1)), there exists a hamiltonian
path in G\F between s and t passing through the edges in the order given for
any set F of faulty elements with |F | ≤ f . That is, there exists a hamiltonian
path of the form of (s, . . . , x1, y1, . . . , xk−1, yk−1, . . . , t).

We are given two graphs G0 and G1 with n vertices. We denote by Vi

and Ei the vertex set and edge set of Gi, i = 0, 1, respectively. We let V0 =
{v1, v2, . . . , vn} and V1 = {w1, w2, . . . , wn}. With respect to a permutation M =
(i1, i2, . . . , in) of {1, 2, . . . , n}, we can “merge” the two graphs into a graph
G0 ⊕M G1 with 2n vertices in such a way that the vertex set V = V0 ∪ V1

and the edge set E = E0 ∪ E1 ∪ E2, where E2 = {(vj , wij )|1 ≤ j ≤ n}. We
denote by G0 ⊕G1 a graph obtained by merging G0 and G1 w.r.t. an arbitrary
permutation M . Here, G0 and G1 are called components of G0 ⊕G1.

In this paper, we will show that by using f ′-fault many-to-many k′-DPC of
Gi for all f ′ and k′ such that f ′ + 2k′ ≤ f + 2k, and fault-hamiltonicity of Gi,
we can always construct an f + 1-fault many-to-many k-DPC in G0 ⊕ G1 and
an f -fault many-to-many k + 1-DPC in H0 ⊕ H1, where H0 = G0 ⊕ G1 and
H1 = G2 ⊕ G3. Precisely speaking, we will prove the following two theorems.
Note that δ(G0 ⊕G1) = δ + 1 and δ(H0 ⊕H1) = δ + 2, where δ = mini δ(Gi).

Theorem 1. For k ≥ 2 and f ≥ 0, or for k = 1 and f ≥ 2, let Gi be a graph
with n vertices satisfying the following conditions, i = 0, 1:
(a) Gi is f + 2j-fault many-to-many k − j-disjoint path coverable for every j,
0 ≤ j < k.
(b) Gi is f + 2k − 1-fault hamiltonian.
Then, G0 ⊕G1 is f + 1-fault many-to-many k-disjoint path coverable.

Note that the condition (a) of Theorem 1 is equivalent to that for any f ′ and
k′ such that f ′ + 2k′ ≤ f + 2k, Gi is f ′-fault k′-disjoint path coverable. In this
paper, we are concerned with a construction of f -fault many-to-many k-DPC of
a graph G such that f + 2k ≤ δ(G)− 1.

Theorem 2. For k ≥ 1 and f ≥ 0, let Gi be a graph with n vertices satisfying
the following conditions, i = 0, 1, 2, 3:
(a) Gi is f + 2j-fault many-to-many k − j-disjoint path coverable for every j,
0 ≤ j < k.
(b) Gi is f + 2k − 1-fault hamiltonian.
Then, H0 ⊕ H1 is f -fault many-to-many k + 1-disjoint path coverable, where
H0 = G0 ⊕G1 and H1 = G2 ⊕G3.

By applying the above two theorems to interconnection graphs, we will show
that all of recursive circulant G(2m, 4), twisted cube TQm, and crossed cube
CQm of degree m are f -fault many-to-many k-disjoint path coverable for every
k ≥ 1 and f ≥ 0 such that f + 2k ≤ m− 1.
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Remark 1. Even when there are p(< k) sources such that each source is identical
with its corresponding sink, that is, when si = ti for all 1 ≤ i ≤ p and S′∩T ′ = ∅,
where S′ = {sp+1, . . . , sk} and T ′ = {tp+1, . . . , tk}, we can construct f -fault
many-to-many k-DPC as follows: (a) we first define Pi = (si), 1 ≤ i ≤ p, a
path with one vertex, and then (b) regarding them as virtual faulty vertices,
find f + p-fault many-to-many k − p-DPC. Consequently, Proposition 3 can be
extended so that adjacent edges are allowed.

2 Preliminaries

Let us consider fault-hamiltonicity of G0 ⊕ G1. The following five lemmas are
useful for our purpose. The proofs for them are omitted due to space limit.

Lemma 1. For f ≥ 0, if Gi is f-fault hamiltonian-connected and f + 1-fault
hamiltonian, i = 0, 1, then G0 ⊕ G1 is also f -fault hamiltonian-connected and
f + 1-fault hamiltonian.

Lemma 2. For f ≥ 2, if Gi is f-fault hamiltonian-connected and f + 1-fault
hamiltonian, i = 0, 1, then G0 ⊕G1 is f + 1-fault hamiltonian-connected.

Lemma 3. For f = 0, 1, if Gi is f -fault hamiltonian-connected and f + 1-fault
hamiltonian, i = 0, 1, then G0⊕G1 with f +1 faulty elements has a hamiltonian
path joining s and t unless s and t are contained in the same component and all
the faulty elements are contained in the other component.

Lemma 4. For f ≥ 1, if Gi is f-fault hamiltonian-connected and f + 1-fault
hamiltonian, i = 0, 1, then G0 ⊕G1 is f + 2-fault hamiltonian.

Lemma 5. Let G be a δ-regular graph such that δ ≥ 3. If G is δ − 3-fault
hamiltonian-connected and δ − 2-fault hamiltonian, then G × K2 is δ − 2-fault
hamiltonian-connected and δ − 1-fault hamiltonian.

For a vertex v in G0⊕G1, we denote by v̄ the vertex adjacent to v which is in
a component different from the component in which v is contained. We denote
by U the set of terminals, the set of sources and sinks S ∪ T , and denote by F
the set of faulty elements.

Definition 1. A vertex v in G0⊕G1 is called free if v /∈ F and v /∈ U . An edge
(v, w) is called free if v and w are free and (v, w) /∈ F .

Definition 2. A free bridge of a fault-free vertex v is the path (v, v̄) of length
one if v̄ is free and (v, v̄) /∈ F ; otherwise, it is a path (v, w, w̄) of length two such
that w 6= v̄, (v, w) /∈ F , and (w, w̄) is a free edge.

Lemma 6. Let G0⊕G1 have k source-sink pairs and at most f faulty elements
such that f + 2k ≤ ∆− 1, where ∆ is the minimum degree of G0 ⊕G1.
(a) For any terminal w in G0 ⊕G1, there exists a free bridge of w.
(b) For any set of terminals Wl = {w1, w2, . . . , wl} in G0 with l ≤ 2k, there exist
l pairwise disjoint free bridges of wi’s, 1 ≤ i ≤ l.
(c) For a single terminal w1 in G1 and a set of terminals Wl\w1 = {w2, . . . , wl}
in G0 with l ≤ 2k, there exist l pairwise disjoint free bridges of wi’s, 1 ≤ i ≤ l.
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Proof. There are at least ∆ candidates for a free bridge of w, and at most
f + 2k − 1 elements (f faulty elements and 2k − 1 terminals other than w) can
“block” the candidates. Since each element block at most one candidate, there
are at least ∆− (f + 2k− 1) ≥ 2 nonblocked candidates, and thus (a) is proved.
We prove (b) by induction on l. Before going on, we need some definitions. We
call vertices v and v̄ and an edge joining them collectively a column of v. When
(v, v̄) (resp. (v, w, w̄)) is the free bridge of v, we say that the free bridge occupies
a column of v (resp. two columns of v and w). We are to construct free bridges for
Wl satisfying a condition that the number of occupied columns c(l) is less than
or equal to f(l)+t(l), where f(l) and t(l) are the numbers of faulty elements and
terminals contained in the c(l) occupied columns, respectively. When l = 1, there
exists a free bridge which satisfies the condition. Assume that there exist pairwise
disjoint free bridges for Wl−1 = W\wl satisfying the condition. If (wl, w̄l) is the
free bridge of wl, we are done. Suppose otherwise. There are ∆ candidates for
a free bridge, and the number of blocking elements is at most c(l − 1) plus the
number of terminals and faulty elements which are not contained in the c(l− 1)
occupied columns. Thus, the number of blocking elements is at most f +2k− 1,
which implies the existence of pairwise disjoint free bridges for Wl. Obviously,
c(l) = c(l − 1) + 2 and f(l) + t(l) ≥ f(l − 1) + t(l − 1) + 2, and thus it satisfies
the condition.

Now, let us prove (c). If (w1, w̄1) is the free bridge of w1, it occupies one
column. If (w1, x, x̄) is the free bridge of w1 and w̄1 is not a terminal of which we
are to find a free bridge, it occupies two columns. For these cases, in the same
way as (b), we can construct pairwise disjoint free bridges satisfying the above
condition. When (w1, x, x̄) is the free bridge of w1 and w̄1 ∈ Wl, letting w2 = w̄1

without loss of generality, we first find pairwise disjoint free bridges of w1 and
w2. They occupy three columns, that is, c(2) = 3. We proceed to construct free
bridges with a relaxed condition that c(l) ≤ f(l) + t(l) + 1. This relaxation does
not cause a problem since the number of blocking elements is at most f + 2k,
still less than the number of candidates for a free bridge, ∆. ut

Remark 2. According to the proof of Lemma 6 (a) and (b), we have at least two
choices when we find free bridges of terminals contained in one component.

Remark 3. If Gi satisfies the conditions of Theorem 1 or 2, then f + 2k ≤ δ− 1,
where δ = mini δ(Gi). Concerned with Theorem 1, free bridges of type Lemma 6
(b) and (c) exist in G0⊕G1 since (f +1)+2k ≤ δ(G0⊕G1)−1. Concerned with
Theorem 2, free bridges of the two types also exist in H0⊕H1 since f +2(k+1) ≤
δ(H0 ⊕H1)− 1.

3 Construction of Many-to-Many DPC

In this section, we will prove the main theorems. First of all, we will develop five
basic procedures for constructing many-to-many disjoint path covers. They play
a significant role in proving the theorems.
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3.1 Five basic procedures

In a graph C0 ⊕ C1 with two components C0 and C1, we are to define some
notation. When we are concerned with Theorem 1, C0 and C1 correspond to
G0 and G1, respectively. When we are concerned with Theorem 2, C0 and C1

correspond to H0 and H1, respectively. We denote by V0 and V1 the sets of
vertices in C0 and C1, respectively. We let F0 and F1 be the sets of faulty
elements in C0 and C1, respectively, and let F2 be the set of faulty edges joining
vertices in C0 and vertices in C1. Let fi = |Fi| for i = 0, 1, 2.

We denote by R the set of source-sink pairs in C0 ⊕ C1. We also denote
by ki the number of source-sink pairs in Ci, i = 0, 1, and by k2 the number
of source-sink pairs between C0 and C1. Without loss of generality, we assume
that k0 ≥ k1. We let I0 = {1, 2, . . . , k0}, I2 = {k0 + 1, k0 + 2, . . . , k0 + k2}, and
I1 = {k0 + k2 + 1, k0 + k2 + 2, . . . , k0 + k2 + k1}. We assume that {sj , tj |j ∈
I0} ∪ {sj |j ∈ I2} ⊆ V0 and {sj , tj |j ∈ I1} ∪ {tj |j ∈ I2} ⊆ V1. Among the k2

sources sj ’s, j ∈ I2, we assume that the free bridges of k′2 sources are of length
one and the free bridges of k′′2 (= k2 − k′2) sources are of length two.

First three procedures DPC-A, DPC-B, and DPC-C are applicable when
k0 ≥ 1, and the last two procedures DPC-D and DPC-E are applicable when
k2 = |R| (equivalently, k0 = k1 = 0). We denote by H[v, w|G,F ] a hamiltonian
path in G\F joining a pair of fault-free vertices v and w in a graph G with a set
F of faulty elements.

When we find a k-DPC or a hamiltonian path, sometimes we regard some
fault-free vertices and/or edges as faulty elements. They are called virtual faults.
For example, in step 2 of Procedure DPC-A, F ′ is the set of virtual vertex faults,
and in step 2 of DPC-C, (s2, s1) in F ′ is a virtual edge fault.

Procedure DPC-A(C0 ⊕ C1, R, F )

UNDER the condition of 1 ≤ k0 < |R|.
1. Find pairwise disjoint free bridges Bsj = (sj , . . . , s

′
j) of sj for all j ∈ I2.

2. Find k0-DPC[{(sj , tj)|j ∈ I0}|C0, F0 ∪ F ′], where F ′ = V0 ∩
⋃

j∈I2
V (Bsj ).

3. Find k1 + k2-DPC[{(s′j , tj)|j ∈ I2} ∪ {(sj , tj)|j ∈ I1}|C1, F1].
4. Merge the two DPC’s with the free bridges.

Procedure DPC-B(C0 ⊕ C1, R, F )

UNDER the condition of k0 = |R|.
1. Let s1 and t1 be a pair such that |X1| ≤ |Xj | for all j ∈ I0, where Xj =

V0 ∩ {V (Bsj ) ∪ V (Btj )}. Let Bs1 = (s1, . . . , s
′
1), Bt1 = (t1, . . . , t′1).

2. Find k0 − 1-DPC[{(sj , tj)|j ∈ I0\1}|C0, F0 ∪X1].
3. Find H[s′1, t

′
1|C1, F1].

4. Merge the k0 − 1-DPC and hamiltonian path with the free bridges.

Keep in mind that under the condition of procedure DPC-C below, for every
sj , j ∈ I2, s̄j = tj′ for some j′ ∈ I2, and thus for every other fault-free vertex v
in G0, (v, v̄) is the free bridge of v.
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Procedure DPC-C(C0 ⊕ C1, R, F )

UNDER the condition that k0 ≥ 1, k1 = 0, k′2 = 0, and all the faulty elements
are contained in C0.

1. When k0 ≥ 2, find pairwise disjoint free bridges Bt2 = (t2, t′2), Bsj
= (sj , s

′
j)

and Btj = (tj , t′j) for all j ∈ I0\{1, 2}, and Bsj = (sj , . . . , s
′
j) for all j ∈ I2.

When k0 = 1, find pairwise disjoint free bridges Bsj
= (sj , . . . , s

′
j) for all

j ∈ I2\2.
2. Find H[s2, t1|C0, F0 ∪ F ′], where F ′ = V0 ∩ [Bt2 ∪

⋃
j∈I0\{1,2}(V (Bsj

) ∪
V (Btj

)) ∪⋃
j∈I2

V (Bsj
)] if k0 ≥ 2; F ′ = {(s2, s1)} ∪ (V0 ∩

⋃
j∈I2\2 V (Bsj

))
otherwise. Let the hamiltonian path be (s2, Q1, z, s1, Q2, t1).

3. Let u = t′2 if k0 ≥ 2; otherwise, u = t2. Find k0 + k2 − 1-DPC[{z̄, u)} ∪
{(s′j , t′j)|j ∈ I0\{1, 2}} ∪ {(s′j , tj)|j ∈ I2\2}|C1, ∅].

4. Merge the hamiltonian path and k0 + k2 − 1-DPC with the free bridges and
the edge (z, z̄). Discard the edge (z, s1).

Procedures DPC-D and DPC-E are concerned with the case of k2 = |R|.
Without loss of generality, we assume that f0 ≥ f1. This assumption does not
conflict with the assumption of k0 ≥ k1.

Procedure DPC-D(C0 ⊕ C1, R, F )

UNDER the condition that k2 = |R| (k0 = k1 = 0).

1. If k′′2 ≥ 1, we assume that (s1, s̄1) is not the free bridge of s1. Find pairwise
disjoint free bridges Bt1 = (t1, . . . , t′1) and Bsj = (sj , . . . , s

′
j) for all j ∈ I2\1.

2. Find H[s1, t
′
1|C0, F0 ∪ F ′], where F ′ = V0 ∩

⋃
j∈I2\1 V (Bsj ).

3. Find k2 − 1-DPC[{(s′j , tj)|j ∈ I2\1}|C1, F1 ∪ F ′′], where F ′′ = V1 ∩Bt1 .
4. Merge the hamiltonian path and the k2 − 1-DPC with the free bridges.

Observe that under the condition of procedure DPC-E below, for every source
sj in G0, s̄j = tj′ for some j′ ∈ I2, and thus for any free vertex v in G0, (v, v̄) is
a free edge.

Procedure DPC-E(C0 ⊕ C1, R, F )

UNDER the condition that k2 = |R|, k′2 = 0, and all the faulty elements are
contained in C0.

1. Find pairwise disjoint free bridges Bt1 = (t1, . . . , t′1) and Bsj = (sj , . . . , s
′
j)

for all j ∈ I2\{1, 2}.
2. Find H[s2, t

′
1|C0, F0 ∪F ′], where F ′ = {(s1, s2)}∪ (V0 ∩

⋃
j∈I2\{1,2} V (Bsj )).

Let the hamiltonian path be (s2, . . . , z, s1, . . . , t
′
1).

3. Find k2 − 1-DPC[{(z̄, t2)} ∪ {(s′j , tj)|j ∈ I2\{1, 2}}|C1, F
′′], where F ′′ =

V1 ∩ V (Bt1).
4. Merge the hamiltonian path and the k2 − 1-DPC with the free bridges.

Discard the edge (s1, z).
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3.2 Proof of Theorem 1

For k = 1 and f ≥ 2, the theorem is exactly the same as Lemma 2. We assume
that

k ≥ 2, f0 + f1 + f2 ≤ f + 1, and k0 + k1 + k2 = k.

Lemmas 7, 8, and 9 are concerned with k0 ≥ 1, and Lemmas 10 and 11 are
concerned with k2 = k.

Lemma 7. When 1 ≤ k0 < k, Procedure DPC-A(G0 ⊕G1, R, F ) constructs an
f + 1-fault k-DPC unless f0 = f + 1, k1 = 0, and k′2 = 0.

Proof. The existence of pairwise disjoint free bridges in step 1 is due to Lemma 6
(b). Unless f0 = f + 1, k1 = 0, and k′2 = 0, G0 is f0 + k′2 + 2k′′2 -fault k0-disjoint
path coverable since 2k0 + f0 + k′2 + 2k′′2 ≤ 2k + f , and thus there exists a
k0-DPC in step 2. Similarly, G1 is f1-fault k1 + k2-disjoint path coverable since
2k1 + 2k2 + f1 ≤ 2k + f . This completes the proof of the lemma. ut
Lemma 8. When k0 = k, Procedure DPC-B(G0⊕G1, R, F ) constructs an f +1-
fault k-DPC unless f0 = f + 1 (k1 = 0, and k′2 = 0).

Proof. To prove the existence of a k − 1-DPC in step 2, we will show that
f0 + |X1| ≤ f + 2. When |X1| = 2, the inequality holds true unless f0 = f + 1.
When |X1| = 3, the number f1 + f2 of faulty elements in G1 or between G0

and G1 is at least k(≥ 2), and thus f0 + 3 ≤ f0 + f1 + f2 + 1 ≤ f + 2. When
|X1| = 4, analogously to the previous case, f0 + 4 ≤ f0 + f1 + f2 < f + 2 since
f1 +f2 ≥ 2k. The existence of a hamiltonian path joining s′1 and t′1 is due to the
fact that f1 ≤ f + 2k − 2. ut
Lemma 9. When k0 ≥ 1, f0 = f + 1, k1 = 0, and k′2 = 0, Procedure DPC-
C(G0 ⊕G1, R, F ) constructs an f + 1-fault k-DPC.

Proof. Whether k0 ≥ 2 or not, it holds true that f0+ |F ′| ≤ f +1+2(k−2)+1 =
f + 2k − 2, which implies the existence of a hamiltonian path in step 2. By the
construction, (z, z̄) is the free bridge of z. Note that z 6= s2 when k0 = 1. The
existence of a k − 1-DPC in step 3 is straightforward. ut
Lemma 10. When k2 = k, Procedure DPC-D(G0 ⊕ G1, R, F ) constructs an
f + 1-fault k-DPC unless f0 = f + 1 and k′2 = 0.

Proof. The existence of pairwise disjoint free bridges is due to Lemma 6(c).
To prove the existence of the hamiltonian path, we will show that f0 + |F ′| ≤
f + 2k − 2. When k′′2 ≥ 1, f0 + |F ′| = f0 + 2(k′′2 − 1) + k′2 ≤ f + 2k − 2 unless
f0 = f + 1 and k′2 = 0. When k′′2 = 0, f0 + |F ′| = f0 + k′2 − 1 ≤ f + 2k − 2. The
existence of k2 − 1-DPC in step 3 is due to that f1 + |F ′′| ≤ f + 2. Note that
the assumption that f0 ≥ f1 implies that f1 < f + 1. ut
Lemma 11. When k2 = k, f0 = f + 1, and k′2 = 0, Procedure DPC-E(G0 ⊕
G1, R, F ) constructs an f + 1-fault k-DPC.
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Proof. The existence of the hamiltonian path is due to the fact that f0 + |F ′| =
f0 +2(k2− 2)+1 ≤ f +2k− 2. Note that z is different from s1 and s2, and thus
(z, z̄) is a free edge. The existence of the k2 − 1-DPC is straightforward. ut

Consequently, the proof of Theorem 1 is completed. From Theorem 1 and
Lemma 4, the following corollary is immediate.

Corollary 1. For k ≥ 2 and f ≥ 0, or for k = 1 and f ≥ 2, let Gi be a graph
with n vertices satisfying the two conditions of Theorem 1, i = 0, 1. Then,
(a) G0 ⊕G1 is f + 2j + 1-fault many-to-many k − j-disjoint path coverable for
every j, 0 ≤ j < k, and
(b) G0 ⊕G1 is f + 2k-fault hamiltonian.

3.3 Proof of Theorem 2 for k ≥ 2 and f ≥ 0 or for k = 1 and f ≥ 2

Corollary 1 implies that Hi, i = 0, 1, is f + 2j + 1-fault many-to-many k − j-
disjoint path coverable for every j, 0 ≤ j < k, and that Hi is f + 2k-fault
hamiltonian. In this subsection, by utilizing mainly these properties of Hi, we
are to prove Theorem 2 for k ≥ 2 and f ≥ 0 or for k = 1 and f ≥ 2. We assume
that

f0 + f1 + f2 ≤ f and k0 + k1 + k2 = k + 1.

Similarly to the proof of Theorem 1, Lemmas 12, 13, and 14 are concerned with
k0 ≥ 1, and Lemmas 15 and 17 are concerned with k2 = k + 1.

Lemma 12. When 1 ≤ k0 < k+1, Procedure DPC-A(H0⊕H1, R, F ) constructs
an f -fault k + 1-DPC unless f0 = f , k1 = 0, and k′2 = 0.

Proof. Unless f0 = f , k1 = 0, and k′2 = 0, H0 is f0 + k′2 + 2k′′2 -fault k0-disjoint
path coverable since 2k0 + f0 + k′2 + 2k′′2 ≤ 2k + f + 1, and thus there exists a
k0-DPC in step 2. Similarly, H1 is f1-fault k1 + k2-disjoint path coverable since
2k1 + 2k2 + f1 ≤ 2k + f + 1. ut

Lemma 13. When k0 = k +1, Procedure DPC-B(H0⊕H1, R, F ) constructs an
f -fault k + 1-DPC unless f0 = f (k1 = 0 and k′2 = 0).

Proof. To prove the existence of a k-DPC in step 2, we will show that f0+|X1| ≤
f + 1. When |X1| = 2, the inequality holds true unless f0 = f . When |X1| = 3,
it holds true that f1 + f2 ≥ k + 1, and thus f0 + 3 ≤ f0 + f1 + f2 + 1 ≤ f + 1.
When |X1| = 4, f0 +4 ≤ f0 +f1 +f2 < f +1 since f1 +f2 ≥ 2(k+1). Obviously,
there exists a hamiltonian path in H1 joining s′1 and t′1. ut

Lemma 14. When k0 ≥ 1, f0 = f , k1 = 0, and k′2 = 0, Procedure DPC-
C(H0 ⊕H1, R, F ) constructs an f -fault k + 1-DPC.

Proof. There exists a hamiltonian path in H0 joining s2 and t1 since f0 + |F ′| ≤
f + 2(k − 1) + 1 = f + 2k − 1. The existence of a k-DPC is straightforward. ut
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Hereafter in this subsection, k2 = k + 1 (k0 = k1 = 0). Due to Lemma 6(a)
and Remark 2, we assume that F ′′ defined in step 3 of Procedures DPC-D and
DPC-E is a subset of V (G2) or V (G3). That is, F ′′ ∩ V (G2) 6= ∅ if and only if
F ′′ ∩ V (G3) = ∅.
Lemma 15. When k2 = k +1, Procedure DPC-D(H0⊕H1, R, F ) constructs an
f -fault k + 1-DPC unless f0 = f and k′2 = 0.

Proof. To prove the existence of a hamiltonian path in H0, we will show that
f0 + |F ′| ≤ f +2k−1. When k′′2 ≥ 1, f0 + |F ′| = f0 +2(k′′2 −1)+k′2 ≤ f +2k−1
unless f0 = f and k′2 = 0. When k′′2 = 0, f0 + |F ′| = f0 + k′2 − 1 ≤ f + 2k − 1.
Now, let us consider the existence of a k2 − 1-DPC in step 3. When f ≥ 1 or
|F ′′| = 1, there exists a k2 − 1-DPC in H1 since f1 + |F ′′| ≤ f + 1. Note that
from the assumption of f0 ≥ f1, if f ≥ 1, then f1 < f . When f = 0 and |F ′′| = 2
(k ≥ 2 by the assumption), the existence of a k2−1-DPC is due to the following
Lemma 16. ut

The proof of Lemma 16 is omitted. Of course, Lemma 16 does not say that
G0 ⊕G1 is 2-fault many-to-many k-disjoint path coverable.

Lemma 16. For k ≥ 2, let Gi be a graph with n vertices satisfying the following
conditions, i = 0, 1: (a) Gi is 2j-fault many-to-many k−j-disjoint path coverable
for every j, 0 ≤ j < k, and (b) Gi is 2k − 1-fault hamiltonian. Then, G0 ⊕ G1

with two faulty vertices in G0 and no other faulty elements is many-to-many
k-disjoint path coverable.

Lemma 17. When k2 = k + 1, f0 = f , and k′2 = 0, Procedure DPC-E(H0 ⊕
H1, R, F ) constructs an f -fault k + 1-DPC.

Proof. There exists a hamiltonian path in H0 joining s2 and t′1 since f0 + |F ′| =
f0+2(k2−2)+1 = f +2k−1. When f ≥ 1, there exists a k2−1-DPC in H1 since
|F ′′| = 2 ≤ f + 1. When f = 0 (and |F ′′| = 2), the existence of a k2 − 1-DPC is
due to Lemma 16. ut

3.4 Proof of Theorem 2 for k = 1 and f = 0, 1

In H0 ⊕ H1, H0 and H1 are called components and Gi, 0 ≤ i ≤ 3, are called
subcomponents. Contrary to the proof given in the previous subsection, we can
not employ Corollary 1. Instead, Lemma 1 and 3 are utilized repeatedly in this
subsection. We denote by v̂ the vertex which is adjacent to v and contained in
the same component with v and in a different subcomponent from v. Lemmas 18,
19, and 20 are concerned with k0 ≥ 1. It is assumed that k0 ≥ k1. All the proofs
of lemmas in this subsection are omitted.

Lemma 18. When k0 = 1, we can construct an f -fault 2-DPC unless f0 = f ,
k1 = 0, and k′2 = 0.

Lemma 19. When k0 = 2, we can construct an f -fault 2-DPC unless f0 = f
(k1 = 0, k′2 = 0).
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Lemma 20. When k0 ≥ 1, f0 = f , k1 = 0, and k′2 = 0, we can construct an
f -fault 2-DPC.

Now, let us consider the case when k2 = 2 (k0 = k1 = 0). We assume that
f0 ≥ f1. Then, f1 = 0. We denote by li,j the number of edges joining vertices in
Gi and Gj , i 6= j. Observe that l0,1 = n, l0,2 + l0,3 = n, l0,2 = l1,3, and l0,3 = l1,2.
Note that n ≥ f + 4 since each Gi is f + 1-fault hamiltonian.

Lemma 21. When k2 = 2, we can construct an f -fault 2-DPC unless f0 = f
and k′2 = 0.

Lemma 22. When k2 = 2, f = 0, (s1, t1) is an edge, and k′2 = 1, we can
construct an f -fault 2-DPC.

Lemma 23. When k2 = 2, f0 = f , and k′2 = 0, we can construct an f -fault
2-DPC.

At last, the proof of Theorem 2 is completed. From Theorem 2, we have the
following corollary.

Corollary 2. For k ≥ 1 and f ≥ 0, let Gi be a graph with n vertices satisfying
the two conditions of Theorem 2, i = 0, 1, 2, 3. Then, H0 ⊕ H1 is f + 2j-fault
many-to-many k + 1 − j-disjoint path coverable for every j, 0 ≤ j < k, where
H0 = G0 ⊕G1 and H1 = G2 ⊕G3.

4 Hypercube-Like Interconnection Networks

A graph G is called fully many-to-many disjoint path coverable if for any k ≥ 1
and f ≥ 0 such that f + 2k ≤ δ(G) − 1, G is f -fault many-to-many k-disjoint
path coverable.

4.1 Recursive circulants G(2m, 4)

G(2m, 4) is an m-regular graph with 2m vertices. According to the recursive
structure of recursive circulants[10], we can observe that G(2m, 4) is isomorphic
to G(2m−2, 4) ×K2 ⊕M G(2m−2, 4) ×K2 for some permutation M . Obviously,
G(2m−2, 4)×K2 is isomorphic to G(2m−2, 4)⊕M ′G(2m−2, 4) for some M ′. Fault-
hamiltonicity of G(2m, 4) was studied in [11]. By utilizing Lemma 5, we can also
obtain fault-hamiltonicity of G(2m, 4)×K2.

Lemma 24. (a) G(2m, 4), m ≥ 3, is m − 3-fault hamiltonian-connected and
m−2-fault hamiltonian[11]. (b) G(2m, 4)×K2, m ≥ 3, is m−2-fault hamiltonian-
connected and m− 1-fault hamiltonian.

Theorem 3. G(2m, 4), m ≥ 3, is fully many-to-many disjoint path coverable.

Proof. The proof is by induction on m. For m = 3, 4, the theorem holds true by
Lemma 24. For m ≥ 5, from Corollary 2 and Lemma 24, the theorem follows
immediately. ut
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4.2 Twisted cube TQm, crossed cube CQm

Originally, twisted cube TQm is defined for odd m. We let TQm = TQm−1×K2

for even m. Then, TQm is isomorphic to TQm−1⊕M TQm−1 for some M . Also,
crossed cube CQm is isomorphic to CQm−1 ⊕M ′ CQm−1 for some M ′. Both
TQm and CQm are m-regular graphs with 2m vertices. Fault-hamiltonicity of
them were studied in the literature.

Lemma 25. (a) TQm, m ≥ 3, is m−3-fault hamiltonian-connected and m−2-
fault hamiltonian[6]. (b) CQm, m ≥ 3, is m−3-fault hamiltonian-connected and
m− 2-fault hamiltonian[5].

From Lemma 5, Corollary 2, and Lemma 25, we have the following theorem.

Theorem 4. TQm and CQm, m ≥ 3, are fully many-to-many disjoint path
coverable.
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