# Many-to-Many Disjoint Path Covers in a Graph with Faulty Elements ${ }^{\star}$ 

Jung-Heum Park ${ }^{1}$, Hee-Chul Kim ${ }^{2}$, and Hyeong-Seok Lim ${ }^{3}$<br>${ }^{1}$ The Catholic University of Korea, Korea<br>j.h.park@catholic.ac.kr<br>${ }^{2}$ Hankuk University of Foreign Studies, Korea<br>hckim@hufs.ac.kr<br>${ }^{3}$ Chonnam National University, Korea<br>hslim@chonnam.ac.kr


#### Abstract

In a graph $G, k$ vertex disjoint paths joining $k$ distinct sourcesink pairs that cover all the vertices in the graph are called a many-tomany $k$-disjoint path cover $(k$-DPC) of $G$. We consider an $f$-fault $k$-DPC problem that is concerned with finding many-to-many $k$-DPC in the presence of $f$ or less faulty vertices and/or edges. We consider the graph obtained by merging two graphs $H_{0}$ and $H_{1},\left|V\left(H_{0}\right)\right|=\left|V\left(H_{1}\right)\right|=n$, with $n$ pairwise nonadjacent edges joining vertices in $H_{0}$ and vertices in $H_{1}$. We present sufficient conditions for such a graph to have an $f$-fault $k$-DPC and give the construction schemes. Applying our main result to interconnection graphs, we observe that when there are $f$ or less faulty elements, all of recursive circulant $G\left(2^{m}, 4\right)$, twisted cube $T Q_{m}$, and crossed cube $C Q_{m}$ of degree $m$ have $f$-fault $k$-DPC for any $k \geq 1$ and $f \geq 0$ such that $f+2 k \leq m-1$.


## 1 Introduction

One of the central issues in various interconnection networks is finding nodedisjoint paths concerned with the routing among nodes and the embedding of linear arrays. Node-disjoint paths can be used as parallel paths for an efficient data routing among nodes. Also, each path in node-disjoint paths can be utilized in its own pipeline computation. An interconnection network is often modeled as a graph, in which vertices and edges correspond to nodes and links, respectively. In the rest of this paper, we will use standard terminology in graphs (see [1]).

Disjoint paths can be categorized as three types: one-to-one, one-to-many, and many-to-many. One-to-one type deals with the disjoint paths joining a single source $s$ and a single sink $t$. One-to-many type considers the disjoint paths joining a single source $s$ and $k$ distinct sinks $t_{1}, t_{2}, \ldots, t_{k}$. Most of the works done on disjoint paths deal with the one-to-one or one-to-many. For a variety of networks one-to-one and one-to-many disjoint paths were constructed, e.g., hypercubes [3],

[^0]star networks [2], etc. Many-to-many type deals with the disjoint paths joining $k$ distinct sources $s_{1}, s_{2}, \ldots, s_{k}$ and $k$ distinct sinks $t_{1}, t_{2}, \ldots, t_{k}$. In many-to-many type, several problems can be defined depending on whether specific sources should be joined to specific sinks or a source can be freely matched to a sink. The works on many-to-many type have a relative paucity because of its difficulty and some results can be found in $[4,7]$.

All of three types of disjoint paths in a graph $G$ can be accommodated with the covering of vertices in $G$. A disjoint path cover in a graph $G$ is to find disjoint paths containing all the vertices in $G$. A disjoint path cover problem originated from an interconnection network is concerned with the application where the full utilization of nodes is important. For an embedding of linear arrays in a network, the cover implies every node can be participated in a pipeline computation. One-to-one disjoint path covers in recursive circulants[8, 12] and one-to-many disjoint path covers in some hypercube-like interconnection networks[9] were studied.

Given a set of $k$ sources $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and a set of $k$ sinks $T=$ $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ in a graph $G$ such that $S \cap T=\emptyset$, we are concerned with many-to-many disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ in $G, P_{i}$ joining $s_{i}$ and $t_{i}, 1 \leq i \leq k$, that cover all the vertices in the graph, that is, $\bigcup_{1 \leq i \leq k} V\left(P_{i}\right)=V(G)$ and $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\emptyset$ for all $i \neq j$. Here $V\left(P_{i}\right)$ and $V(G)$ denote the vertex sets of $P_{i}$ and $G$, respectively. We call such $k$ disjoint paths a many-to-many $k$-disjoint path cover (in short, many-to-many $k-D P C$ ) of $G$.

On the other hand, embedding of linear arrays and rings into a faulty interconnection network is one of the important problems in parallel processing $[5,6,11]$. The problem is modeled as finding as long fault-free paths and cycles as possible in the graph with some faulty vertices and/or edges. A graph $G$ is called $f$-fault hamiltonian (resp. $f$-fault hamiltonian-connected) if there exists a hamiltonian cycle (resp. if each pair of vertices are joined by a hamiltonian path) in $G \backslash F$ for any set $F$ of faulty elements such that $|F| \leq f$. For a graph $G$ to be $f$-fault hamiltonian (resp. $f$-fault hamiltonian-connected), it is necessary that $f \leq \delta(G)-2$ (resp. $f \leq \delta(G)-3$ ), where $\delta(G)$ is the minimum degree of $G$.

To a graph $G$ with a set of faulty elements $F$, the definition of a many-to-many disjoint path cover can be extended. Given a set of $k$ sources $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and a set of $k$ sinks $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ in $G \backslash F$ such that $S \cap T=$ $\emptyset$, a many-to-many $k$-disjoint path cover joining $S$ and $T$ is $k$ disjoint paths $P_{i}$ joining $s_{i}$ and $t_{i}, 1 \leq i \leq k$, such that $\bigcup_{1 \leq i \leq k} V\left(P_{i}\right)=V(G) \backslash F, V\left(P_{i}\right) \cap V\left(P_{j}\right)=$ $\emptyset$ for all $i \neq j$, and every edge on each path $P_{i}$ is fault-free. Such a many-to-many $k$-DPC is denoted by $k$-DPC $\left[\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)\right\} \mid G, F\right]$. A graph $G$ is called $f$-fault many-to-many $k$-disjoint path coverable if for any set $F$ of faulty elements such that $|F| \leq f, G$ has $k$-DPC $\left[\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)\right\} \mid G, F\right]$ for every $k$ distinct sources $s_{1}, s_{2}, \ldots, s_{k}$ and $k$ distinct sinks $t_{1}, t_{2}, \ldots, t_{k}$ in $G \backslash F$.

Proposition 1. For a graph $G$ to be $f$-fault many-to-many $k$-disjoint path coverable, it is necessary that $f+2 k \leq \delta(G)+1$.

Proposition 2. (a) A graph $G$ is $f$-fault many-to-many 1-disjoint path coverable if and only if $G$ is $f$-fault hamiltonian-connected.
(b) If $G$ is $f$-fault many-to-many $k(\geq 2)$-disjoint path coverable, then $G$ is $f$-fault many-to-many $k-1$-disjoint path coverable.
Proposition 3. If a graph $G$ is $f$-fault many-to-many $k(\geq 2)$-disjoint path coverable, then for any pair of vertices $s$ and $t$ and any sequence of pairwise nonadjacent $k-1$ edges $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k-1}, y_{k-1}\right)\right)$, there exists a hamiltonian path in $G \backslash F$ between $s$ and $t$ passing through the edges in the order given for any set $F$ of faulty elements with $|F| \leq f$. That is, there exists a hamiltonian path of the form of $\left(s, \ldots, x_{1}, y_{1}, \ldots, x_{k-1}, y_{k-1}, \ldots, t\right)$.

We are given two graphs $G_{0}$ and $G_{1}$ with $n$ vertices. We denote by $V_{i}$ and $E_{i}$ the vertex set and edge set of $G_{i}, i=0,1$, respectively. We let $V_{0}=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{1}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. With respect to a permutation $M=$ $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of $\{1,2, \ldots, n\}$, we can "merge" the two graphs into a graph $G_{0} \oplus_{M} G_{1}$ with $2 n$ vertices in such a way that the vertex set $V=V_{0} \cup V_{1}$ and the edge set $E=E_{0} \cup E_{1} \cup E_{2}$, where $E_{2}=\left\{\left(v_{j}, w_{i_{j}}\right) \mid 1 \leq j \leq n\right\}$. We denote by $G_{0} \oplus G_{1}$ a graph obtained by merging $G_{0}$ and $G_{1}$ w.r.t. an arbitrary permutation $M$. Here, $G_{0}$ and $G_{1}$ are called components of $G_{0} \oplus G_{1}$.

In this paper, we will show that by using $f^{\prime}$-fault many-to-many $k^{\prime}$-DPC of $G_{i}$ for all $f^{\prime}$ and $k^{\prime}$ such that $f^{\prime}+2 k^{\prime} \leq f+2 k$, and fault-hamiltonicity of $G_{i}$, we can always construct an $f+1$-fault many-to-many $k$-DPC in $G_{0} \oplus G_{1}$ and an $f$-fault many-to-many $k+1$-DPC in $H_{0} \oplus H_{1}$, where $H_{0}=G_{0} \oplus G_{1}$ and $H_{1}=G_{2} \oplus G_{3}$. Precisely speaking, we will prove the following two theorems. Note that $\delta\left(G_{0} \oplus G_{1}\right)=\delta+1$ and $\delta\left(H_{0} \oplus H_{1}\right)=\delta+2$, where $\delta=\min _{i} \delta\left(G_{i}\right)$.
Theorem 1. For $k \geq 2$ and $f \geq 0$, or for $k=1$ and $f \geq 2$, let $G_{i}$ be a graph with $n$ vertices satisfying the following conditions, $i=0,1$ :
(a) $G_{i}$ is $f+2 j$-fault many-to-many $k-j$-disjoint path coverable for every $j$, $0 \leq j<k$.
(b) $G_{i}$ is $f+2 k-1$-fault hamiltonian.

Then, $G_{0} \oplus G_{1}$ is $f+1$-fault many-to-many $k$-disjoint path coverable.
Note that the condition (a) of Theorem 1 is equivalent to that for any $f^{\prime}$ and $k^{\prime}$ such that $f^{\prime}+2 k^{\prime} \leq f+2 k, G_{i}$ is $f^{\prime}$-fault $k^{\prime}$-disjoint path coverable. In this paper, we are concerned with a construction of $f$-fault many-to-many $k$-DPC of a graph $G$ such that $f+2 k \leq \delta(G)-1$.
Theorem 2. For $k \geq 1$ and $f \geq 0$, let $G_{i}$ be a graph with $n$ vertices satisfying the following conditions, $i=0,1,2,3$ :
(a) $G_{i}$ is $f+2 j$-fault many-to-many $k-j$-disjoint path coverable for every $j$, $0 \leq j<k$.
(b) $G_{i}$ is $f+2 k-1$-fault hamiltonian.

Then, $H_{0} \oplus H_{1}$ is $f$-fault many-to-many $k+1$-disjoint path coverable, where $H_{0}=G_{0} \oplus G_{1}$ and $H_{1}=G_{2} \oplus G_{3}$.

By applying the above two theorems to interconnection graphs, we will show that all of recursive circulant $G\left(2^{m}, 4\right)$, twisted cube $T Q_{m}$, and crossed cube $C Q_{m}$ of degree $m$ are $f$-fault many-to-many $k$-disjoint path coverable for every $k \geq 1$ and $f \geq 0$ such that $f+2 k \leq m-1$.

Remark 1. Even when there are $p(<k)$ sources such that each source is identical with its corresponding sink, that is, when $s_{i}=t_{i}$ for all $1 \leq i \leq p$ and $S^{\prime} \cap T^{\prime}=\emptyset$, where $S^{\prime}=\left\{s_{p+1}, \ldots, s_{k}\right\}$ and $T^{\prime}=\left\{t_{p+1}, \ldots, t_{k}\right\}$, we can construct $f$-fault many-to-many $k$-DPC as follows: (a) we first define $P_{i}=\left(s_{i}\right), 1 \leq i \leq p$, a path with one vertex, and then (b) regarding them as virtual faulty vertices, find $f+p$-fault many-to-many $k-p$-DPC. Consequently, Proposition 3 can be extended so that adjacent edges are allowed.

## 2 Preliminaries

Let us consider fault-hamiltonicity of $G_{0} \oplus G_{1}$. The following five lemmas are useful for our purpose. The proofs for them are omitted due to space limit.

Lemma 1. For $f \geq 0$, if $G_{i}$ is $f$-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=0,1$, then $G_{0} \oplus G_{1}$ is also $f$-fault hamiltonian-connected and $f+1$-fault hamiltonian.

Lemma 2. For $f \geq 2$, if $G_{i}$ is $f$-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=0,1$, then $G_{0} \oplus G_{1}$ is $f+1$-fault hamiltonian-connected.
Lemma 3. For $f=0,1$, if $G_{i}$ is $f$-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=0,1$, then $G_{0} \oplus G_{1}$ with $f+1$ faulty elements has a hamiltonian path joining $s$ and $t$ unless $s$ and $t$ are contained in the same component and all the faulty elements are contained in the other component.
Lemma 4. For $f \geq 1$, if $G_{i}$ is $f$-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=0,1$, then $G_{0} \oplus G_{1}$ is $f+2$-fault hamiltonian.

Lemma 5. Let $G$ be a $\delta$-regular graph such that $\delta \geq 3$. If $G$ is $\delta-3$-fault hamiltonian-connected and $\delta$-2-fault hamiltonian, then $G \times K_{2}$ is $\delta-2$-fault hamiltonian-connected and $\delta-1$-fault hamiltonian.

For a vertex $v$ in $G_{0} \oplus G_{1}$, we denote by $\bar{v}$ the vertex adjacent to $v$ which is in a component different from the component in which $v$ is contained. We denote by $U$ the set of terminals, the set of sources and sinks $S \cup T$, and denote by $F$ the set of faulty elements.

Definition 1. A vertex $v$ in $G_{0} \oplus G_{1}$ is called free if $v \notin F$ and $v \notin U$. An edge $(v, w)$ is called free if $v$ and $w$ are free and $(v, w) \notin F$.
Definition 2. A free bridge of a fault-free vertex $v$ is the path $(v, \bar{v})$ of length one if $\bar{v}$ is free and $(v, \bar{v}) \notin F$; otherwise, it is a path $(v, w, \bar{w})$ of length two such that $w \neq \bar{v},(v, w) \notin F$, and $(w, \bar{w})$ is a free edge.
Lemma 6. Let $G_{0} \oplus G_{1}$ have $k$ source-sink pairs and at most $f$ faulty elements such that $f+2 k \leq \Delta-1$, where $\Delta$ is the minimum degree of $G_{0} \oplus G_{1}$.
(a) For any terminal $w$ in $G_{0} \oplus G_{1}$, there exists a free bridge of $w$.
(b) For any set of terminals $W_{l}=\left\{w_{1}, w_{2}, \ldots, w_{l}\right\}$ in $G_{0}$ with $l \leq 2 k$, there exist $l$ pairwise disjoint free bridges of $w_{i}$ 's, $1 \leq i \leq l$.
(c) For a single terminal $w_{1}$ in $G_{1}$ and a set of terminals $W_{l} \backslash w_{1}=\left\{w_{2}, \ldots, w_{l}\right\}$ in $G_{0}$ with $l \leq 2 k$, there exist $l$ pairwise disjoint free bridges of $w_{i}$ 's, $1 \leq i \leq l$.

Proof. There are at least $\Delta$ candidates for a free bridge of $w$, and at most $f+2 k-1$ elements ( $f$ faulty elements and $2 k-1$ terminals other than $w$ ) can "block" the candidates. Since each element block at most one candidate, there are at least $\Delta-(f+2 k-1) \geq 2$ nonblocked candidates, and thus (a) is proved. We prove (b) by induction on $l$. Before going on, we need some definitions. We call vertices $v$ and $\bar{v}$ and an edge joining them collectively a column of $v$. When $(v, \bar{v})$ (resp. $(v, w, \bar{w}))$ is the free bridge of $v$, we say that the free bridge occupies a column of $v$ (resp. two columns of $v$ and $w$ ). We are to construct free bridges for $W_{l}$ satisfying a condition that the number of occupied columns $c(l)$ is less than or equal to $f(l)+t(l)$, where $f(l)$ and $t(l)$ are the numbers of faulty elements and terminals contained in the $c(l)$ occupied columns, respectively. When $l=1$, there exists a free bridge which satisfies the condition. Assume that there exist pairwise disjoint free bridges for $W_{l-1}=W \backslash w_{l}$ satisfying the condition. If $\left(w_{l}, \bar{w}_{l}\right)$ is the free bridge of $w_{l}$, we are done. Suppose otherwise. There are $\Delta$ candidates for a free bridge, and the number of blocking elements is at most $c(l-1)$ plus the number of terminals and faulty elements which are not contained in the $c(l-1)$ occupied columns. Thus, the number of blocking elements is at most $f+2 k-1$, which implies the existence of pairwise disjoint free bridges for $W_{l}$. Obviously, $c(l)=c(l-1)+2$ and $f(l)+t(l) \geq f(l-1)+t(l-1)+2$, and thus it satisfies the condition.

Now, let us prove (c). If $\left(w_{1}, \bar{w}_{1}\right)$ is the free bridge of $w_{1}$, it occupies one column. If ( $w_{1}, x, \bar{x}$ ) is the free bridge of $w_{1}$ and $\bar{w}_{1}$ is not a terminal of which we are to find a free bridge, it occupies two columns. For these cases, in the same way as (b), we can construct pairwise disjoint free bridges satisfying the above condition. When $\left(w_{1}, x, \bar{x}\right)$ is the free bridge of $w_{1}$ and $\bar{w}_{1} \in W_{l}$, letting $w_{2}=\bar{w}_{1}$ without loss of generality, we first find pairwise disjoint free bridges of $w_{1}$ and $w_{2}$. They occupy three columns, that is, $c(2)=3$. We proceed to construct free bridges with a relaxed condition that $c(l) \leq f(l)+t(l)+1$. This relaxation does not cause a problem since the number of blocking elements is at most $f+2 k$, still less than the number of candidates for a free bridge, $\Delta$.

Remark 2. According to the proof of Lemma 6 (a) and (b), we have at least two choices when we find free bridges of terminals contained in one component.

Remark 3. If $G_{i}$ satisfies the conditions of Theorem 1 or 2 , then $f+2 k \leq \delta-1$, where $\delta=\min _{i} \delta\left(G_{i}\right)$. Concerned with Theorem 1, free bridges of type Lemma 6 (b) and (c) exist in $G_{0} \oplus G_{1}$ since $(f+1)+2 k \leq \delta\left(G_{0} \oplus G_{1}\right)-1$. Concerned with Theorem 2, free bridges of the two types also exist in $H_{0} \oplus H_{1}$ since $f+2(k+1) \leq$ $\delta\left(H_{0} \oplus H_{1}\right)-1$.

## 3 Construction of Many-to-Many DPC

In this section, we will prove the main theorems. First of all, we will develop five basic procedures for constructing many-to-many disjoint path covers. They play a significant role in proving the theorems.

### 3.1 Five basic procedures

In a graph $C_{0} \oplus C_{1}$ with two components $C_{0}$ and $C_{1}$, we are to define some notation. When we are concerned with Theorem $1, C_{0}$ and $C_{1}$ correspond to $G_{0}$ and $G_{1}$, respectively. When we are concerned with Theorem $2, C_{0}$ and $C_{1}$ correspond to $H_{0}$ and $H_{1}$, respectively. We denote by $V_{0}$ and $V_{1}$ the sets of vertices in $C_{0}$ and $C_{1}$, respectively. We let $F_{0}$ and $F_{1}$ be the sets of faulty elements in $C_{0}$ and $C_{1}$, respectively, and let $F_{2}$ be the set of faulty edges joining vertices in $C_{0}$ and vertices in $C_{1}$. Let $f_{i}=\left|F_{i}\right|$ for $i=0,1,2$.

We denote by $R$ the set of source-sink pairs in $C_{0} \oplus C_{1}$. We also denote by $k_{i}$ the number of source-sink pairs in $C_{i}, i=0,1$, and by $k_{2}$ the number of source-sink pairs between $C_{0}$ and $C_{1}$. Without loss of generality, we assume that $k_{0} \geq k_{1}$. We let $I_{0}=\left\{1,2, \ldots, k_{0}\right\}, I_{2}=\left\{k_{0}+1, k_{0}+2, \ldots, k_{0}+k_{2}\right\}$, and $I_{1}=\left\{k_{0}+k_{2}+1, k_{0}+k_{2}+2, \ldots, k_{0}+k_{2}+k_{1}\right\}$. We assume that $\left\{s_{j}, t_{j} \mid j \in\right.$ $\left.I_{0}\right\} \cup\left\{s_{j} \mid j \in I_{2}\right\} \subseteq V_{0}$ and $\left\{s_{j}, t_{j} \mid j \in I_{1}\right\} \cup\left\{t_{j} \mid j \in I_{2}\right\} \subseteq V_{1}$. Among the $k_{2}$ sources $s_{j}$ 's, $j \in I_{2}$, we assume that the free bridges of $k_{2}^{\prime}$ sources are of length one and the free bridges of $k_{2}^{\prime \prime}\left(=k_{2}-k_{2}^{\prime}\right)$ sources are of length two.

First three procedures DPC-A, DPC-B, and DPC-C are applicable when $k_{0} \geq 1$, and the last two procedures DPC-D and DPC-E are applicable when $k_{2}=|R|$ (equivalently, $k_{0}=k_{1}=0$ ). We denote by $H[v, w \mid G, F]$ a hamiltonian path in $G \backslash F$ joining a pair of fault-free vertices $v$ and $w$ in a graph $G$ with a set $F$ of faulty elements.

When we find a $k$-DPC or a hamiltonian path, sometimes we regard some fault-free vertices and/or edges as faulty elements. They are called virtual faults. For example, in step 2 of Procedure DPC-A, $F^{\prime}$ is the set of virtual vertex faults, and in step 2 of DPC-C, $\left(s_{2}, s_{1}\right)$ in $F^{\prime}$ is a virtual edge fault.

## Procedure DPC-A $\left(C_{0} \oplus C_{1}, R, F\right)$

UNDER the condition of $1 \leq k_{0}<|R|$.

1. Find pairwise disjoint free bridges $B_{s_{j}}=\left(s_{j}, \ldots, s_{j}^{\prime}\right)$ of $s_{j}$ for all $j \in I_{2}$.
2. Find $k_{0}$-DPC $\left[\left\{\left(s_{j}, t_{j}\right) \mid j \in I_{0}\right\} \mid C_{0}, F_{0} \cup F^{\prime}\right]$, where $F^{\prime}=V_{0} \cap \bigcup_{j \in I_{2}} V\left(B_{s_{j}}\right)$.
3. Find $k_{1}+k_{2}$-DPC $\left[\left\{\left(s_{j}^{\prime}, t_{j}\right) \mid j \in I_{2}\right\} \cup\left\{\left(s_{j}, t_{j}\right) \mid j \in I_{1}\right\} \mid C_{1}, F_{1}\right]$.
4. Merge the two DPC's with the free bridges.

Procedure DPC-B $\left(C_{0} \oplus C_{1}, R, F\right)$
UNDER the condition of $k_{0}=|R|$.

1. Let $s_{1}$ and $t_{1}$ be a pair such that $\left|X_{1}\right| \leq\left|X_{j}\right|$ for all $j \in I_{0}$, where $X_{j}=$ $V_{0} \cap\left\{V\left(B_{s_{j}}\right) \cup V\left(B_{t_{j}}\right)\right\}$. Let $B_{s_{1}}=\left(s_{1}, \ldots, s_{1}^{\prime}\right), B_{t_{1}}=\left(t_{1}, \ldots, t_{1}^{\prime}\right)$.
2. Find $k_{0}-1-\mathrm{DPC}\left[\left\{\left(s_{j}, t_{j}\right) \mid j \in I_{0} \backslash 1\right\} \mid C_{0}, F_{0} \cup X_{1}\right]$.
3. Find $H\left[s_{1}^{\prime}, t_{1}^{\prime} \mid C_{1}, F_{1}\right]$.
4. Merge the $k_{0}-1$-DPC and hamiltonian path with the free bridges.

Keep in mind that under the condition of procedure DPC-C below, for every $s_{j}, j \in I_{2}, \overline{s_{j}}=t_{j^{\prime}}$ for some $j^{\prime} \in I_{2}$, and thus for every other fault-free vertex $v$ in $G_{0},(v, \bar{v})$ is the free bridge of $v$.

## Procedure DPC-C $\left(C_{0} \oplus C_{1}, R, F\right)$

UNDER the condition that $k_{0} \geq 1, k_{1}=0, k_{2}^{\prime}=0$, and all the faulty elements are contained in $C_{0}$.

1. When $k_{0} \geq 2$, find pairwise disjoint free bridges $B_{t_{2}}=\left(t_{2}, t_{2}^{\prime}\right), B_{s_{j}}=\left(s_{j}, s_{j}^{\prime}\right)$ and $B_{t_{j}}=\left(t_{j}, t_{j}^{\prime}\right)$ for all $j \in I_{0} \backslash\{1,2\}$, and $B_{s_{j}}=\left(s_{j}, \ldots, s_{j}^{\prime}\right)$ for all $j \in I_{2}$. When $k_{0}=1$, find pairwise disjoint free bridges $B_{s_{j}}=\left(s_{j}, \ldots, s_{j}^{\prime}\right)$ for all $j \in I_{2} \backslash 2$.
2. Find $H\left[s_{2}, t_{1} \mid C_{0}, F_{0} \cup F^{\prime}\right]$, where $F^{\prime}=V_{0} \cap\left[B_{t_{2}} \cup \bigcup_{j \in I_{0} \backslash\{1,2\}}\left(V\left(B_{s_{j}}\right) \cup\right.\right.$ $\left.\left.V\left(B_{t_{j}}\right)\right) \cup \bigcup_{j \in I_{2}} V\left(B_{s_{j}}\right)\right]$ if $k_{0} \geq 2 ; F^{\prime}=\left\{\left(s_{2}, s_{1}\right)\right\} \cup\left(V_{0} \cap \bigcup_{j \in I_{2} \backslash 2} V\left(B_{s_{j}}\right)\right)$ otherwise. Let the hamiltonian path be $\left(s_{2}, Q_{1}, z, s_{1}, Q_{2}, t_{1}\right)$.
3. Let $u=t_{2}^{\prime}$ if $k_{0} \geq 2$; otherwise, $u=t_{2}$. Find $k_{0}+k_{2}-1-\operatorname{DPC}[\{\bar{z}, u)\} \cup$ $\left.\left\{\left(s_{j}^{\prime}, t_{j}^{\prime}\right) \mid j \in I_{0} \backslash\{1,2\}\right\} \cup\left\{\left(s_{j}^{\prime}, t_{j}\right) \mid j \in I_{2} \backslash 2\right\} \mid C_{1}, \emptyset\right]$.
4. Merge the hamiltonian path and $k_{0}+k_{2}-1$-DPC with the free bridges and the edge $(z, \bar{z})$. Discard the edge $\left(z, s_{1}\right)$.

Procedures DPC-D and DPC-E are concerned with the case of $k_{2}=|R|$. Without loss of generality, we assume that $f_{0} \geq f_{1}$. This assumption does not conflict with the assumption of $k_{0} \geq k_{1}$.

Procedure DPC-D $\left(C_{0} \oplus C_{1}, R, F\right)$
UNDER the condition that $k_{2}=|R|\left(k_{0}=k_{1}=0\right)$.

1. If $k_{2}^{\prime \prime} \geq 1$, we assume that $\left(s_{1}, \overline{s_{1}}\right)$ is not the free bridge of $s_{1}$. Find pairwise disjoint free bridges $B_{t_{1}}=\left(t_{1}, \ldots, t_{1}^{\prime}\right)$ and $B_{s_{j}}=\left(s_{j}, \ldots, s_{j}^{\prime}\right)$ for all $j \in I_{2} \backslash 1$.
2. Find $H\left[s_{1}, t_{1}^{\prime} \mid C_{0}, F_{0} \cup F^{\prime}\right]$, where $F^{\prime}=V_{0} \cap \bigcup_{j \in I_{2} \backslash 1} V\left(B_{s_{j}}\right)$.
3. Find $k_{2}-1$-DPC $\left[\left\{\left(s_{j}^{\prime}, t_{j}\right) \mid j \in I_{2} \backslash 1\right\} \mid C_{1}, F_{1} \cup F^{\prime \prime}\right]$, where $F^{\prime \prime}=V_{1} \cap B_{t_{1}}$.
4. Merge the hamiltonian path and the $k_{2}-1-\mathrm{DPC}$ with the free bridges.

Observe that under the condition of procedure DPC-E below, for every source $s_{j}$ in $G_{0}, \overline{s_{j}}=t_{j^{\prime}}$ for some $j^{\prime} \in I_{2}$, and thus for any free vertex $v$ in $G_{0},(v, \bar{v})$ is a free edge.

## Procedure DPC-E $\left(C_{0} \oplus C_{1}, R, F\right)$

UNDER the condition that $k_{2}=|R|, k_{2}^{\prime}=0$, and all the faulty elements are contained in $C_{0}$.

1. Find pairwise disjoint free bridges $B_{t_{1}}=\left(t_{1}, \ldots, t_{1}^{\prime}\right)$ and $B_{s_{j}}=\left(s_{j}, \ldots, s_{j}^{\prime}\right)$ for all $j \in I_{2} \backslash\{1,2\}$.
2. Find $H\left[s_{2}, t_{1}^{\prime} \mid C_{0}, F_{0} \cup F^{\prime}\right]$, where $F^{\prime}=\left\{\left(s_{1}, s_{2}\right)\right\} \cup\left(V_{0} \cap \bigcup_{j \in I_{2} \backslash\{1,2\}} V\left(B_{s_{j}}\right)\right)$. Let the hamiltonian path be $\left(s_{2}, \ldots, z, s_{1}, \ldots, t_{1}^{\prime}\right)$.
3. Find $k_{2}-1-\mathrm{DPC}\left[\left\{\left(\bar{z}, t_{2}\right)\right\} \cup\left\{\left(s_{j}^{\prime}, t_{j}\right) \mid j \in I_{2} \backslash\{1,2\}\right\} \mid C_{1}, F^{\prime \prime}\right]$, where $F^{\prime \prime}=$ $V_{1} \cap V\left(B_{t_{1}}\right)$.
4. Merge the hamiltonian path and the $k_{2}-1$-DPC with the free bridges. Discard the edge $\left(s_{1}, z\right)$.

### 3.2 Proof of Theorem 1

For $k=1$ and $f \geq 2$, the theorem is exactly the same as Lemma 2. We assume that

$$
k \geq 2, f_{0}+f_{1}+f_{2} \leq f+1, \text { and } k_{0}+k_{1}+k_{2}=k
$$

Lemmas 7,8 , and 9 are concerned with $k_{0} \geq 1$, and Lemmas 10 and 11 are concerned with $k_{2}=k$.

Lemma 7. When $1 \leq k_{0}<k$, Procedure DPC- $A\left(G_{0} \oplus G_{1}, R, F\right)$ constructs an $f+1$-fault $k$-DPC unless $f_{0}=f+1, k_{1}=0$, and $k_{2}^{\prime}=0$.

Proof. The existence of pairwise disjoint free bridges in step 1 is due to Lemma 6 (b). Unless $f_{0}=f+1, k_{1}=0$, and $k_{2}^{\prime}=0, G_{0}$ is $f_{0}+k_{2}^{\prime}+2 k_{2}^{\prime \prime}$-fault $k_{0}$-disjoint path coverable since $2 k_{0}+f_{0}+k_{2}^{\prime}+2 k_{2}^{\prime \prime} \leq 2 k+f$, and thus there exists a $k_{0}$-DPC in step 2 . Similarly, $G_{1}$ is $f_{1}$-fault $k_{1}+k_{2}$-disjoint path coverable since $2 k_{1}+2 k_{2}+f_{1} \leq 2 k+f$. This completes the proof of the lemma.

Lemma 8. When $k_{0}=k$, Procedure $D P C-B\left(G_{0} \oplus G_{1}, R, F\right)$ constructs an $f+1$ fault $k$-DPC unless $f_{0}=f+1\left(k_{1}=0\right.$, and $\left.k_{2}^{\prime}=0\right)$.

Proof. To prove the existence of a $k-1-\mathrm{DPC}$ in step 2, we will show that $f_{0}+\left|X_{1}\right| \leq f+2$. When $\left|X_{1}\right|=2$, the inequality holds true unless $f_{0}=f+1$. When $\left|X_{1}\right|=3$, the number $f_{1}+f_{2}$ of faulty elements in $G_{1}$ or between $G_{0}$ and $G_{1}$ is at least $k(\geq 2)$, and thus $f_{0}+3 \leq f_{0}+f_{1}+f_{2}+1 \leq f+2$. When $\left|X_{1}\right|=4$, analogously to the previous case, $f_{0}+4 \leq f_{0}+f_{1}+f_{2}<f+2$ since $f_{1}+f_{2} \geq 2 k$. The existence of a hamiltonian path joining $s_{1}^{\prime}$ and $t_{1}^{\prime}$ is due to the fact that $f_{1} \leq f+2 k-2$.

Lemma 9. When $k_{0} \geq 1, f_{0}=f+1, k_{1}=0$, and $k_{2}^{\prime}=0$, Procedure DPC$C\left(G_{0} \oplus G_{1}, R, F\right)$ constructs an $f+1$-fault $k$-DPC.

Proof. Whether $k_{0} \geq 2$ or not, it holds true that $f_{0}+\left|F^{\prime}\right| \leq f+1+2(k-2)+1=$ $f+2 k-2$, which implies the existence of a hamiltonian path in step 2. By the construction, $(z, \bar{z})$ is the free bridge of $z$. Note that $z \neq s_{2}$ when $k_{0}=1$. The existence of a $k-1$-DPC in step 3 is straightforward.

Lemma 10. When $k_{2}=k$, Procedure $D P C-D\left(G_{0} \oplus G_{1}, R, F\right)$ constructs an $f+1$-fault $k$-DPC unless $f_{0}=f+1$ and $k_{2}^{\prime}=0$.

Proof. The existence of pairwise disjoint free bridges is due to Lemma 6(c). To prove the existence of the hamiltonian path, we will show that $f_{0}+\left|F^{\prime}\right| \leq$ $f+2 k-2$. When $k_{2}^{\prime \prime} \geq 1, f_{0}+\left|F^{\prime}\right|=f_{0}+2\left(k_{2}^{\prime \prime}-1\right)+k_{2}^{\prime} \leq f+2 k-2$ unless $f_{0}=f+1$ and $k_{2}^{\prime}=0$. When $k_{2}^{\prime \prime}=0, f_{0}+\left|F^{\prime}\right|=f_{0}+k_{2}^{\prime}-1 \leq f+2 k-2$. The existence of $k_{2}-1$-DPC in step 3 is due to that $f_{1}+\left|F^{\prime \prime}\right| \leq f+2$. Note that the assumption that $f_{0} \geq f_{1}$ implies that $f_{1}<f+1$.

Lemma 11. When $k_{2}=k, f_{0}=f+1$, and $k_{2}^{\prime}=0$, Procedure $D P C-E\left(G_{0} \oplus\right.$ $\left.G_{1}, R, F\right)$ constructs an $f+1$-fault $k$-DPC.

Proof. The existence of the hamiltonian path is due to the fact that $f_{0}+\left|F^{\prime}\right|=$ $f_{0}+2\left(k_{2}-2\right)+1 \leq f+2 k-2$. Note that $z$ is different from $s_{1}$ and $s_{2}$, and thus $(z, \bar{z})$ is a free edge. The existence of the $k_{2}-1$-DPC is straightforward.

Consequently, the proof of Theorem 1 is completed. From Theorem 1 and Lemma 4, the following corollary is immediate.

Corollary 1. For $k \geq 2$ and $f \geq 0$, or for $k=1$ and $f \geq 2$, let $G_{i}$ be a graph with $n$ vertices satisfying the two conditions of Theorem $1, i=0,1$. Then,
(a) $G_{0} \oplus G_{1}$ is $f+2 j+1$-fault many-to-many $k-j$-disjoint path coverable for every $j, 0 \leq j<k$, and
(b) $G_{0} \oplus G_{1}$ is $f+2 k$-fault hamiltonian.

### 3.3 Proof of Theorem 2 for $k \geq 2$ and $f \geq 0$ or for $k=1$ and $f \geq 2$

Corollary 1 implies that $H_{i}, i=0,1$, is $f+2 j+1$-fault many-to-many $k-j$ disjoint path coverable for every $j, 0 \leq j<k$, and that $H_{i}$ is $f+2 k$-fault hamiltonian. In this subsection, by utilizing mainly these properties of $H_{i}$, we are to prove Theorem 2 for $k \geq 2$ and $f \geq 0$ or for $k=1$ and $f \geq 2$. We assume that

$$
f_{0}+f_{1}+f_{2} \leq f \text { and } k_{0}+k_{1}+k_{2}=k+1
$$

Similarly to the proof of Theorem 1, Lemmas 12,13 , and 14 are concerned with $k_{0} \geq 1$, and Lemmas 15 and 17 are concerned with $k_{2}=k+1$.

Lemma 12. When $1 \leq k_{0}<k+1$, Procedure $D P C-A\left(H_{0} \oplus H_{1}, R, F\right)$ constructs an $f$-fault $k+1$-DPC unless $f_{0}=f, k_{1}=0$, and $k_{2}^{\prime}=0$.

Proof. Unless $f_{0}=f, k_{1}=0$, and $k_{2}^{\prime}=0, H_{0}$ is $f_{0}+k_{2}^{\prime}+2 k_{2}^{\prime \prime}$-fault $k_{0}$-disjoint path coverable since $2 k_{0}+f_{0}+k_{2}^{\prime}+2 k_{2}^{\prime \prime} \leq 2 k+f+1$, and thus there exists a $k_{0}$-DPC in step 2 . Similarly, $H_{1}$ is $f_{1}$-fault $k_{1}+k_{2}$-disjoint path coverable since $2 k_{1}+2 k_{2}+f_{1} \leq 2 k+f+1$.

Lemma 13. When $k_{0}=k+1$, Procedure $D P C-B\left(H_{0} \oplus H_{1}, R, F\right)$ constructs an $f$-fault $k+1-D P C$ unless $f_{0}=f\left(k_{1}=0\right.$ and $\left.k_{2}^{\prime}=0\right)$.

Proof. To prove the existence of a $k$-DPC in step 2, we will show that $f_{0}+\left|X_{1}\right| \leq$ $f+1$. When $\left|X_{1}\right|=2$, the inequality holds true unless $f_{0}=f$. When $\left|X_{1}\right|=3$, it holds true that $f_{1}+f_{2} \geq k+1$, and thus $f_{0}+3 \leq f_{0}+f_{1}+f_{2}+1 \leq f+1$. When $\left|X_{1}\right|=4, f_{0}+4 \leq f_{0}+f_{1}+f_{2}<f+1$ since $f_{1}+f_{2} \geq 2(k+1)$. Obviously, there exists a hamiltonian path in $H_{1}$ joining $s_{1}^{\prime}$ and $t_{1}^{\prime}$.

Lemma 14. When $k_{0} \geq 1, f_{0}=f, k_{1}=0$, and $k_{2}^{\prime}=0$, Procedure DPC$C\left(H_{0} \oplus H_{1}, R, F\right)$ constructs an $f$-fault $k+1$-DPC.

Proof. There exists a hamiltonian path in $H_{0}$ joining $s_{2}$ and $t_{1}$ since $f_{0}+\left|F^{\prime}\right| \leq$ $f+2(k-1)+1=f+2 k-1$. The existence of a $k$-DPC is straightforward.

Hereafter in this subsection, $k_{2}=k+1\left(k_{0}=k_{1}=0\right)$. Due to Lemma 6(a) and Remark 2, we assume that $F^{\prime \prime}$ defined in step 3 of Procedures DPC-D and DPC-E is a subset of $V\left(G_{2}\right)$ or $V\left(G_{3}\right)$. That is, $F^{\prime \prime} \cap V\left(G_{2}\right) \neq \emptyset$ if and only if $F^{\prime \prime} \cap V\left(G_{3}\right)=\emptyset$.

Lemma 15. When $k_{2}=k+1$, Procedure $D P C-D\left(H_{0} \oplus H_{1}, R, F\right)$ constructs an $f$-fault $k+1$-DPC unless $f_{0}=f$ and $k_{2}^{\prime}=0$.

Proof. To prove the existence of a hamiltonian path in $H_{0}$, we will show that $f_{0}+\left|F^{\prime}\right| \leq f+2 k-1$. When $k_{2}^{\prime \prime} \geq 1, f_{0}+\left|F^{\prime}\right|=f_{0}+2\left(k_{2}^{\prime \prime}-1\right)+k_{2}^{\prime} \leq f+2 k-1$ unless $f_{0}=f$ and $k_{2}^{\prime}=0$. When $k_{2}^{\prime \prime}=0, f_{0}+\left|F^{\prime}\right|=f_{0}+k_{2}^{\prime}-1 \leq f+2 k-1$. Now, let us consider the existence of a $k_{2}-1$-DPC in step 3 . When $f \geq 1$ or $\left|F^{\prime \prime}\right|=1$, there exists a $k_{2}-1$-DPC in $H_{1}$ since $f_{1}+\left|F^{\prime \prime}\right| \leq f+1$. Note that from the assumption of $f_{0} \geq f_{1}$, if $f \geq 1$, then $f_{1}<f$. When $f=0$ and $\left|F^{\prime \prime}\right|=2$ ( $k \geq 2$ by the assumption), the existence of a $k_{2}-1$-DPC is due to the following Lemma 16.

The proof of Lemma 16 is omitted. Of course, Lemma 16 does not say that $G_{0} \oplus G_{1}$ is 2-fault many-to-many $k$-disjoint path coverable.
Lemma 16. For $k \geq 2$, let $G_{i}$ be a graph with $n$ vertices satisfying the following conditions, $i=0,1:$ (a) $G_{i}$ is $2 j$-fault many-to-many $k$ - $j$-disjoint path coverable for every $j, 0 \leq j<k$, and (b) $G_{i}$ is $2 k-1$-fault hamiltonian. Then, $G_{0} \oplus G_{1}$ with two faulty vertices in $G_{0}$ and no other faulty elements is many-to-many $k$-disjoint path coverable.

Lemma 17. When $k_{2}=k+1, f_{0}=f$, and $k_{2}^{\prime}=0$, Procedure $\operatorname{DPC}-E\left(H_{0} \oplus\right.$ $\left.H_{1}, R, F\right)$ constructs an $f$-fault $k+1-D P C$.
Proof. There exists a hamiltonian path in $H_{0}$ joining $s_{2}$ and $t_{1}^{\prime}$ since $f_{0}+\left|F^{\prime}\right|=$ $f_{0}+2\left(k_{2}-2\right)+1=f+2 k-1$. When $f \geq 1$, there exists a $k_{2}-1$-DPC in $H_{1}$ since $\left|F^{\prime \prime}\right|=2 \leq f+1$. When $f=0$ (and $\left|F^{\prime \prime}\right|=2$ ), the existence of a $k_{2}-1$-DPC is due to Lemma 16.

### 3.4 Proof of Theorem 2 for $k=1$ and $f=0,1$

In $H_{0} \oplus H_{1}, H_{0}$ and $H_{1}$ are called components and $G_{i}, 0 \leq i \leq 3$, are called subcomponents. Contrary to the proof given in the previous subsection, we can not employ Corollary 1. Instead, Lemma 1 and 3 are utilized repeatedly in this subsection. We denote by $\hat{v}$ the vertex which is adjacent to $v$ and contained in the same component with $v$ and in a different subcomponent from $v$. Lemmas 18, 19 , and 20 are concerned with $k_{0} \geq 1$. It is assumed that $k_{0} \geq k_{1}$. All the proofs of lemmas in this subsection are omitted.

Lemma 18. When $k_{0}=1$, we can construct an $f$-fault 2-DPC unless $f_{0}=f$, $k_{1}=0$, and $k_{2}^{\prime}=0$.
Lemma 19. When $k_{0}=2$, we can construct an $f$-fault 2-DPC unless $f_{0}=f$ ( $k_{1}=0, k_{2}^{\prime}=0$ ).

Lemma 20. When $k_{0} \geq 1, f_{0}=f, k_{1}=0$, and $k_{2}^{\prime}=0$, we can construct an $f$-fault 2-DPC.

Now, let us consider the case when $k_{2}=2\left(k_{0}=k_{1}=0\right)$. We assume that $f_{0} \geq f_{1}$. Then, $f_{1}=0$. We denote by $l_{i, j}$ the number of edges joining vertices in $G_{i}$ and $G_{j}, i \neq j$. Observe that $l_{0,1}=n, l_{0,2}+l_{0,3}=n, l_{0,2}=l_{1,3}$, and $l_{0,3}=l_{1,2}$. Note that $n \geq f+4$ since each $G_{i}$ is $f+1$-fault hamiltonian.

Lemma 21. When $k_{2}=2$, we can construct an $f$-fault 2-DPC unless $f_{0}=f$ and $k_{2}^{\prime}=0$.

Lemma 22. When $k_{2}=2, f=0,\left(s_{1}, t_{1}\right)$ is an edge, and $k_{2}^{\prime}=1$, we can construct an $f$-fault $2-D P C$.

Lemma 23. When $k_{2}=2, f_{0}=f$, and $k_{2}^{\prime}=0$, we can construct an $f$-fault $2-D P C$.

At last, the proof of Theorem 2 is completed. From Theorem 2, we have the following corollary.

Corollary 2. For $k \geq 1$ and $f \geq 0$, let $G_{i}$ be a graph with $n$ vertices satisfying the two conditions of Theorem 2, $i=0,1,2,3$. Then, $H_{0} \oplus H_{1}$ is $f+2 j$-fault many-to-many $k+1$ - $j$-disjoint path coverable for every $j, 0 \leq j<k$, where $H_{0}=G_{0} \oplus G_{1}$ and $H_{1}=G_{2} \oplus G_{3}$.

## 4 Hypercube-Like Interconnection Networks

A graph $G$ is called fully many-to-many disjoint path coverable if for any $k \geq 1$ and $f \geq 0$ such that $f+2 k \leq \delta(G)-1, G$ is $f$-fault many-to-many $k$-disjoint path coverable.

### 4.1 Recursive circulants $G\left(2^{m}, 4\right)$

$G\left(2^{m}, 4\right)$ is an $m$-regular graph with $2^{m}$ vertices. According to the recursive structure of recursive circulants[10], we can observe that $G\left(2^{m}, 4\right)$ is isomorphic to $G\left(2^{m-2}, 4\right) \times K_{2} \oplus_{M} G\left(2^{m-2}, 4\right) \times K_{2}$ for some permutation $M$. Obviously, $G\left(2^{m-2}, 4\right) \times K_{2}$ is isomorphic to $G\left(2^{m-2}, 4\right) \oplus_{M^{\prime}} G\left(2^{m-2}, 4\right)$ for some $M^{\prime}$. Faulthamiltonicity of $G\left(2^{m}, 4\right)$ was studied in [11]. By utilizing Lemma 5 , we can also obtain fault-hamiltonicity of $G\left(2^{m}, 4\right) \times K_{2}$.

Lemma 24. (a) $G\left(2^{m}, 4\right), m \geq 3$, is $m-3$-fault hamiltonian-connected and $m-2$-fault hamiltonian[11]. (b) $G\left(2^{m}, 4\right) \times K_{2}, m \geq 3$, is $m-2$-fault hamiltonianconnected and $m-1$-fault hamiltonian.

Theorem 3. $G\left(2^{m}, 4\right), m \geq 3$, is fully many-to-many disjoint path coverable.
Proof. The proof is by induction on $m$. For $m=3,4$, the theorem holds true by Lemma 24. For $m \geq 5$, from Corollary 2 and Lemma 24, the theorem follows immediately.

### 4.2 Twisted cube $T Q_{m}$, crossed cube $C Q_{m}$

Originally, twisted cube $T Q_{m}$ is defined for odd $m$. We let $T Q_{m}=T Q_{m-1} \times K_{2}$ for even $m$. Then, $T Q_{m}$ is isomorphic to $T Q_{m-1} \oplus_{M} T Q_{m-1}$ for some $M$. Also, crossed cube $C Q_{m}$ is isomorphic to $C Q_{m-1} \oplus_{M^{\prime}} C Q_{m-1}$ for some $M^{\prime}$. Both $T Q_{m}$ and $C Q_{m}$ are $m$-regular graphs with $2^{m}$ vertices. Fault-hamiltonicity of them were studied in the literature.

Lemma 25. (a) $T Q_{m}, m \geq 3$, is $m-3$-fault hamiltonian-connected and $m-2$ fault hamiltonian[6]. (b) $C Q_{m}, m \geq 3$, is $m-3$-fault hamiltonian-connected and $m-2$-fault hamiltonian[5].

From Lemma 5, Corollary 2, and Lemma 25, we have the following theorem.
Theorem 4. $T Q_{m}$ and $C Q_{m}, m \geq 3$, are fully many-to-many disjoint path coverable.

## References

1. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, 5th printing, American Elsevier Publishing Co., Inc., 1976.
2. C.C. Chen and J. Chen, "Nearly optimal one-to-many parallel routing in star networks," IEEE Transactions on Parallel and Distributed Systems 8(12), pp. 1196-1202, 1997.
3. S. Gao, B. Novick and K. Qiu, "From hall's matching theorem to optimal routing on hypercubes," Journal of Combinatorial Theory, Series B. 74, pp. 291-301, 1998.
4. Q.P. Gu and S. Peng, "Cluster fault-tolerant routing in star graphs," Networks 35(1), pp. 83-90, 2000.
5. W.T. Huang, M.Y. Lin, J.M. Tan, and L.H. Hsu, "Fault-tolerant ring embedding in faulty crossed cubes," in Proc. SCI'2000, pp. 97-102, 2000.
6. W.T. Huang, J.M. Tan, C.N. Huang, L.H. Hsu, "Fault-tolerant hamiltonicity of twisted cubes," J. Parallel Distrib. Comput. 62, pp. 591-604, 2002.
7. S. Madhavapeddy and I.H. Sudborough, "A topological property of hypercubes: node disjoint paths," in Proc. of the 2th IEEE Symposium on Parallel and Distributed Processing, pp. 532-539, 1990.
8. J.-H. Park, "One-to-one disjoint path covers in recursive circulants," Journal of KISS 30(12), pp. 691-698, 2003 (in Korean).
9. J.-H. Park, "One-to-many disjoint path covers in a graph with faulty elements," in Proc. International Computing and Combinatorics Conference COCOON2004, pp. 392-401, 2004.
10. J.-H. Park and K.Y. Chwa, "Recursive circulants and their embeddings among hypercubes," Theoretical Computer Science 244, pp. 35-62, 2000.
11. C.-H. Tsai, J.J.M. Tan, Y.-C. Chuang, and L.-H. Hsu, "Fault-free cycles and links in faulty recursive circulant graphs," in Proc. of Workshop on Algorithms and Theory of Computation ICS2000, pp. 74-77, 2000.
12. C.-H. Tsai, J.J.M. Tan, and L.-H. Hsu, "The super-connected property of recursive circulant graphs," Inform. Proc. Lett. 91(6), pp. 293-298, 2004.

[^0]:    * This work was supported by grant No. R01-2003-000-11676-0 from the Basic Research Program of the Korea Science \& Engineering Foundation.

