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Abstract

A many-to-many k-disjoint path cover (k-DPC) of a graph G is a set of k disjoint paths joining

k distinct source-sink pairs in which each vertex of G is covered by a path. We deal with the

graph G0⊕G1 obtained from connecting two graphs G0 and G1 with n vertices each by n pairwise

nonadjacent edges joining vertices in G0 and vertices in G1. Many interconnection networks such

as hypercube-like interconnection networks can be represented in the form of G0 ⊕G1 connecting

two lower dimensional networks G0 and G1. In the presence of faulty vertices and/or edges, we

investigate many-to-many disjoint path coverability of G0⊕G1 and (G0⊕G1)⊕(G2⊕G3), provided

some conditions on the hamiltonicity and disjoint path coverability of each graph Gi are satisfied,

0 ≤ i ≤ 3. We apply our main results to recursive circulant G(2m, 4) and a subclass of hypercube-

like interconnection networks, called restricted HL-graphs. The subclass includes twisted cubes,

crossed cubes, multiply twisted cubes, Möbius cubes, Mcubes, and generalized twisted cubes. We

show that all these networks of degree m with f or less faulty elements have a many-to-many

k-DPC joining any k distinct source-sink pairs for any k ≥ 1 and f ≥ 0 such that f + 2k ≤ m− 1.

Index Terms: Fault tolerance, network topology, graph theory, fault-hamiltonicity, embedding,

strong hamiltonicity, recursive circulants, restricted HL-graphs.
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1 Introduction

One of the central issues in various interconnection networks is finding node-disjoint paths concerned

with the routing among nodes and the embedding of linear arrays. Node-disjoint paths can be used as

parallel paths for an efficient data routing among nodes. Also, each path in node-disjoint paths can

be utilized in its own pipeline computation. An interconnection network is often modelled as a graph,

in which vertices and edges correspond to nodes and communication links, respectively. In this paper,

node(vertex)-disjoint paths are abbreviated to disjoint paths. In the rest of this paper, we will use

standard terminology in graphs (see ref. [2]).

Disjoint paths can be categorized as three types: one-to-one, one-to-many, and many-to-many.

One-to-one type deals with the disjoint paths joining a single source s and a single sink t. One-to-

many type considers the disjoint paths joining a single source s and k distinct sinks t1, t2, . . . , tk. Most

of the works done on disjoint paths deal with the one-to-one or one-to-many type. One-to-one and

one-to-many disjoint paths were constructed for a variety of networks such as hypercubes[3, 11], star

graphs[5], etc. Many-to-many type deals with the disjoint paths joining k distinct sources s1, s2, . . . , sk

and k distinct sinks t1, t2, . . . , tk. In many-to-many type, several problems can be defined depending on

whether specific sources should be joined to specific sinks or a source can be freely matched to a sink.

The works on many-to-many type have a relative paucity because of its difficulty and some results can

be found in [13, 18].

All of three types of disjoint paths in a graph G can be accommodated with the covering of vertices in

G. A disjoint path cover in a graph G is a set of disjoint paths containing all the vertices in G. A disjoint

path cover problem that originated from an interconnection network is concerned with the application

where the full utilization of nodes is important. For an embedding of linear arrays in a network, the

cover implies every node can be participated in a pipeline computation. As the disjoint path covers

which have been studied for interconnection networks, there are one-to-one disjoint path covers in

recursive circulants without faulty elements[20, 30] and hypercubes with faulty edges[3], and one-to-

many disjoint path covers with faulty elements in some hypercube-like interconnection networks[21].

As the authors know, no results on many-to-many disjoint path covers appeared in the literature with

an exception of the earlier version of this paper in [24]. A one-to-one disjoint path cover consisting of

k disjoint paths is also known as a k∗-container[3, 30].

Given a set of k sources S = {s1, s2, . . . , sk} and a set of k sinks T = {t1, t2, . . . , tk} in a graph
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G such that S ∩ T = ∅, we are concerned with many-to-many disjoint paths P1, P2, . . . , Pk in G, Pi

joining si and ti, 1 ≤ i ≤ k, that cover all the vertices in the graph, that is,
⋃

1≤i≤k V (Pi) = V (G) and

V (Pi)∩V (Pj) = ∅ for all i 6= j. Here V (Pi) and V (G) denote the vertex sets of Pi and G, respectively.

We call such a set of k disjoint paths a many-to-many k-disjoint path cover (in short, many-to-many

k-DPC) of G. We call a source or a sink a terminal.

The disjoint path cover problems are closely related to well-known hamiltonian problems in graph

theory. Since the HAMILTONIAN PATH BETWEEN TWO VERTICES problem is NP-complete[12],

so is the MANY-TO-MANY k-DPC problem for all fixed k ≥ 1. Notice that a graph G has a hamil-

tonian path between two vertices s and t if and only if the graph G′ has a many-to-many k-DPC,

where V (G′) = V (G) ∪ {si, ti|2 ≤ i ≤ k}, E(G′) = E(G) ∪ {(s, si), (si, ti), (ti, t)|2 ≤ i ≤ k}, s1 = s,

and t1 = t. The ONE-TO-MANY k-DPC and ONE-TO-ONE k-DPC problems are also NP-complete

for all fixed k ≥ 1. They can be reduced straightforwardly from HAMILTONIAN PATH BETWEEN

TWO VERTICES.

On the other hand, embedding of linear arrays and rings into a faulty interconnection network is one

of the important problems in parallel processing. The embedding problem can be modelled as finding

as long fault-free paths and cycles as possible in the graph with some faulty vertices and/or edges.

Fault-hamiltonicity of various interconnection networks was investigated in the literature; for example,

arrangement graphs[15, 17], recursive circulants[29], hypercubes[26, 28], star graphs[16, 23, 31], and

hypercube-like interconnection networks[25]. A graph G is called f -fault hamiltonian (resp. f -fault

hamiltonian-connected) if there exists a hamiltonian cycle (resp. if each pair of vertices are joined by

a hamiltonian path) in G\F for any set F of faulty elements with |F | ≤ f . For a graph G to be

f -fault hamiltonian (resp. f -fault hamiltonian-connected), it is necessary that f ≤ δ(G) − 2 (resp.

f ≤ δ(G)− 3), where δ(G) is the minimum degree of G.

To a graph G with a set of faulty elements F , the definition of a many-to-many disjoint path cover

can be extended. Given a set of k sources S = {s1, s2, . . . , sk} and a set of k sinks T = {t1, t2, . . . , tk} in

G\F such that S ∩ T = ∅, a many-to-many k-disjoint path cover joining S and T is a set of k disjoint

paths Pi joining si and ti, 1 ≤ i ≤ k, such that (a)
⋃

1≤i≤k V (Pi) = V (G)\F , (b) V (Pi)∩V (Pj) = ∅ for

all i 6= j, and (c) every edge on each path Pi is fault-free. Such a many-to-many k-DPC is denoted by

k-DPC[{(s1, t1), (s2, t2), . . . , (sk, tk)}|G,F ].

Definition 1 A graph G is called f -fault many-to-many k-disjoint path coverable if f + 2k ≤ |V (G)|
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Figure 1: Examples of G0 ⊕G1 and H0 ⊕H1

and for any set F of faulty elements with |F | ≤ f , G has k-DPC[{(s1, t1), (s2, t2), . . . , (sk, tk)}|G,F ]

for any set of k sources S = {s1, s2, . . . , sk} and any set of k sinks T = {t1, t2, . . . , tk} in G\F such

that S ∩ T = ∅.

For a graph G to be f -fault many-to-many k-disjoint path coverable, it is necessary that f + 2k ≤
δ(G)+1 (shown in Subsection 2.3). An f -fault many-to-many k-disjoint path coverable graph G can be

shown to possess an interesting strong hamiltonicity, say the existence of a hamiltonian path containing

a specified set of edges in a given order. Precisely speaking, for any fault set F with |F | ≤ f and for any

sequence of pairwise nonadjacent k− 1 edges ((x1, y1), (x2, y2), . . . , (xk−1, yk−1)) in G\F , there exists a

hamiltonian path joining an arbitrary pair of vertices s and t in G\F with {s, t} ∩ {xi, yi} = ∅ for all

1 ≤ i ≤ k − 1 that passes through the edges in the order given. That is, there exists a hamiltonian

path of the form of (s, . . . , x1, y1, . . . , xk−1, yk−1, . . . , t).

We are given two graphs G0 and G1 with n vertices each. We denote by Vi and Ei the vertex set

and edge set of Gi, i = 0, 1, respectively. We let V0 = {v1, v2, . . . , vn} and V1 = {w1, w2, . . . , wn}. With

respect to a permutation M = (i1, i2, . . . , in) of {1, 2, . . . , n}, we can “merge” the two graphs into a

graph G0 ⊕M G1 with 2n vertices in such a way that the vertex set V = V0 ∪ V1 and the edge set

E = E0 ∪ E1 ∪ E2, where E2 = {(vj, wij)|1 ≤ j ≤ n}. We denote by G0 ⊕ G1 a graph obtained by

merging G0 and G1 w.r.t. an arbitrary permutation M . Here, G0 and G1 are called components of

G0 ⊕G1. When we are given four graphs Gi, 0 ≤ i ≤ 3, with the same number of vertices, we can also

merge them into a graph H0 ⊕H1, where H0 = G0 ⊕G1 and H1 = G2 ⊕G3. Figure 1 shows examples

of G0 ⊕G1 and H0 ⊕H1.

Definition 2 A graph G is called many-to-many (f, k)-disjoint path coverable if for any f ′ and k′

such that k′ ≤ k and f ′ + 2k′ ≤ f + 2k, G is f ′-fault many-to-many k′-disjoint path coverable.
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That is, a many-to-many (f, k)-disjoint path coverable graph G satisfies all of the following k conditions:

C(k) : G is f -fault many-to-many k-disjoint path coverable;

C(k − 1) : G is f + 2-fault many-to-many k − 1-disjoint path coverable;

...

C(1) : G is f + 2k − 2-fault many-to-many 1-disjoint path coverable.

For a graph G to be many-to-many (f, k)-disjoint path coverable, it is necessary that f +2k ≤ δ(G)−1.

In this paper, provided Gi is many-to-many (f, k)-disjoint path coverable and f + 2k − 1-fault

hamiltonian for all 0 ≤ i ≤ 3, we will show that G0 ⊕ G1 is many-to-many (f + 1, k)-disjoint path

coverable and f + 2k-fault hamiltonian for any k ≥ 2 and f ≥ 0 or for any k = 1 and f ≥ 2, and that

H0 ⊕H1 is many-to-many (f, k + 1)-disjoint path coverable and f + 2k + 1-fault hamiltonian for any

k ≥ 1 and f ≥ 0, where H0 = G0⊕G1 and H1 = G2⊕G3. Note that δ(G0⊕G1) = min{δ(G0), δ(G1)}+1

and δ(H0⊕H1) = min0≤i≤3 δ(Gi)+2. The fact that a graph G is f -fault many-to-many 1-disjoint path

coverable is, by definition, equivalent to that G is f -fault hamiltonian-connected. To prove the main

results, we utilize fault-hamiltonicity of G0⊕G1 and H0⊕H1 studied in [25] that provided Gi is f -fault

hamiltonian-connected and f + 1-fault hamiltonian for each i, G0 ⊕ G1 is f + 1-fault hamiltonian-

connected and f +2-fault hamiltonian for any f ≥ 2 and H0⊕H1 is f +2-fault hamiltonian-connected

and f + 3-fault hamiltonian for any f ≥ 0.

We apply our main results to recursive circulant G(2m, 4) and a subclass of hypercube-like intercon-

nection networks, called restricted HL-graphs. The subclass includes twisted cubes[14], crossed cubes[9],

multiply twisted cubes[8], Möbius cubes[7], Mcubes[27], and generalized twisted cubes[4]. We will show

that all these networks of degree m are f -fault many-to-many k-disjoint path coverable for every k ≥ 1

and f ≥ 0 such that f + 2k ≤ m − 1. Also, we will discuss that “near” bipartite graphs which be-

long to hypercube-like interconnection networks can have only limited disjoint path coverability by the

illustration of twisted m-cubes.

The organization of this paper is as follows. In the next section, we will consider some interesting

properties on f -fault many-to-many k-disjoint path coverable graphs, including relationships among

the three types of disjoint path covers, sufficiency for some strong-hamiltonicity, and some necessary

conditions. In Section 3, we will construct many-to-many disjoint path covers in G0⊕G1 and H0⊕H1,

provided each Gi is many-to-many (f, k)-disjoint path coverable and f + 2k − 1-fault hamiltonian.

Many-to-many disjoint path coverability of hypercube-like interconnection networks will be considered
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in Section 4. Finally in Section 5, concluding remarks of this paper and algorithmic aspects of our

construction schemes will be discussed.

Remark 1 Even when there are p(< k) source-sink pairs such that each source is identical with its

corresponding sink, that is, when si = ti for all 1 ≤ i ≤ p and S ′ ∩ T ′ = ∅, where S ′ = {sp+1, . . . , sk}
and T ′ = {tp+1, . . . , tk}, we can construct f -fault many-to-many k-DPC as follows: (a) we first let

Pi = (si), 1 ≤ i ≤ p, a path with one vertex, and then (b) regarding them as virtual faulty vertices,

find f+p-fault many-to-many k−p-DPC. Note that if G is many-to-many (f, k)-disjoint path coverable,

then G is f + p-fault many-to-many k− p-disjoint path coverable for any p < k, as well as G is f -fault

many-to-many k-disjoint path coverable.

2 Many-to-Many Disjoint Path Coverable Graphs

2.1 Disjoint path covers

First, we are going to discuss about some interesting properties on disjoint path covers of the three

types: many-to-many, one-to-many, and one-to-one. Let G be a graph with a set F of faulty elements.

Throughout this paper, a path in a graph is represented as a sequence of vertices. A v-w path refers

to a path from a vertex v to a vertex w.

Proposition 1 (a) G is f -fault many-to-many 1-disjoint path coverable if and only if G is f -fault

hamiltonian-connected.

(b) If G is f -fault many-to-many k(≥ 2)-disjoint path coverable, then G is f -fault many-to-many

k − 1-disjoint path coverable.

Proof By definition, (a) holds true. To prove (b), we construct an f -fault many-to-many k−1-DPC us-

ing f -fault many-to-many k-DPC as follows. Given a set of k−1 source-sink pairs {(s1, t1), . . . , (sk−1, tk−1)},
letting (x, y) be an edge in G\F such that both x and y are not terminals, we find a k-DPC for

{(s1, x), (y, t1), (s2, t2), . . . , (sk−1, tk−1)}, and then the s1-x path and the y-t1 path are merged with the

edge (x, y) into an s1-t1 path, which results in an f -fault many-to-many k− 1-DPC for the given pairs.

¤

Given a source s and a set of k sinks T = {t1, t2, . . . , tk} with s /∈ T in G\F , a one-to-many k-

disjoint path cover joining s and T is a set of k disjoint paths Pi joining s and ti, 1 ≤ i ≤ k, such
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that
⋃

1≤i≤k V (Pi) = V (G)\F , V (Pi) ∩ V (Pj) = {s} for all i 6= j, and every edge on each path Pi is

fault-free. A graph G is called f -fault one-to-many k-disjoint path coverable if f + k + 1 ≤ |V (G)| and

for any set F of faulty elements with |F | ≤ f , G has a one-to-many k-disjoint path cover joining every

source s and every set T of k distinct sinks in G\F such that s 6∈ T . For a graph G to be f -fault

one-to-many k-disjoint path coverable, it is necessary that f + k ≤ δ(G). In a similar way, we can also

define f -fault one-to-one k-disjoint path coverable graphs.

Proposition 2 The following statements are equivalent (by definition).

(a) G is f -fault many-to-many 1-disjoint path coverable.

(b) G is f -fault one-to-many 1-disjoint path coverable.

(c) G is f -fault one-to-one 1-disjoint path coverable.

Proposition 3 (a) If G is f -fault many-to-many k-disjoint path coverable, then G is f -fault one-to-

many k-disjoint path coverable.

(b) If G is f -fault one-to-many k-disjoint path coverable, then G is f -fault one-to-one k-disjoint path

coverable[21].

Proof When we are given a single source s and a set of sinks {t1, . . . , tk}, letting {x2, . . . , xk} be the

set of k−1 vertices in G\F which are adjacent to s via fault-free edges, we find an f -fault many-to-many

k-DPC for a set of pairs {(s, t1), (x2, t2), . . . , (xk, tk)}, and then the edge (s, xj) and the xj-tj path are

merged into an s-tj path for each j, 2 ≤ j ≤ k, which results in an f -fault one-to-many k-DPC for the

given source and sinks. ¤

2.2 Strong hamiltonicity

In an f -fault many-to-many k-disjoint path coverable graph G, if G has no faulty elements, then we

can always construct a many-to-many k′-disjoint path cover for any k′ ≤ k in G which does not pass

through a specified set of vertices and edges (by regarding them virtual faulty elements) when the

number of such vertices and edges are at most f . On one occasion of k′ = 1, the disjoint path cover is

interpreted as a hamiltonian path.

On the contrary, we can think of a hamiltonian path containing a given set of edges. In this subsec-

tion, we are concerned with a hamiltonian path (and cycle) which passes through a specified set of edges

in a given order. Given two distinct vertices s and t, a sequence of l edges ((x1, y1), (x2, y2), . . . , (xl, yl))
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in a graph is called s-t path extendable if for any two vertices v and w in a multiset {s, t} ∪ {xj, yj|1 ≤
j ≤ l}, either v 6= w or v = w and the unordered pair (v, w) is one of (s, x1), (yl, t), or (yj, xj+1)

for some 1 ≤ j < l. The sequence of edges is necessarily s-t path extendable for the graph to have

an s-t path (s, . . . , x1, y1, . . . , xl, yl, . . . , t) passing through the edges in the order given. In [33], the

existence of a hamiltonian path containing a given set of directed edges in an orientation of a complete

multipartite graph was considered.

Theorem 1 (Strong-hamiltonicity) (a) If G is f -fault many-to-many k(≥ 2)-disjoint path cover-

able, then for any fault set F with |F | ≤ f and for any vertices s, t and any sequence of k − 1 edges

((x1, y1), (x2, y2), . . . , (xk−1, yk−1)) in G\F such that v 6= w for any pair of vertices v and w in a mul-

tiset {s, t} ∪ {xj, yj|1 ≤ j ≤ k − 1} (thus, s-t path extendable), there exists an s-t hamiltonian path in

G\F that passes through the edges in the order given. That is, there exists a hamiltonian path of the

form of (s, . . . , x1, y1, . . . , xk−1, yk−1, . . . , t).

(b) If the sequence of edges is s-t path extendable and the number of pairs in {(s, x1)|s = x1} ∪
{(yk−1, t)|yk−1 = t} ∪ {(yj, xj+1)|yj = xj+1, 1 ≤ j < k − 1} is p(< k), then every f + p-fault many-to-

many k − p-disjoint path coverable graph has such a hamiltonian path.

Proof To prove (a), we first find an f -fault many-to-many k-DPC for a set of k source-sink pairs

{(s, x1), (y1, x2), . . . , (yk−2, xk−1), (yk−1, t)}, and then the k disjoint paths are merged with the k − 1

edges (xj, yj), 1 ≤ j ≤ k − 1, into a hamiltonian path joining s and t, which is a desired one. For (b),

regarding the p pairs (that is, p vertices) as virtual faulty vertices, in a similar way to (a), we find an

f + p-fault many-to-many k − p-DPC for k − p pairs, and then the k − p disjoint paths and p paths

with one vertex are merged with the k − 1 edges into an s-t hamiltonian path. ¤

A sequence of l edges ((x1, y1), (x2, y2), . . . , (xl, yl)) in a graph is called cycle extendable if for any two

vertices v and w in a multiset {xj, yj|1 ≤ j ≤ l}, either v 6= w or v = w and the unordered pair (v, w) is

one of (yl, x1) or (yj, xj+1) for some 1 ≤ j < l. Obviously, an edge sequence ((x1, y1), (x2, y2), . . . , (xl, yl))

is cycle extendable if and only if the subsequence ((x1, y1), (x2, y2), . . . , (xl−1, yl−1)) is yl-xl path extend-

able.

Corollary 1 (a) If G is f -fault many-to-many k(≥ 1)-disjoint path coverable, then for any fault set F

with |F | ≤ f and for any sequence of k edges ((x1, y1), (x2, y2), . . . , (xk, yk)) in G\F such that v 6= w

for any pair of vertices v and w in a multiset {xj, yj|1 ≤ j ≤ k} (thus, cycle extendable), there exists

a hamiltonian cycle in G\F that passes through the edges in the order given. That is, there exists a
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hamiltonian cycle of the form of (yk, . . . , x1, y1, . . . , xk−1, yk−1, . . . , xk).

(b) If the sequence of edges is cycle extendable and the number of pairs in {(yl, x1)|yl = x1} ∪
{(yj, xj+1)|yj = xj+1, 1 ≤ j < k−1} is p(< k), then every f +p-fault many-to-many k−p-disjoint path

coverable graph has such a hamiltonian cycle.

2.3 Necessary conditions

We let G be a graph with n vertices. If G is f -fault many-to-many k-disjoint path coverable, then by

definition, f + 2k ≤ n. Let S and T be the sets of sources and sinks in G, respectively. One might

expect that a necessary condition in terms of connectivity can be derived as follows.

Lemma 1 (Connectivity) If G is f -fault many-to-many k-disjoint path coverable, then κ(G) ≥ f +

2k − 1, where κ(G) is connectivity of G.

Proof Suppose that κ(G) ≤ f +2k−2. If G is a complete graph Kn, then κ(G) = n−1 ≤ f +2k−2,

which is a contradiction to that f+2k ≤ n. Otherwise, there is an s-t vertex cut C with |C| ≤ f+2k−2.

We let s1 = s and t1 = t, and let S, T , and F be sets of vertices in G so that C ⊆ S\s1 ∪ T\t1 ∪ F .

Then, there can not exist an s1-t1 path which does not pass through any vertex in S\s1 ∪ T\t1 ∪ F ,

and thus G is not f -fault many-to-many k-disjoint path coverable. This completes the proof. ¤

Corollary 2 (Degree) For a graph G to be f -fault many-to-many k-disjoint path coverable, it is

necessary that f + 2k ≤ δ(G) + 1.

Every bipartite graph is not hamiltonian-connected, and thus for any f ≥ 0 and k ≥ 1, it is

not f -fault many-to-many k-disjoint path coverable. We are to derive necessary conditions which say

that a “near” bipartite graph is not f -fault many-to-many k-disjoint path coverable for large f and

k. A set X of vertices and edges in G is called bipartization set if G\X is bipartite. A bipartization

number b(G) of G is the minimum cardinality among all the bipartization sets of G. In connection

with bipartization number, minimum vertex/edge deletion bipartite subgraph problems were studied

in the literature[1, 34], with applications in computer-aided design of VLSI systems, specifically via

minimization problem[6].

Lemma 2 (Bipartization) If G is f -fault many-to-many k-disjoint path coverable, then b(G) > f .

Proof Suppose otherwise, we let the minimum bipartization set be the faulty set. Then, G\F is

bipartite, and thus G is not f -fault many-to-many k-disjoint path coverable. ¤
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Lemma 3 (Bicoloring) Let G be an f -fault many-to-many k-disjoint path coverable graph. Then for

any fault set F with |F | ≤ f and for any two-coloring vertices in G\F black and white (not necessarily

proper coloring, that is, two vertices with the same color may be adjacent), if nw ≥ 2k then cb ≤ nw−k,

where nw is the number of white vertices in G\F and cb is the number of connected components in the

induced subgraph G〈B〉 of G\F by the set B of black vertices.

Proof Suppose for some fault set F with |F | ≤ f and for some two-coloring vertices in G\F , it

holds true that nw ≥ 2k and cb > nw − k. Letting all the sources and sinks be white, we find a k-DPC

in G\F . If an sj-tj path in the k-DPC passes through r white vertices as intermediate vertices, then

it covers at most r + 1 connected components in G〈B〉. The k disjoint paths pass through nw − 2k

white vertices in total as intermediate vertices, and thus they cover at most k + (nw − 2k) = nw − k

components in G〈B〉. This leads to a contradiction. ¤

3 Construction of Many-to-Many Disjoint Path Covers

In this section, we are to discuss about constructions of many-to-many disjoint path covers in G0⊕G1

and H0 ⊕ H1 with some faulty elements, provided Gi is many-to-many (f, k)-disjoint path coverable

and f + 2k − 1-fault hamiltonian for all 0 ≤ i ≤ 3. Here, H0 = G0 ⊕G1 and H1 = G2 ⊕G3. Precisely

speaking, we will prove the following two main theorems.

Theorem 2 For any k ≥ 2 and f ≥ 0 or for any k = 1 and f ≥ 2, if Gi is many-to-many (f, k)-

disjoint path coverable and f +2k−1-fault hamiltonian for each i = 0, 1, then G0⊕G1 is many-to-many

(f + 1, k)-disjoint path coverable and f + 2k-fault hamiltonian.

Theorem 3 For any k ≥ 1 and f ≥ 0, if Gi is many-to-many (f, k)-disjoint path coverable and

f + 2k− 1-fault hamiltonian for each 0 ≤ i ≤ 3, then H0⊕H1 is many-to-many (f, k + 1)-disjoint path

coverable and f + 2k + 1-fault hamiltonian, where H0 = G0 ⊕G1 and H1 = G2 ⊕G3.

For a vertex v in G0⊕G1, we denote by v̄ the vertex adjacent to v which is in a component different

from the component in which v is contained. We let F be the set of faulty elements, and let S and T

be the sets of sources and sinks, respectively. We denote by H[v, w|G,F ] a hamiltonian path in G\F
joining a pair of fault-free vertices v and w in a graph G with a set F of faulty elements. When we

find a hamiltonian path/cycle (or a many-to-many DPC), sometimes we regard some fault-free vertices

and/or edges as faulty elements. They are called virtual faults.
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Definition 3 A vertex v in G0 ⊕G1 is called free if v is fault-free and not a terminal, that is, v /∈ F

and v /∈ S ∪ T . An edge (v, w) is called free if v and w are free and (v, w) /∈ F .

Definition 4 A free bridge of a fault-free vertex v in G0 ⊕ G1 is the path (v, v̄) of length one if v̄ is

free and (v, v̄) /∈ F ; otherwise, it is a path (v, w, w̄) of length two such that w 6= v̄, (v, w) /∈ F , and

(w, w̄) is a free edge.

First of all, we will review results on fault-hamiltonicity of G0⊕G1 and H0⊕H1 studied in [25]. And

then, we will consider the existence of pairwise disjoint free bridges for some terminals and will develop

five basic procedures for constructing many-to-many disjoint path covers. They play a significant role

in proving the main theorems.

3.1 Fault-hamiltonicity

We employ works on fault-hamiltonicity of G0 ⊕ G1 and H0 ⊕ H1 in [25]. They will be utilized later

when we need to construct a many-to-many 1-DPC. The problems we are primarily concerned with are,

provided Gi is f -fault hamiltonian-connected and f + 1-fault hamiltonian for each i, whether G0 ⊕G1

is f + 1-fault hamiltonian-connected and f + 2-fault hamiltonian and whether H0 ⊕H1 is f + 2-fault

hamiltonian-connected and f + 3-fault hamiltonian. The following two lemmas are concerned with

fault-hamiltonicity of G0 ⊕G1.

Lemma 4 [25] Let a graph Gi be f -fault hamiltonian-connected and f + 1-fault hamiltonian, i = 0, 1.

Then,

(a) for any f ≥ 2, G0 ⊕G1 is f + 1-fault hamiltonian-connected,

(b) for f = 1, G0 ⊕G1 with 2(= f + 1) faulty elements has a hamiltonian path joining s and t unless

s and t are contained in the same component and s̄ and t̄ are the faulty elements(vertices), and

(c) for f = 0, G0⊕G1 with 1(= f + 1) faulty elements has a hamiltonian path joining s and t unless s

and t are contained in the same component and the faulty element is contained in the other component.

Lemma 5 [25] Let a graph Gi be f -fault hamiltonian-connected and f + 1-fault hamiltonian, i = 0, 1.

Then,

(a) for any f ≥ 1, G0 ⊕G1 is f + 2-fault hamiltonian, and

(b) for f = 0, G0 ⊕ G1 with 2(= f + 2) faulty elements has a hamiltonian cycle unless one faulty

element is contained in G0 and the other faulty element is contained in G1.
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Contrary to the previous two lemmas, we can obtain fault-hamiltonicity of G0 ⊕ G1 which holds

true for any f ≥ 0, if we reduce the bound on the number of faulty elements in G0 ⊕G1 by one. The

last lemma is concerned with fault-hamiltonicity of H0 ⊕H1, which also holds true for any f ≥ 0.

Lemma 6 [25] Let a graph Gi be f -fault hamiltonian-connected and f + 1-fault hamiltonian, i = 0, 1.

Then,

(a) for any f ≥ 0, G0 ⊕G1 is f -fault hamiltonian-connected, and

(b) for any f ≥ 0, G0 ⊕G1 is f + 1-fault hamiltonian.

Lemma 7 [25] Let a graph Gi be f -fault hamiltonian-connected and f + 1-fault hamiltonian, i =

0, 1, 2, 3, and let H0 = G0 ⊕G1 and H1 = G2 ⊕G3. Then,

(a) for any f ≥ 0, H0 ⊕H1 is f + 2-fault hamiltonian-connected, and

(b) for any f ≥ 0, H0 ⊕H1 is f + 3-fault hamiltonian.

3.2 Free bridges

Lemma 8 Let G0⊕G1 have k source-sink pairs and at most f faulty elements such that f +2k ≤ ∆−1,

where ∆ is the minimum degree of G0 ⊕G1.

(a) For any terminal w in G0 ⊕G1, there exists a free bridge of w.

(b) For any set of terminals Wl = {w1, w2, . . . , wl} in G0 such that l ≤ 2k, there exist l pairwise disjoint

free bridges of wi’s, 1 ≤ i ≤ l.

(c) For a single terminal w1 in G1 and a set of terminals Wl\w1 = {w2, w3, . . . , wl} in G0 such that

l ≤ 2k, there exist l pairwise disjoint free bridges of wi’s, 1 ≤ i ≤ l.

Proof There are at least ∆ candidates for a free bridge of w, and at most f + 2k − 1 elements (f

faulty elements and 2k − 1 terminals other than w) can “block” the candidates. Since each element

blocks at most one candidate, there are at least ∆− (f + 2k− 1) ≥ 2 nonblocked candidates, and thus

(a) is proved. We prove (b) by induction on l. Before going on, we need some definitions. We call

vertices v and v̄ and an edge joining them collectively a column of v. When (v, v̄) (resp. (v, w, w̄)) is

the free bridge of v, we say that the free bridge occupies a column of v (resp. two columns of v and w).

We are to construct free bridges for Wl satisfying a condition that the number of occupied columns

c(l) is less than or equal to f(l) + t(l), where f(l) and t(l) are the numbers of faulty elements and

terminals contained in the c(l) occupied columns, respectively. When l = 1, there exists a free bridge
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which satisfies the condition. Assume that there exist pairwise disjoint free bridges for Wl−1 = W\wl

satisfying the condition. If (wl, w̄l) is the free bridge of wl, we are done. Suppose otherwise. There are

∆ candidates for a free bridge, and the number of blocking elements is at most c(l−1) plus the number

of terminals and faulty elements which are not contained in the c(l − 1) occupied columns. Thus, the

number of blocking elements is at most f + 2k− 1, which implies the existence of pairwise disjoint free

bridges for Wl. Obviously, c(l) = c(l − 1) + 2 and f(l) + t(l) ≥ f(l − 1) + t(l − 1) + 2, and thus it

satisfies the condition.

Now, let us prove (c). If (w1, w̄1) is the free bridge of w1, it occupies one column. If (w1, x, x̄)

is the free bridge of w1 and w̄1 6∈ Wl, it occupies two columns. For these cases, in the same way as

the proof of (b), we can construct pairwise disjoint free bridges satisfying the above condition. When

(w1, x, x̄) is the free bridge of w1 and w̄1 ∈ Wl, letting w2 = w̄1 without loss of generality, we first find

pairwise disjoint free bridges of w1 and w2. They occupy three columns, that is, c(2) = 3. We proceed

to construct free bridges with a relaxed condition that c(l) ≤ f(l) + t(l) + 1. This relaxation does not

cause any problem since the number of blocking elements is at most f + 2k, still less than the number

of candidates for a free bridge, ∆. ¤

Remark 2 According to the proof of Lemma 8 (a) and (b), we have at least two choices when we find

free bridges of terminals contained in one component.

Remark 3 If Gi satisfies the conditions of Theorem 2 or 3, then f +2k ≤ δ−1, where δ = mini δ(Gi).

Concerned with Theorem 2, free bridges of type Lemma 8 (b) and (c) exist in G0⊕G1 since (f+1)+2k ≤
δ(G0 ⊕G1)− 1. Concerned with Theorem 3, free bridges of the two types also exist in H0 ⊕H1 since

f + 2(k + 1) ≤ δ(H0 ⊕H1)− 1.

3.3 Five basic procedures

In a graph C0 ⊕ C1 with two components C0 and C1, we are to define some notation. When we are

concerned with Theorem 2, C0 and C1 correspond to G0 and G1, respectively. When we are concerned

with Theorem 3, C0 and C1 correspond to H0 and H1, respectively. We denote by V0 and V1 the sets

of vertices in C0 and C1, respectively. We let F0 and F1 be the sets of faulty elements in C0 and C1,

respectively, and let F2 be the set of faulty edges joining vertices in C0 and vertices in C1. Let fi = |Fi|
for i = 0, 1, 2.
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We denote by R the set of source-sink pairs in C0⊕C1. It is assumed that |R| ≥ 2 in this subsection.

We also denote by ki the number of source-sink pairs in Ci, i = 0, 1, and by k2 the number of source-sink

pairs between C0 and C1. Without loss of generality, we assume that k0 ≥ k1. We let I0 = {1, 2, . . . , k0},
I2 = {k0 + 1, k0 + 2, . . . , k0 + k2}, and I1 = {k0 + k2 + 1, k0 + k2 + 2, . . . , k0 + k2 + k1}. We assume

that {sj, tj|j ∈ I0} ∪ {sj|j ∈ I2} ⊆ V0 and {sj, tj|j ∈ I1} ∪ {tj|j ∈ I2} ⊆ V1. Among the k2 sources

sj’s, j ∈ I2, we assume that the free bridges of k′2 sources are of length one and the free bridges of

k′′2(= k2 − k′2) sources are of length two.

First three procedures DPC-A, DPC-B, and DPC-C are applicable when k0 ≥ 1, and the last two

procedures DPC-D and DPC-E are applicable when k2 = |R| (equivalently, k0 = k1 = 0). We denote

by Bv the free bridge of a vertex v.

Procedure DPC-A(C0 ⊕ C1, R, F )

UNDER the condition of 1 ≤ k0 < |R|. See Figure 2(a).

1. Find pairwise disjoint free bridges Bsj
of sj for all j ∈ I2, and let Bsj

= (sj, . . . , s
′
j).

2. Find k0-DPC[{(sj, tj)|j ∈ I0}|C0, F0 ∪ F ′], where F ′ = V0 ∩
⋃

j∈I2
V (Bsj

).

3. Find k1 + k2-DPC[{(s′j, tj)|j ∈ I2} ∪ {(sj, tj)|j ∈ I1}|C1, F1].

4. Merge the two DPC’s with the free bridges.

Procedure DPC-B(C0 ⊕ C1, R, F )

UNDER the condition of k0 = |R|. See Figure 2(b).

1. Let s1 and t1 be a pair such that |X1| ≤ |Xj| for all j ∈ I0, where Xj = V0 ∩ {V (Bsj
) ∪ V (Btj)}.

Find pairwise disjoint free bridges Bs1 and Bt1 , and let Bs1 = (s1, . . . , s
′
1) and Bt1 = (t1, . . . , t

′
1).

2. Find k0 − 1-DPC[{(sj, tj)|j ∈ I0\1}|C0, F0 ∪X1].

3. Find H[s′1, t
′
1|C1, F1].

4. Merge the k0 − 1-DPC and the hamiltonian path with the free bridges.

Keep in mind that under the condition of procedure DPC-C below, for every sj, j ∈ I2, s̄j = tj′ for

some j′ ∈ I2, and thus for every other fault-free vertex v in C0, (v, v̄) is the free bridge of v.

Procedure DPC-C(C0 ⊕ C1, R, F )

UNDER the condition that k0 ≥ 1, k1 = 0, k′2 = 0, and all the faulty elements are contained in C0.

See Figure 2 (c) and (d).
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Figure 2: Illustration of the five basic procedures.

1. When k0 ≥ 2, find pairwise disjoint free bridges Bt2 , Bsj
and Btj for all j ∈ I0\{1, 2}, and Bsi

for

all i ∈ I2, and let Bt2 = (t2, t
′
2), Bsj

= (sj, s
′
j), Btj = (tj, t

′
j), and Bsi

= (si, . . . , s
′
i). When k0 = 1,

find pairwise disjoint free bridges Bsj
for all j ∈ I2\2, and let Bsj

= (sj, . . . , s
′
j).

2. Find H[s2, t1|C0, F0 ∪F ′], where F ′ = V0 ∩ [V (Bt2)∪
⋃

j∈I0\{1,2}(V (Bsj
)∪V (Btj))∪

⋃
j∈I2

V (Bsj
)]

if k0 ≥ 2; otherwise, F ′ = {(s2, s1)} ∪ (V0 ∩
⋃

j∈I2\2 V (Bsj
)). Let the hamiltonian path be

(s2, . . . , z, s1, . . . , t1).

3. Let u = t′2 if k0 ≥ 2; otherwise, u = t2. Find k0 + k2 − 1-DPC[{(z̄, u)} ∪ {(s′j, t′j)|j ∈ I0\{1, 2}} ∪
{(s′j, tj)|j ∈ I2\2}|C1, ∅].

4. Merge the hamiltonian path and the k0 + k2 − 1-DPC with the free bridges and the edge (z, z̄).

Discard the edge (z, s1).

Procedures DPC-D and DPC-E are concerned with the case of k2 = |R|. Without loss of generality,

we assume f0 ≥ f1. This does not conflict with the assumption of k0 ≥ k1.

Procedure DPC-D(C0 ⊕ C1, R, F )

UNDER the condition that k2 = |R| (k0 = k1 = 0). See Figure 2(e).

1. If k′′2 ≥ 1, we assume that (s1, s̄1) is not the free bridge of s1. Find pairwise disjoint free bridges

Bt1 and Bsj
for all j ∈ I2\1, and let Bt1 = (t1, . . . , t

′
1) and Bsj

= (sj, . . . , s
′
j).

2. Find H[s1, t
′
1|C0, F0 ∪ F ′], where F ′ = V0 ∩

⋃
j∈I2\1 V (Bsj

).

3. Find k2 − 1-DPC[{(s′j, tj)|j ∈ I2\1}|C1, F1 ∪ F ′′], where F ′′ = V1 ∩ V (Bt1).

15



4. Merge the hamiltonian path and the k2 − 1-DPC with the free bridges.

Observe that under the condition of procedure DPC-E below, for every source sj in C0, s̄j = tj′ for

some j′ ∈ I2, and thus for any free vertex v in C0, (v, v̄) is a free edge.

Procedure DPC-E(C0 ⊕ C1, R, F )

UNDER the condition that k2 = |R|, k′2 = 0, and all the faulty elements are contained in C0. See

Figure 2(f).

1. Find pairwise disjoint free bridges Bt1 and Bsj
for all j ∈ I2\{1, 2}, and let Bt1 = (t1, . . . , t

′
1) and

Bsj
= (sj, . . . , s

′
j).

2. Find H[s2, t
′
1|C0, F0 ∪ F ′], where F ′ = {(s1, s2)} ∪ (V0 ∩

⋃
j∈I2\{1,2} V (Bsj

)). Let the hamiltonian

path be (s2, . . . , z, s1, . . . , t
′
1).

3. Find k2 − 1-DPC[{(z̄, t2)} ∪ {(s′j, tj)|j ∈ I2\{1, 2}}|C1, F
′′], where F ′′ = V1 ∩ V (Bt1).

4. Merge the hamiltonian path and the k2 − 1-DPC with the free bridges. Discard the edge (s1, z).

3.4 Proof of Theorem 2

Since Gi is f + 2k − 2-fault hamiltonian-connected and f + 2k − 1-fault hamiltonian, by Lemma 5(a),

G0 ⊕ G1 is f + 2k-fault hamiltonian. To show that G0 ⊕ G1 is many-to-many (f + 1, k)-disjoint path

coverable, it suffices to prove that G0⊕G1 is f + 1-fault many-to-many k-disjoint path coverable. The

fact that G0 ⊕G1 is f + 3-fault many-to-many k − 1-disjoint path coverable can be derived from that

each Gi is many-to-many (f + 2, k − 1)-disjoint path coverable and f + 2k − 1-fault hamiltonian, and

so forth. For k = 1 and f ≥ 2, the theorem is exactly the same as Lemma 4(a). Thus, we assume that

k ≥ 2, f0 + f1 + f2 ≤ f + 1, and k0 + k1 + k2 = k.

Lemmas 9, 10, and 11 are concerned with k0 ≥ 1, and Lemmas 12 and 13 are concerned with k2 = k.

Lemma 9 When 1 ≤ k0 < k, Procedure DPC-A(G0⊕G1, R, F ) constructs an f +1-fault k-DPC unless

f0 = f + 1, k1 = 0, and k′2 = 0.

Proof The existence of pairwise disjoint free bridges in step 1 is due to Lemma 8(b). Unless f0 = f+1,

k1 = 0, and k′2 = 0, G0 is f0 +k′2 +2k′′2 -fault k0-disjoint path coverable since 2k0 +f0 +k′2 +2k′′2 ≤ 2k+f ,

and thus there exists a k0-DPC in step 2. Similarly, G1 is f1-fault k1 + k2-disjoint path coverable since

2k1 + 2k2 + f1 ≤ 2k + f . This completes the proof of the lemma. ¤
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Lemma 10 When k0 = k, Procedure DPC-B(G0 ⊕ G1, R, F ) constructs an f + 1-fault k-DPC unless

f0 = f + 1 (k1 = 0 and k′2 = 0).

Proof To prove the existence of a k − 1-DPC in step 2, we will show that f0 + |X1| ≤ f + 2. When

|X1| = 2, the inequality holds true unless f0 = f + 1. When |X1| = 3, the number f1 + f2 of faulty

elements in G1 or between G0 and G1 is at least k(≥ 2), and thus f0 + 3 ≤ f0 + f1 + f2 + 1 ≤ f + 2.

When |X1| = 4, analogously to the previous case, f0 + 4 ≤ f0 + f1 + f2 < f + 2 since f1 + f2 ≥ 2k. The

existence of a hamiltonian path joining s′1 and t′1 is due to the fact that f1 ≤ f + 2k − 2. ¤

Lemma 11 When k0 ≥ 1, f0 = f +1, k1 = 0, and k′2 = 0, Procedure DPC-C(G0⊕G1, R, F ) constructs

an f + 1-fault k-DPC.

Proof Whether k0 ≥ 2 or not, it holds true that f0 + |F ′| ≤ f + 1 + 2(k− 2) + 1 = f + 2k− 2, which

implies the existence of a hamiltonian path in step 2. By the construction, (z, z̄) is the free bridge of

z. Note that z 6= s2 when k0 = 1. The existence of a k − 1-DPC in step 3 is straightforward. ¤

Lemma 12 When k2 = k, Procedure DPC-D(G0 ⊕G1, R, F ) constructs an f + 1-fault k-DPC unless

f0 = f + 1 and k′2 = 0.

Proof The existence of pairwise disjoint free bridges is due to Lemma 8(c). To prove the existence of

the hamiltonian path, we will show that f0 + |F ′| ≤ f + 2k − 2. When k′′2 ≥ 1, f0 + |F ′| = f0 + 2(k′′2 −
1) + k′2 ≤ f + 2k− 2 unless f0 = f + 1 and k′2 = 0. When k′′2 = 0, f0 + |F ′| = f0 + k′2 − 1 ≤ f + 2k− 2.

The existence of k2 − 1-DPC in step 3 is due to that f1 + |F ′′| ≤ f + 2. Note that the assumption of

f0 ≥ f1 implies that f1 < f + 1. ¤

Lemma 13 When k2 = k, f0 = f + 1, and k′2 = 0, Procedure DPC-E(G0 ⊕ G1, R, F ) constructs an

f + 1-fault k-DPC.

Proof The existence of the hamiltonian path is due to the fact that f0 + |F ′| = f0 + 2(k2 − 2) + 1 ≤
f + 2k − 2. Note that z is different from s1 and s2, and thus (z, z̄) is a free edge. The existence of the

k2 − 1-DPC is straightforward. ¤

3.5 Proof of Theorem 3 for k ≥ 2 and f ≥ 0 or for k = 1 and f ≥ 2

By Lemma 7, H0 ⊕ H1 is f + 2k-fault hamiltonian-connected and f + 2k + 1-fault hamiltonian since

each Gi is f + 2k − 2-fault hamiltonian-connected and f + 2k − 1-fault hamiltonian. To show that
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H0 ⊕ H1 is many-to-many (f, k + 1)-disjoint path coverable, it is sufficient to prove that H0 ⊕ H1 is

f -fault many-to-many k +1-disjoint path coverable. From that each Gi is many-to-many (f +2, k−1)-

disjoint path coverable and f + 2k − 1-fault hamiltonian, we can conclude that H0 ⊕H1 is f + 2-fault

many-to-many k-disjoint path coverable, and so forth.

For any k ≥ 2 and f ≥ 0 or for any k = 1 and f ≥ 2, Hi, i = 0, 1, is many-to-many (f +1, k)-disjoint

path coverable and f + 2k-fault hamiltonian by Theorem 2. In this subsection, by utilizing mainly

these properties of Hi, we are to prove Theorem 3 for any k ≥ 1 and f ≥ 0 except only when k = 1

and f = 0, 1. We assume that

f0 + f1 + f2 ≤ f and k0 + k1 + k2 = k + 1.

Similar to the proof of Theorem 2, Lemmas 14, 15, and 16 are concerned with k0 ≥ 1, and Lemmas 17

and 19 are concerned with k2 = k + 1.

Lemma 14 When 1 ≤ k0 < k + 1, Procedure DPC-A(H0⊕H1, R, F ) constructs an f -fault k + 1-DPC

unless f0 = f , k1 = 0, and k′2 = 0.

Proof Unless f0 = f , k1 = 0, and k′2 = 0, H0 is f0 + k′2 + 2k′′2 -fault k0-disjoint path coverable since

2k0 + f0 + k′2 + 2k′′2 ≤ 2k + f + 1, and thus there exists a k0-DPC in step 2. Similarly, H1 is f1-fault

k1 + k2-disjoint path coverable since 2k1 + 2k2 + f1 ≤ 2k + f + 1. ¤

Lemma 15 When k0 = k + 1, Procedure DPC-B(H0 ⊕ H1, R, F ) constructs an f -fault k + 1-DPC

unless f0 = f (k1 = 0 and k′2 = 0).

Proof To prove the existence of a k-DPC in step 2, we will show that f0 + |X1| ≤ f + 1. When

|X1| = 2, the inequality holds true unless f0 = f . When |X1| = 3, it holds true that f1 + f2 ≥ k + 1,

and thus f0 + 3 ≤ f0 + f1 + f2 + 1 ≤ f + 1. When |X1| = 4, f0 + 4 ≤ f0 + f1 + f2 < f + 1 since

f1 + f2 ≥ 2(k + 1). Obviously, there exists a hamiltonian path in H1 joining s′1 and t′1. ¤

Lemma 16 When k0 ≥ 1, f0 = f , k1 = 0, and k′2 = 0, Procedure DPC-C(H0 ⊕H1, R, F ) constructs

an f -fault k + 1-DPC.

Proof There exists a hamiltonian path in H0 joining s2 and t1 since f0 + |F ′| ≤ f + 2(k − 1) + 1 =

f + 2k − 1. The existence of a k-DPC in step 3 is straightforward. ¤

Hereafter in this subsection, we have k2 = k + 1 (k0 = k1 = 0). Due to Lemma 8(a) and Remark 2,

we assume that F ′′ defined in step 3 of Procedures DPC-D and DPC-E is a subset of V (G2) or V (G3).

That is, F ′′ ∩ V (G2) 6= ∅ if and only if F ′′ ∩ V (G3) = ∅.
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Lemma 17 When k2 = k + 1, Procedure DPC-D(H0 ⊕ H1, R, F ) constructs an f -fault k + 1-DPC

unless f0 = f and k′2 = 0.

Proof To prove the existence of a hamiltonian path in H0, we will show that f0 + |F ′| ≤ f + 2k− 1.

When k′′2 ≥ 1, f0 + |F ′| = f0 + 2(k′′2 − 1) + k′2 ≤ f + 2k − 1 unless f0 = f and k′2 = 0. When k′′2 = 0,

f0 + |F ′| = f0 + k′2 − 1 ≤ f + 2k − 1. Now, let us consider the existence of a k2 − 1-DPC in step 3.

When f ≥ 1 or |F ′′| = 1, there exists a k2 − 1-DPC in H1 since f1 + |F ′′| ≤ f + 1. Note that from the

assumption of f0 ≥ f1, if f ≥ 1, then f1 < f . When f = 0 and |F ′′| = 2 (k ≥ 2 by the assumption of

k ≥ 2 and f ≥ 0 or k = 1 and f ≥ 2), the existence of a k2− 1-DPC is due to the following Lemma 18.

¤

Lemma 18 For any k ≥ 2, if Gi is many-to-many (0, k)-disjoint path coverable and 2k − 1-fault

hamiltonian for each i = 0, 1, then G0⊕G1 with two faulty vertices in G0 and no other faulty elements

is many-to-many k-disjoint path coverable.

The proof of Lemma 18 is omitted due to space limit. Of course, Lemma 18 does not say that

G0⊕G1 is 2-fault many-to-many k-disjoint path coverable. Note that the total number 2+2k of faulty

elements and terminals is not always less than or equal to δ(G0 ⊕G1)− 1. However, we can prove the

lemma by utilizing the fact that the fault distribution is restrictive, that is, the two faulty elements are

vertices contained in G0. Furthermore, Remark 2 is useful when we are to find pairwise disjoint free

bridges of some terminals in G0 ⊕G1.

Lemma 19 When k2 = k + 1, f0 = f , and k′2 = 0, Procedure DPC-E(H0 ⊕ H1, R, F ) constructs an

f -fault k + 1-DPC.

Proof There exists a hamiltonian path in H0 joining s2 and t′1 since f0 + |F ′| = f0 + 2(k2 − 2) + 1 =

f + 2k − 1. When f ≥ 1, there exists a k2 − 1-DPC in H1 since |F ′′| = 2 ≤ f + 1. When f = 0 (and

|F ′′| = 2), the existence of a k2 − 1-DPC is due to Lemma 18. ¤

3.6 Proof of Theorem 3 for k = 1 and f = 0, 1

In H0 ⊕ H1, where H0 = G0 ⊕ G1 and H1 = G2 ⊕ G3, H0 and H1 are called components and Gi’s,

0 ≤ i ≤ 3, are called subcomponents. Throughout this paper, when we are concerned with H0⊕H1, we

denote by V0 and V1 the sets of vertices in H0 and in H1, respectively, and E2 the set of edges joining

vertices in H0 and vertices in H1. V (Gi) denotes the set of vertices in Gi, and Ei,j denotes the set
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of edges joining vertices in Gi and vertices in Gj, i 6= j. We denote by F0 and F1 the sets of faulty

elements in H0 and in H1, respectively, F2 the set of faulty edges in E2, and let fi = |Fi|, i = 0, 1, 2. We

let li,j = |Ei,j| and n = |V (Gi)|. Observe that l0,1 = l2,3 = n, l0,2 + l0,3 = l1,2 + l1,3 = n, l0,2 = l1,3, and

l0,3 = l1,2. For a vertex v in H0⊕H1, we denote by v̄ the vertex adjacent to v which is in a component

different from the component in which v is contained, and denote by v̂ the vertex which is adjacent to

v and contained in the same component with v and in a different subcomponent from v.

Contrary to the proofs given in Subsection 3.5, we can not employ Theorem 2. Instead, Lemma 4

(b) and (c) and Lemma 6 are utilized repeatedly in this subsection. By Lemma 7, it remains to show

that H0 ⊕H1 is f -fault many-to-many k + 1-disjoint path coverable. We assume that

f0 + f1 + f2 ≤ f ≤ 1 and k0 + k1 + k2 = k + 1 = 2.

It is also assumed that k0 ≥ k1. Lemmas 20, 21, and 22 are concerned with k0 ≥ 1, and Lemmas 23

and 24 are concerned with k2 = 2 (k0 = k1 = 0).

Lemma 20 When k0 = 1, an f -fault 2-DPC can be constructed unless f0 = f , k1 = 0, and k′2 = 0.

Proof We are going to utilize Procedure DPC-A(H0 ⊕H1, R, F ). Note that f0 + |F ′| ≤ f + 1 unless

f0 = f , k1 = 0, and k′2 = 0. When there exists P0 = H[s1, t1|H0, F0 ∪ F ′], we are done since due to

Lemma 6, there exists H[s2, t2|H1, F1] or H[s′2, t2|H1, F1] depending on whether k1 = 1 or not. If k1 = 1,

then F ′ = ∅ and P0 always exists by Lemma 6. Thus, we assume that k1 = 0 and k2 = 1. Suppose P0

does not exist. By Lemma 4 (b) and (c), both s1 and t1 are contained in the same subcomponent, say

G0, and F0 ∪ F ′ is contained in G1. Let (x, x̄) be a free edge such that x is in G1. Three hamiltonian

paths H[s1, t1|G0, F0], H[s2, x|G1, F0], H[x̄, t2|H1, F1], and the edge (x, x̄) constitute a 2-DPC. ¤

Lemma 21 When k0 = 2, an f -fault 2-DPC can be constructed unless f0 = f (k1 = 0, k′2 = 0).

Proof We utilize Procedure DPC-B(H0 ⊕H1, R, F ). Observe |X1| = 2. Unless f0 = f , it holds true

that f0 + |X1| ≤ f + 1. When there exists P0 = H[s2, t2|H0, F0 ∪X1], we are done. Suppose P0 does

not exist. By Lemma 4 (b) and (c), we assume that s1 and t1 are contained in G0, and that s2 and t2

are contained in G1. A hamiltonian path H[s2, t2|G1, F0] forms an s2-t2 path. It remains to construct

an s1-t1 path. Find a hamiltonian cycle C0 in G0\F0∪{s1} and let C0 = (t1, x, . . . , y). Assuming (x, x̄)

is a free edge, an s1-t1 path is (s1, H[s̄1, x̄|H1, F1], C0\(t1, x)). Note that by the choice of s1 and t1,

(s1, s̄1) is the free bridge of s. ¤
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Lemma 22 When k0 ≥ 1, f0 = f , k1 = 0, and k′2 = 0, an f -fault 2-DPC can be constructed.

Proof We utilize DPC-C(H0 ⊕ H1, R, F ). If there exists P0 = H[s2, t1|H0, F0 ∪ F ′], the proof is

completed. Note that when k0 = 1, P0 always exists since it is impossible that s2 and t1 are contained

in one subcomponent and the virtual faulty edge (s2, s1) is contained in the other subcomponent.

Suppose P0 does not exist. Then, k0 = 2. We assume that s2 and t1 are contained in G0 and that t2

is contained in G1. If we reutilize Procedure DPC-C with the roles of s2 and t2 interchanged, we can

construct an f -fault 2-DPC. To be specific, we find a hamiltonian path P ′
0 = H[t2, t1|H0, F0 ∪ {s2}],

letting P ′
0 = (t2, . . . , z, s1, . . . , t1), and then find H[s̄2, z̄|H1, ∅] and merge them. Since t2 and t1 are

contained in different subcomponents, P ′
0 always exists. ¤

Now, let us consider the case when k2 = 2 (k0 = k1 = 0). Remember that n ≥ f + 4 since each Gi

is f -fault hamiltonian-connected and f + 1-fault hamiltonian. We denote by PR the reverse of a path

P , that is, PR = (vl, vl−1, . . . , v1) for P = (v1, v2, . . . , vl). Hereafter in this subsection, we denote by Pj

an sj-tj path, j = 1, 2.

Lemma 23 When k2 = 2, an f -fault 2-DPC can be constructed unless f0 = f and k′2 = 0.

Proof We assume f0 ≥ f1. It follows that f1 = 0. We will utilize DPC-D(H0 ⊕ H1, R, F ). Unless

f0 = f and k′2 = 0, it holds true that f0 + |F ′| ≤ f + 1. Except for the case that f = 0 and |F ′′| = 2, it

also holds true that f1 + |F ′′| = |F ′′| ≤ f + 1. The exceptional case is equivalent to that f = 0, (s1, t1)

is an edge, and k′2 = 1 since (i) we need not consider the case that f = 0 and k′2 = 0 in this proof

and (ii) Procedure DPC-D chooses s1 such that (s1, s̄1) is not the free bridge of s1, if possible. For the

exceptional case, employing Lemma 7(a), we have P1 = (s1, t1) and P2 = H[s2, t2|H0 ⊕H1, F
∗], where

F ∗ = {s1, t1}.
Now, we have f0 + |F ′| ≤ f + 1 and f1 + |F ′′| ≤ f + 1. Keep in mind that F ′ = V0 ∩ V (Bs2) and

F ′′ = V1 ∩ V (Bt1). From now on, the assumption of f0 ≥ f1 will never be applied to obtain symmetry.

If both H[s1, t
′
1|H0, F0 ∪F ′] and H[s′2, t2|H1, F1 ∪F ′′] exist, the proof is completed. Suppose otherwise,

by Lemma 6 and Lemma 4 (b) and (c), at least one of the following two conditions is satisfied:

A1: f0 + |F ′| = f + 1, s1 and t′1 are in one subcomponent, and F0 ∪F ′ is in the other subcomponent;

A2: f1 + |F ′′| = f + 1, t2 and s′2 are in one subcomponent, and F1 ∪F ′′ is in the other subcomponent.

First, we assume that A1 is satisfied and that s1 and t′1 are in G0 and s2 is in G1. If t1 and t2 are contained

in the same subcomponent of H1, then P1 = (H[s1, t
′
1|G0, F0], B

R
t1
) and for some free edge (x, x̄) with
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x ∈ V (G1), P2 = (H[s2, x|G1, F0], H[x̄, t2|H1, F1 ∪ F ′′]). Now, we assume that t1 is contained in one

subcomponent, say G2, and t2 is in the other subcomponent G3. If there is a free edge (y, ȳ) ∈ E1,2 with

y ∈ V (G1), then P1 = (H[s1, t
′
1|G0, F0], B

R
t1
) and P2 = (H[s2, y|G1, F0], H[ȳ, t2|H1, F1∪F ′′]). Otherwise,

there exist a pair of free edges (a, ā) ∈ E0,2 and (b, b̄) ∈ E1,3 with a ∈ V (G0) and b ∈ V (G1). Then,

P1 = (H[s1, a|G0, F0], H[ā, t1|G2, F1]) and P2 = (H[s2, b|G1, F0], H[b̄, t2|G3, F1]). When A2 is satisfied,

symmetrically to that A1 is satisfied, we can also construct an f -fault 2-DPC. Thus, we have the

lemma. ¤

Lemma 24 When k2 = 2, f0 = f , and k′2 = 0, an f -fault 2-DPC can be constructed.

Proof It follows that k′′2 = 2 and f1 = f2 = 0, and thus we have {s̄1, s̄2} = {t1, t2}. When s̄1 = t1,

we have P1 = (s1, t1) and P2 = H[s2, t2|H0 ⊕ H1, F ∪ F ∗], where F ∗ = {s1, t1}. Thus, we assume

that s̄1 = t2 and s̄2 = t1. To obtain utmost symmetry, we will never apply the assumption of f0 = f .

Instead, we assume f2 = 0. Therefore, we have three cases.

Case 1: s1, s2 ∈ V (G0), t1 ∈ V (G2), and t2 ∈ V (G3).

When l0,3 ≥ f+2, there exists a free edge (x, x̄) ∈ E0,3 with x ∈ V (G0). Letting F ∗ = {(s2, v)|v ∈ V (G0)

and either v̂ or (v, v̂) is faulty}, we find H[s1, x|G0, F0 ∪ F ∗]. The existence of the hamiltonian path in

G0 is due to that the number of faulty elements in G0 including the virtual faults is at most f . Let the

hamiltonian path be (s1, Q1, z, s2, Q2, x). Observe that both ẑ and (z, ẑ) are fault-free. Then, let P2 =

(s2, Q2, x, H[x̄, t2|G3, F1]). We are to construct P1. There exists a free edge (y, ȳ) ∈ E1,2 with y ∈ V (G1)

such that y 6= ẑ since l1,2 = l0,3 ≥ f + 2. Then, we have P1 = (s1, Q1, z,H[ẑ, y|G1, F0], H[ȳ, t1|G2, F1]).

When l0,3 ≤ f + 1, we have l0,2 ≥ f + 2. In a symmetric way, we can also construct a 2-DPC.

Case 2: s1 ∈ V (G0), s2 ∈ V (G1), t1 ∈ V (G2), and t2 ∈ V (G3).

We assume w.l.o.g. f0 ≥ f1 (f1 = 0). If there exist a pair of free edges (x, x̄) ∈ E0,2 and (y, ȳ) ∈
E1,3 with x ∈ V (G0) and y ∈ V (G1), then we have P1 = (H[s1, x|G0, F0], H[x̄, t1|G2, ∅]) and P2 =

(H[s2, y|G1, F0], H[ȳ, t2|G3, ∅]). Suppose otherwise, it follows that l0,2 ≤ 1. When l0,2 = 1, letting

(p, p̄) ∈ E0,2 and (q, q̄) ∈ E1,3 with p, q ∈ V0, we assume w.l.o.g. that p is faulty. There exist a pair of free

edges (a, â) and (b, b̂) with a, b ∈ V (G0). Two hamiltonian paths H[a, b|G0, F0] and H[â, b̂|G1, F0] are

merged with (a, â) and (b, b̂) into a hamiltonian cycle C0 in H0\F0. Let C0 = (s1, z1, Q, u2, s2, u1, Q
′, z2).

By the construction, we have z1, z2 ∈ V (G0) and u1, u2 ∈ V (G1). Observe that both (z1, z̄1) and

(z2, z̄2) are free edges in E0,3, and that at least one of (u1, ū1) and (u2, ū2) is a free edge in E1,2.

Assuming w.l.o.g. that (u2, ū2) is a free edge in E1,2, we have P1 = (s1, z1, Q, u2, H[ū2, t1, |G2, ∅]) and
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P2 = (s2, u1, Q
′, z2, H[z̄2, t2|G3, ∅]).

Case 3: s1, s2 ∈ V (G0) and t1, t2 ∈ V (G2).

We assume w.l.o.g. f0 ≥ f1 (f1 = 0). When there exists a free edge (x, x̄) ∈ E0,2 with x ∈ V (G0),

letting F ∗ = {(s1, v)|v ∈ V (G0) and either v̂ or (v, v̂) is faulty}, we find H[s2, x|G0, F0 ∪ F ∗] and let

the hamiltonian path be (s2, Q1, z, s1, Q2, x). There exists a free edge (y, ȳ) ∈ E1,3 with y ∈ V (G1)

such that y 6= ẑ since l0,2 = l1,3 ≥ 3. Letting F+ = {(t1, w)|w ∈ V (G2) and ŵ = ȳ}, we find

H[x̄, t2|G2, F
+] and let the hamiltonian path be (x̄, Q3, t1, u,Q4, t2). By the construction, û 6= ȳ.

Then, P1 = (s1, Q2, x, x̄, Q3, t1) and P2 = (s2, Q1, z, H[ẑ, y|G1, F0], H[ȳ, û|G3, ∅], u, Q4, t2). Suppose

there does not exist such a free edge (x, x̄). There exists si, i = 0, 1, such that ŝi and (si, ŝi) are

fault-free. We assume s1 is such a source. We first find a hamiltonian cycle C0 in G0\F0 ∪ {s1}.
Let C0 = (s2, a, . . . , b) and assume that b̄ 6= t̂2. Of course, we have ā, b̄ ∈ V (G3). Then, we have

P2 = (C0\(s2, b), H[b̄, t̂2|G3, ∅], t2). P1 is constructed in different ways depending on whether f = 0 or

not. When f = 0, we find a hamiltonian cycle C2 = (t1, c, . . . , d) in G2\t2, assuming d̄ 6= ŝ1, we have

P1 = (s1, H[ŝ1, d̄|G1, F0], C2\(t1, d)). When f = 1, we choose a free edge (w, w̄) ∈ E1,2 with w ∈ V (G1)

such that w 6= ŝ1. The existence of (w, w̄) is due to that l1,2 ≥ 3 or l1,2 = 2 and G1 is fault-free. Then,

we have P1 = (s1, H[ŝ1, w|G1, F0], H[w̄, t1|G2, F
∗]), where F ∗ = {t2}. This completes the proof. ¤

4 Hypercube-Like Interconnection Networks

Vaidya et al.[32] introduced a class of hypercube-like interconnection networks, called HL-graphs, which

can be defined by applying the ⊕ operation repeatedly as follows: HL0 = {K1}; for m ≥ 1, HLm =

{G0 ⊕ G1|G0, G1 ∈ HLm−1}. Then, HL1 = {K2}, HL2 = {C4}, and HL3 = {Q3, G(8, 4)}. Here, C4

is a cycle graph with 4 vertices, Q3 is a 3-dimensional hypercube, and G(8, 4) is a recursive circulant

which is isomorphic to twisted cube TQ3 and Möbius ladder as shown in Figure 3. An arbitrary graph

which belongs to HLm is called an m-dimensional HL-graph. Recently, it was shown by Park and

Chwa in [19] that every nonbipartite HL-graph is hamiltonian-connected and every bipartite HL-graph

is hamiltonian-laceable.

Obviously, some m-dimensional HL-graphs such as an m-dimensional hypercube are bipartite. They

are not f -faulty many-to-many k-disjoint path coverable for any f ≥ 0 and k ≥ 1. Thus, we are to

define a subclass of HL-graphs which seems “highly” nonbipartite, and then consider their many-to-
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Figure 3: Isomorphic graphs.

many disjoint path coverability.

Definition 5 A subclass of nonbipartite HL-graphs, called restricted HL-graphs, is defined recursively

as follows:

• RHLm = HLm for 0 ≤ m ≤ 2;

• RHL3 = HL3\Q3 = {G(8, 4)};
• RHLm = {G0 ⊕G1|G0, G1 ∈ RHLm−1} for m ≥ 4.

A graph which belongs to RHLm is called an m-dimensional restricted HL-graph.

It was shown in [25] that many of the nonbipartite hypercube-like interconnection networks such

as twisted cube[14], crossed cube[9], multiply twisted cube[8], Möbius cube[7], Mcube[27], generalized

twisted cube[4], etc. proposed in the literature are restricted HL-graphs, with the exception of recur-

sive circulants G(2m, 4)[22] and “near” bipartite interconnection networks such as twisted m-cube[10].

Fault-hamiltonicity of restricted HL-graphs was studied in [25] as follows.

Lemma 25 [25] Every m-dimensional restricted HL-graph, m ≥ 3, is m−3-fault hamiltonian-connected

and m− 2-fault hamiltonian.

In this section, we consider many-to-many disjoint path coverability of restricted HL-graphs, recur-

sive circulants G(2m, 4), and twisted m-cube. To show that all of them except the twisted m-cube have

very good properties in disjoint path coverability, we need a definition.

Definition 6 A graph G is called fully many-to-many disjoint path coverable if for any k ≥ 1 and

f ≥ 0 such that f + 2k ≤ δ(G)− 1, G is f -fault many-to-many k-disjoint path coverable.
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4.1 Restricted HL-graphs

We now consider many-to-many disjoint path coverability of restricted HL-graphs. We rely on Theo-

rem 3. From Lemma 25, we know that the 3-dimensional HL-graph G(8, 4) is (0-fault) hamiltonian-

connected and 1-fault hamiltonian and every 4-dimensional restricted HL-graph G(8, 4) ⊕ G(8, 4) is

1-fault hamiltonian-connected and 2-fault hamiltonian. An arbitrary m-dimensional restricted HL-

graph, m ≥ 5, is isomorphic to [G0 ⊕M1 G1] ⊕M [G2 ⊕M2 G3] for some permutations M1, M2, and M ,

where G0, G1, G2, and G3 are m − 2-dimensional restricted HL-graphs. Therefore, by an inductive

argument utilizing Theorem 3, we can get a theorem as follows.

Theorem 4 Every m-dimensional restricted HL-graph, m ≥ 3, is fully many-to-many disjoint path

coverable and m− 2-fault hamiltonian.

Corollary 3 Let G be an arbitrary m-dimensional restricted HL-graph, m ≥ 3. There exists an s-t

hamiltonian path in G\F that passes through the edges in the order given for any fault set F with

|F | ≤ f and for any pair of vertices s and t and any s-t path extendable sequence of k − 1 edges

((x1, y1), (x2, y2), . . . , (xk−1, yk−1)) in G\F such that f + 2k ≤ m − 1 and v 6= w for at least one pair

(v, w) in {(s, x1), (yk−1, t), (yj, xj+1)|1 ≤ j < k − 1}.

4.2 Recursive circulants G(2m, 4)

The recursive circulant G(N, d)[22] is defined as follows: the vertex set V = {v0, v1, . . . , vN−1}, and the

edge set E = {(va, vb) | there exists i, 0 ≤ i ≤ dlogd Ne − 1, such that a + di ≡ b (mod N)}. G(N, d)

can also be defined as a circulant graph with N vertices and jumps of powers of d, d0, d1, · · · , ddlogd Ne−1.

When N = 2m and d = 4, recursive circulant G(2m, 4) is an m-regular graph with 2m vertices. According

to their recursive structure[22], we can observe that G(2m, 4) is isomorphic to [G(2m−2, 4) × K2] ⊕M

[G(2m−2, 4)×K2] for some M . Obviously, every G(2m, 4) is an HL-graph. Furthermore, every G(2m, 4)

with odd m is a restricted HL-graph. However, not every G(2m, 4) is a restricted HL-graph. One can

check without difficulty that G(16, 4) is not isomorphic to G(8, 4) ⊕M G(8, 4) for any M , and even

G(16, 4) does not have G(8, 4) as a subgraph. Fault-hamiltonicity of recursive circulants G(2m, 4) was

considered in [25, 29].

Lemma 26 [25, 29] G(2m, 4), m ≥ 3, is m−3-fault hamiltonian-connected and m−2-fault hamiltonian.
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By an inductive argument employing Theorem 3, we can conclude many-to-many disjoint path

coverability of G(2m, 4) as follows.

Theorem 5 G(2m, 4), m ≥ 3, is fully many-to-many disjoint path coverable and m− 2-fault hamilto-

nian.

Corollary 4 There exists an s-t hamiltonian path in G(2m, 4)\F , m ≥ 3, that passes through the

edges in the order given for any fault set F with |F | ≤ f and for any pair of vertices s and t and any

s-t path extendable sequence of k − 1 edges ((x1, y1), (x2, y2), . . . , (xk−1, yk−1)) in G(2m, 4)\F such that

f + 2k ≤ m− 1 and v 6= w for at least one pair (v, w) in {(s, x1), (yk−1, t), (yj, xj+1)|1 ≤ j < k − 1}.

4.3 Twisted m-cube

Let (v0, v1) and (v2, v3) be two nonadjacent edges in an arbitrary cycle (v0, v1, v2, v3) of length four in

hypercube Qm. The twisted m-cube[10] is constructed as follows. Delete edges (v0, v1) and (v2, v3)

from Qm. Then connect, via an edge, v0 to v2 and v1 to v3. Obviously, twisted m-cube is an HL-graph.

Due to [19] and [25], we have the following lemma.

Lemma 27 (a) Twisted m-cube, m ≥ 3, is hamiltonian-connected, or equivalently, it is 0-fault many-

to-many 1-disjoint path coverable[19].

(b) Twisted m-cube, m ≥ 3, is 1-fault hamiltonian and not f -fault hamiltonian for any f ≥ 2[25].

It is hard to expect that twisted m-cube is good in disjoint path coverability since its bipartization

number is only two. If we adopt the coloring induced by proper bicoloring (without two adjacent

vertices having the same color) of hypercube Qm, there are exactly two edges joining vertices with the

same color in twisted m-cube: one joining two black vertices and the other joining two white vertices.

Theorem 6 Twisted m-cube, m ≥ 3, is not f -fault many-to-many k-disjoint path coverable for any

f ≥ 0 and k ≥ 1 except only for f = 0 and k = 1.

Proof The bipartization number of twisted m-cube is two. By Lemma 2, twisted m-cube is not

f -fault k-disjoint path coverable for any f ≥ 2 and k ≥ 1. Thus, we assume f = 0, 1. We rely on

Lemma 3. Let us consider the induced coloring of twisted m-cube such that nw = nb = 2m−1 and

cw = cb = 2m−1− 1. When f = 0, cb > nw− k for every k ≥ 2. When f = 1, assuming the edge joining

two black vertices is faulty, we have that cb = 2m−1 and cb > nw − k for every k ≥ 1. Thus, the proof

is completed. ¤
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5 Concluding Remarks

We studied some interesting properties on f -fault many-to-many k-disjoint path coverable graphs such

as relationships among the three types of disjoint path covers, sufficiency for some strong-hamiltonicity,

and some necessary conditions. And then, we presented construction schemes for many-to-many disjoint

path covers in the graphs G0 ⊕ G1 and H0 ⊕ H1 with faulty elements, where H0 = G0 ⊕ G1 and

H1 = G2 ⊕ G3, provided some conditions on Gi are satisfied for all 0 ≤ i ≤ 3. The conditions are

constituted with the hamiltonicity and disjoint path coverability in the presence of faulty elements.

One of the main results is that in most cases with the exception of k = 1 and f = 0, 1, the bound

on the number of faulty elements in G0 ⊕ G1 is one larger than the minimum bound of G0 and G1

to preserve disjoint path coverability. Also, without exception, the bound on the number of disjoint

paths in H0⊕H1 is one larger than the minimum bound over all Gi’s and the bound on the number of

faulty elements in H0⊕H1 is two larger than the minimum bound over all Gi’s. By applying the main

results to restricted HL-graphs and recursive circulant G(2m, 4), we concluded that all these networks

of degree m(≥ 3) are fully many-to-many disjoint path coverable.

According to the constructions presented in this paper, we can design efficient algorithms for finding

many-to-many disjoint path covers in G0⊕G1 and H0⊕H1. We need a bit careful implementation. It

is assumed that (i) G0⊕G1 is represented as an adjacency list structure, (ii) V (G0) = {v1, . . . , vn} and

V (G1) = {vn+1, . . . , v2n}, (iii) the first node in the linked list of vi representing vertices adjacent to vi is

v̄i for every i, (iv) whether a given vertex (or an edge) once located is faulty or not can be determined in

a constant time (a status field in each node representing a vertex (or an edge) is sufficient), (v) whether

a given vertex is a source si or a sink tj or none can be determined in a constant time, and (vi) the

number of faulty edges incident to each vertex is known in advance. We also have such assumptions in

H0 ⊕H1. The first and second nodes in the linked list of vi are assumed to be v̄i and v̂i, respectively.

We let T1(G) be the time complexity of an algorithm for finding a hamiltonian cycle or a hamiltonian

path between an arbitrary pair of fault-free vertices in a graph G. It can be derived from [25] that

(a) T1(G0 ⊕G1) = T1(G0) + T1(G1) + O(n), where n = |V (Gi)|,

(b) T1(H0 ⊕H1) = max





T1(H0) + T1(H1) + O(n),

T1(H0) + T1(G2) + T1(G3) + O(n),

T1(G0) + T1(G1) + T1(H1) + O(n),

T1(G0) + T1(G1) + T1(G2) + T1(G3) + O(n).
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We let T2(G) be the maximum of T1(G) and the time complexity for finding an f -fault many-to-many k-

disjoint path cover in G for any pair of f and k satisfying f +2k ≤ δ(G)−1. Then, all the constructions

given in this paper (containing the omitted one of the proof of Lemma 18) can be accomplished in time

(c) T2(G0 ⊕G1) = T2(G0) + T2(G1) + O(n + δ2), where δ = mini δ(Gi),

(d) T2(H0 ⊕H1) = max





T2(H0) + T2(H1) + O(n + δ2),

T2(H0) + T2(G2) + T2(G3) + O(n + δ2),

T2(G0) + T2(G1) + T2(H1) + O(n + δ2),

T2(G0) + T2(G1) + T2(G2) + T2(G3) + O(n + δ2).

The construction of pairwise disjoint free bridges given in the proof of Lemma 8 leads to a simple

greedy algorithm running in time O(kδ), which is at most O(δ2). Therefore, we can conclude that in

an arbitrary m-dimensional restricted HL-graph or in recursive circulant G(2m, 4), an f -fault many-to-

many k-disjoint path covers with f + 2k ≤ m− 1 can be found in time O(m2m), which is linear to the

size of the graphs.
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