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Abstract. We consider the fault hamiltonian properties of m xn meshes
with two wraparound edges in the first row and the last row, denoted
by Ma(m,n), m > 2, n > 3. Mz(m,n) is a spanning subgraph of P, X
C,, which has interesting fault hamiltonian properties. We show that
M (m,n) with odd n is hamiltonian-connected and 1-fault hamiltonian.
For even n, M2(m,n), which is bipartite, with a single faulty element is
shown to be 1-fault strongly hamiltonian-laceable. In previous works|[1,
2], it was shown that P, X C, also has these hamiltonian properties. Our
result shows that two additional wraparound edges are sufficient for an
m X n mesh to have such properties rather than m wraparound edges.
As an application of fault-hamiltonicity of Ma(m,n), we show that the
n-dimensional hypercube is strongly hamiltonian laceable if there are at
most n — 2 faulty elements and at most one faulty vertex.

1 Introduction

Meshes represent the communication structures of many applications in scien-
tific computations as well as the topologies of many large-scale interconnection
networks. One of the central issues in parallel processing is embedding of linear
arrays and rings into a faulty interconnection network. The embedding is closely
related to a hamiltonian problem in graph theory.

An interconnection network is often modeled as an undirected graph, in which
vertices and edges correspond to nodes and links, respectively. A graph G is called
hamiltonian-connected if there exists a hamiltonian path joining every pair of ver-
tices in G. We consider the hamiltonian properties of a graph in the presence of
faulty elements(vertices and/or edges). A graph G is called k-fault hamiltonian
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(vesp. k-fault hamiltonian-connected) if G — F has a hamiltonian cycle (resp. a
hamiltonian path joining every pair of vertices) for any set F of faulty elements
such that |F| < k. Apparently, a bipartite graph is not hamiltonian-connected.
In [3], the concept of hamiltonian laceability for hamiltonian bipartite graphs
was introduced. Bipartition sets of a bipartite graph are often represented as
sets of black and white vertices. A bipartite graph G is hamiltonian-laceable if
there is a hamiltonian path joining every pair of vertices with different colors. In
[4], this concept was extended into strongly hamiltonian laceability. A hamilto-
nian laceable graph G with N vertices is strong if there is a path of length N —2
joining every pair of vertices with the same color.

For any faulty set F' such that |F| < k, a bipartite graph G which has an
L°Pt_path joining every pair of fault-free vertices is called k-fault strongly hamil-
tonian laceable[2]. An L°P-path is defined as follows. Let G be a bipartite graph
and let B and W be the sets of black and white vertices in G, respectively. De-
note by F, and F, the sets of faulty vertices and edges in G, respectively. Let
F=F,UF., f, =|Fy|, fe = |Fe|, and f = |F|. The numbers of fault-free black
and white vertices are denoted by n; and n,,, respectively. When n, = n,,, a
fault-free path of length 2n;, — 1 joining a pair of vertices with different colors is
called an L°Pt-path. For a pair of vertices with the same color, a fault-free path
of length 2n; — 2 between them is called an L°P*-path. When ny, > n,,, fault-free
paths of length 2n,, for a pair of black vertices, of length 2n,, — 1 for a pair of
vertices with different colors, and of length 2n,, — 2 for a pair of white vertices,
are called L°P'-paths. Similary, an L°Pt-path can be defined when n, > nj. A
fault-free cycle of length 2-min{ny, n,,} is called an L°P'-cycle. The lengths of an
L°Pt_path and an L°Pt-cycle are the largest possible.

Fault hamiltonicity of various interconnection networks has been investi-
gated. In [5] and [6], linear-time algorithms that find hamiltonian paths in m x n
meshes were developed . In [7] and [8], the fault hamiltonian properties of m x n
torus and P,, x C, were considered, where P,, x C,, is a graph obtained by
product of a path P,, with m vertices and a cycle C,, with n vertices. P, x Cp,
forms an m X n mesh with a wraparound edge in each row. Futhermore, it was
shown that P,,, x C,, is hamiltonian-connected and 1-fault hamiltonian if it is
not bipartite[1]; otherwise, P,, x C,, is 1-fault strongly hamiltonian laceable[2].

In this paper, we consider the hamiltonian properties of m x n mesh (m >
2,n > 3) with two wraparound edges in the first row and the last row. We de-
note the graph by Ms(m,n). We show that Ms(m, n) with odd n is hamiltonian-
connected and 1-fault hamiltonian. For a graph G to be hamiltonian-connected,
G should be non-bipartite and 6(G) > 3, where §(G) is the minimum degree of G.
For a graph G to be k-fault hamiltonian, it is necessary that k < §(G) — 2. Thus,
Ms(m,n) with odd n satisfies the above condition by adding two(minimum)
edges to an m x n mesh. Futhermore, for n even, we show that Ma(m,n), which
is bipartite, with a single faulty element is strongly hamiltonian laceable. In
previous works[1,2], it was shown that P, x C, also has these hamiltonian
properties. Our result shows that two additional wraparound edges are sufficient
for an m x n mesh to have such properties rather than m wraparound edges.
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(b) M2(3,6)

Fig. 1. Examples of M1(m,n) and Mz(m,n)

For some m and n, Ma(m,n) is a spanning subgraph of many interconnec-
tion networks such as tori, hypercubes, k-ary n-cubes, double loop networks, and
recursive circulants. Thus, our results can be applied to discover the fault hamil-
tonicity of such interconnection networks. It was shown in [9] that n-dimensional
hypercube @, with n — 2 faulty edges is strongly hamiltonian laceable. By ap-
plying fault hamiltonicity of Ma(m,n), we show that @Q, with at most n — 2
faulty elements and at most one faulty vertex is strongly hamiltonian laceable.

2 Preliminaries

Let M(m,n) = (V,E) be an m x n mesh, where the vertex set V is {v;»|1 <
i < m,1 < j < n} and the edge set F is {(v;7v;+1)|1 <i<ml<j<
n} U {(U},Uj—“)\l <i<m,1 < j < n} We propose a graph which has two
wraparound edges in the first row and the last row in M (m,n).

Definition 1. Let M (m,n) = (V, E). Ma(m,n) is defined as (Var,, Enr, ), where
the vertex set Vy, =V and the edge set Eyr, = EU {(v,v}), (v, v™)}.

n

The vertices of Ms(m,n) are colored with black and white as follows: v} is
called a black vertex if i + j is even; otherwise it is a white vertex. We denote by
R(i) and C(j) the vertices in row ¢ and column j, respectively. That is, R(i) =
{vilt <j <n}and C(j) = {vj|1 <i < m}. Welet R(i : j) = Uick<;R(k) if
i < j; otherwise R(i : j) = (). Similarly, C'(i : j) = U;<x<;C(k) if ¢ < j; otherwise
C(i:j)=0.

We denote by H|s,¢|X] a hamiltonian path from s to ¢ in the subgraph
G (X) induced by a vertex set X, if any. A path is represented as a sequence of
vertices. If X is an empty set, H[s, t| X] is an empty sequence. We denote by v}- —
vl a path (vf, vl - vl g, 0%) if § < j'; otherwise, (vh,v5_ 1, -, vk, 1, 05).
Similary, v} — v;-/ a path from v§ to vj-/ in the subgraph G (C(j)). We employ
three lemmas on the hamiltonian properties of M (m,n) and P,, x C,,. We call
a vertex in a mesh a corner vertex if it is of degree two.

Lemma 1. [10] (a) If mn is even, then M(m,n) has a hamiltonian path from
any corner vertex v to any other vertex with color different from v. (b) If mn
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is odd, then M(m,n) has a hamiltonian path from any corner vertex v to any
other vertex with the same color as v.

Lemma 2. [5] Let two vertices s,t have different color each other. (a) If m,n >
4 and mn is even, then M(m,n) has a hamiltonian path joining s and t. (b) If
m=2,n2>3, and s,t ¢ C(k)(2 <k <n-—1), then M(m,n) has a hamiltonian
path joining s and t.

Lemma 3. (a) For m > 2,n > 3 odd, P,, x C, is hamiltonian-connected and
1-fault hamiltonian[1]. (b) For m > 2,n > 4 even, P, x Cy, is 1-fault strongly
hamiltonian-laceable[2].

Let P and @ be two vertex-disjoint paths (aj,as, - ,ax) and (by,ba, - ,b;)
in a graph G, respectively, such that (a;,b1) and (a;4+1,b;) are edges in G. If we
replace (a;, a;41) with (a;,b1) and (a;41, b;), then P and @ are merged into a sin-
gle path (a1, a9, - ,a;,b1,b2, -+ by, ajt1, -+ ,ar). We call such a replacement
a merge of P and Q w.r.t. (a;,b1) and (a;41,0;). If P is a closed path(that is, a
cycle), the merge operation results in a single cycle. We denote by V(P) the set
of vertices on a path P.

To show the fault hamiltonicity of Ms(m,n), we first show some hamiltonian
properties of Mj(m,n) which has a single wraparound edge on the first row in
M(m,n). An Mj(m,n) has two corner vertices v}* and v".

Lemma 4. For m > 2, n > 3 odd, M1(m,n) has a hamiltonian path between
any corner vertexr s and any other verter t.

Proof. The proof is by induction on m. Without loss of generality, we assume
that s = v{". First, we observe that the lemma holds for m = 2. For t € B, there
exists a hamiltonian path by Lemma 1; otherwise we can construct a hamiltonian
path P = (s,v}, H[v},t|C(2: n)]). By Lemma 1, H[v} ¢|C(2: n)] exists.

For m > 3, we assume that the lemma is true for every k& < m. The proof is
divided into two cases.

Case 1: t € R(1: m —1). When t # v™~!, we can construct a hamiltonian
path P = (s,08" — o™, H[v™ 1 #|R(1 : m — 1)]). By induction hypothesis,
H[v" 1 t|R(1 : m—1)] exists. When t = o™~ 1, P = (s,07""' — v}, H[s',t|C(2:
n)]), where s’ is v} if m is odd; s’ is v if m is even.

Case 2: t € R(m). Let t = v™. By induction hypothesis, there exists a
hamiltonian path P’ joining v)"7' and v7"~! in G (R(1 : m — 1)). We construct
a hamiltonian path P = (s,v5* — v, P, vl ol | — t). O

In the following lemmas, we just summarize the results and omit the proofs.

Lemma 5. Form > 2,n >4 even, My(m,n) is strongly hamiltonian laceable.

Lemma 6. For m > 2,n >4 even, My(m,n) with a single faulty vertex vy has
an L°P-path joining a corner vertex s and any other vertez t if s has a different
color from vy and at most one of vy and t is adjacent to s.
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3 Hamiltonian properties of My(m,n)

3.1 Ms(m,n) with odd n

When n is odd, M2 (m, n) is not bipartite. We show that Mz(m,n) is hamiltonian-
connected and 1-fault hamiltonian.

Theorem 1. Form > 2,n > 3 odd, Ma(m,n) is hamiltonian-connected.

Proof. The proof is by induction on m. M(2,n) is isomorphic to Py x C,,. Thus,
the theorem is true by Lemma 3 when m = 2. For m > 3, we assume that the
theorem is true for every k < m. Let s = v}, t = v]. We show that My(m,n)
has a hamiltonian path P between s and ¢t. The proof is divided into two cases.

Case 1: s,t € R(1 : m — 1). If we assume that a virtual edge (v7"~*, o™~ 1)
exists, then there exists a hamiltonian path P’ joining s and ¢ in G (R(1 : m — 1))
by induction hypothesis. If P" passes through the edge (v]*~*,v™~1), then we
can construct a hamiltonian path P by replacing (v{”fl,v,’?_l) with a path
(v — ™ v™=1); otherwise we choose an edge (u,v) in G (R(m — 1))
such that P’ includes it. Let v’ and v' be the vertices in R(m) adjacent to u
and v, respectively. Since (R(m)) forms a cycle, it has a hamiltonian path P”
joining v’ and v’. By a merge of P’ and P” w.r.t. (u,u') and (v,v’), we have a
hamiltonian path.

Case 2: s€ R(1:m—1) and t € R(m). When s € R(2: m — 1), this case is
symmetric to Case 1. Thus, we only consider the case that s € R(1).

Case 2.1: m = 3. If either s or t is on the first column or the last column,
then there exist a hamiltonian path by Lemma 4. Otherwise(that is, s,t € C(2:
n — 1)), by Lemma 1 and Lemma 2, we can construct a hamiltonian path P as

follows:

(i) s,t € W, P = (s,v},; — vh,vf — vj_q,H[v? |,v}|R(2 : 3)|NC(1:j—
D], H[v2, t|R(2:3)NC(j : n))).

(i) s€ Band t € W, P = (H[s,v3|C(1 :4)], H[v3,|C(i + 1 : n))]).

(iii) s,t € B,

p_ (H[s, v} 1|C(1:i+41)], H[v} 5, t|C(i + 2 : n)]) ifi#j
(S7H[Ui171’vi271|c(1 ti— 1)]7”?7H[U?+17U?+1‘C(i +1:n))t) ifi=j

Case 2.2: m > 4. By Lemma 4, there exist two paths P’ = (H[s,v]" 2| R(1 :
m — 2)]) and P = (Hu}? ' t{R(m — 1 : m)]). (P, P") forms a hamiltonian
path. a

Theorem 2. Form > 2,n > 3 odd, Ma(m,n) is 1-fault hamiltonian.

Proof. We prove by induction on m. Due to Lemma 3, the theorem holds for
m = 2. For m > 3, we assume that the theorem is true for every k < m, and we
consider Ms(m,n). Without loss of generality, we assume that the faulty element
is contained in G (R(1 : m — 1)).

If we assume that a virtual edge (v]"~*,v™~') exists, then there exists a

fault-free hamiltonian cycle C’ in G (R(1: m — 1)) by induction hypothesis. If
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C' passes through (v]"~' v7~1), then we can construct a hamiltonian cycle
C by replacing (vy"~ 171),’1”* ) with a path (o]~ 1 0" — v vm=1); If ¢ does
not pass through ( m=1ym=1) we choose an edge (u,v) in G (R(m — 1)) such
that C' includes it. Let u’ and v' be the vertices in R(m) adjacent to u and v,
respectively. Since G (R(m)) forms a cycle, it has a hamiltonian path P’ joining
u’ and v’. By a merge of C' — (u,v) and P’ w.r.t. (u,v') and (v,v’), we have a
fault-free hamiltonian cycle C. a

3.2 Msy(m,n) with even n

When n is even, My(m,n) is bipartite. First, we show that Ms(m,n) with a
single faulty vertex is strongly hamiltonian-laceable.

Lemma 7. For n > 4 even, Ms(3,n) with a single faulty vertex is strongly
hamiltonian laceable.

Proof. L°P'*-paths can be constructed for all cases: i) s,t € R(1:2),ii) s € R(1
2),t € R(3), iil) s,t € R(3). The details are omitted. O

Lemma 8. For m > 2,n > 4 even, Ma(m,n) with a single faulty vertex is
strongly hamiltonian laceable.

Proof. The proof is by induction on m. For m = 2 and m = 3, the lemma is true
by Lemma 3 and Lemma 7, respectively. For m > 4, we assume that the lemma
holds for every k < m, and we consider Ma(m,n). Let s = v}, t = v]. Without
loss of generality, we assume that a faulty vertex vy € W and vy € R(1: m —2).

Case 1: s,t € R(1 : m — 1). Similar to Case 1 in Theorem 1, we can con-
structed an L°P-path.

Case 2: s€ R(1: m—1) and t € R(m).

Case 2.1: s € R(1 : m — 2). We choose a black vertex s’ which is one of the
two vertices v]" 2 and v/* 2. If s = &' or s’ is adjacent to both v; and s, then let
s’ be the black vertex in R(m —2) N C(2:n — 1). There exists an L°P*-path P’
joining s and s’ in G (R(1 : m — 2)) as follows. When either s or s’ is v/~ 2(resp.
v"~?) and m is even(resp. odd), P’ exists by Lemma 6. Otherwise P’ can be
constructed as follows:

(H[s,vL_|R(1:m—=3)NC(n—1:n)),
P Hvl 5, 8'|R1:m—-2)NnC(1:n—2)]) if miseven
(H[s,v{|R(1:m —3)NC(1:2)],
Hvl s'|R(1:m—2)NC(3:n)]) if m is odd

Let ¢’ be the vertex in R(m — 1) adjacent to s’. By Lemma 5, there exists an
L°Pt-path P” joining ¢’ and ¢ in G (R(m — 1 : m)). P’ and P” form an L°P'-path.

Case 2.2: s € R(m — 1). If vy is in R(2: m — 2), then this case is symmetric
to Case 1. Thus, we only consider the case that vf 6 R(1). We choose two
vertices u and v as follows When s,t € B, let u = vy % and v = v~ 2 if m is
even; otherw1se u=v]""?and v = UZL 2 When at least one of s or ¢ is white,
u = v]""? and v = v~ 2. Let «’ and v’ be the vertices in R(m — 1) adjacent



Fault Hamiltonicity of Meshes with Two Wraparound Edges 7

to u and v, respectively. By Lemma 6, there exists an L°P'-path P’ joining
uw and v in G(R(1:m —2)). Let P” and P" be two vertex-disjoint paths in
G (R(m —1:m)) such that V(P") UV(P") = R(m — 1 : m) and they are
joining s and v/, v’ and ¢, or s and v’, v’ and t, respectively. We can construct
an L°Pt-path P = (P”, P', P""). P” and P"' can be constructed as follows:
Without loss of generality, we assume that m is even.
Case 2.2.14 < j. (i) s,t € B,

pr_ (s,u’) ifteC(2)
(H[s,/|C(1: )N R(m—1:m)]) ifteC(3:n)
pr_ (H[V, v"|C(3:n)NR(m —1:m)],v",t) ift € C(2)
T (HPLHCE+1:n) N R(m —1:n)]) ifte C(3:n)

(ii) se Wand t € B, P’ = (H[s,v/|C(1:i)NR(m —1:m)]) and
P" =(HWV,t|Ci+1:n)NR(m—1:m)]).

(iii) s€ Bandt € W, P" = (s,v]"]' — /) and
P" = (H[V , o' |C(j +1:n) N R(m — 1 :m)],v* — v, Hvj},t|C(i +1:
J)NR(m —1:m)]).

(iv) s,t e W. P" = (H[s,v'|C(1:j—1)NR(m —1:m)]) and

P" = (H[V ,v]1|C(H+1:n)NR(m —1:m)],t).

Case 2.2.2 1 > j. Similar to Case 2.2.1, P” and P’ can be constructed. The
details of P and P"’ are omitted.

Case 3: s,t € R(m). If vy is in R(2 : m — 2), then this case is symmetric
to Case 1. Thus, we only consider the case that vy € R(1). The same way as
Case 2.2, we can construct an L°P'-path P except the case that s € B and
t € W. We only show the case that s € B and t € W. An L°P'-path P’ in
G (R(1:m — 2)) can be obtained by using the same way as Case 2.2, and two
vertex-disjoint paths P” and P"” in G(R(m —1:m)) can be constructed as
follows: P" = (H[s,v;'z_11|0(i cj—1)NR(m-—1: m)],v;”_l — ') and P =
(H[v,v"|C(1 : ¢ — 1) N R(m — 1 : m)],v™ — t). (P",P’, P") forms an L°P'-

path. O

Lemma 9. Form > 2 n > 4 even, Ms(m,n) with a single faulty edge is hamil-
tonian laceable.

Proof. We prove by induction on m. Due to Lemma 3, the lemma holds for
m = 2. For m > 3, we assume that the lemma is true for every k < m, and we
consider My(m,n). There exists a hamiltonian path by Lemma 2, if ey is one
of (vi,v}) and (vf*,v™). Let s = v¥ and t = vf. Without loss of generality, we
assume that the faulty edge ey € G(R(1: m —1)).

Case 1: s,t € R(1 : m — 1). Similary to Case 1 in Theorem 1, we can
construct an L°P* path.

Case 2: s€ R(1: m—1) and t € R(m).

Case 2.1: ey = (vi,v;™!). When z > z, there exists a hamiltonian path P’
joining s and t in G(R(z+ 1:m)) by Lemma 5. We choose an edge (u,v) in
G (R(z + 1)) such that P’ includes it and neither u nor v is v ™. Let v/ and
v’ be the vertices in R(z) adjacent to u and v, respectively. By Lemma 5, there

exists a hamiltonian path P” joining v and v in G (R(1 : 2)). By a merge of P’
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and P” w.r.t. (u,u') and (v,v’), we have a hamiltonian path P. When z < z,
we choose a vertex s’ in R(z) such that s’ has a different color from s and is
not vf. Let ¢’ be the vertex in G (R(z + 1)) adjacent to s’. By Lemma 5, we can
construct a hamiltonian path P = (H[s,s'|R(1 : 2)], H[t',t|R(z + 1 : m)]).

Case 2.2: ey = (vi,vi,,). Without loss of generality, P can be constructed
according to the three cases. (i) ¢ < k < j, (ii) ¢ < j <k, and (iii) k < i < j. We
only show the case that i < k < j, s € B, and t € W. Proofs of other cases are
omitted.

a) For k=1,If ¢ > z, then s € B and s € C(1).

)
P=(s— v%,H[v}z,vﬂﬂC’@ :n) N R(L: x)],H[vffll,ﬂR(x +1:m)])

Ifz <z,
(5 - v{n’vén - U%aH[U§_13U§_1|R(1 A 1)]’
p_ [vg,t|C(3'n)ﬁR(x:m)]) ifj=n
(s — oot — vp Hlvg ™ op T R(L 2 = 1)),
HvE_1,t|C(2:n—1)N R(z:m)]) ifj#n

b) For 1 < k <mn—1,

P:{(H[s,v,’mC(l:k)],H[vk+1,t|C’(k+1 n)]) ifj=n
(H[s,v{"|C(1: k)], Hv t|C(k+1:n)]) ifj#n

Case 3: s,t € R(m).

Case 3.1: ey = (vi,v;*"). By Lemma 5, there exists a hamiltonian path P’
joining s and t in G (R(z + 1 : m)). We choose an edge (u,v) in G (R(z + 1)) such
that P’ includes it and neither u nor v is v;™'. Let v/ and v’ be the vertices in
R(z) adjacent to u and v, respectively. In G (R(1 : z)), there exists a hamiltonian
path P” joining ' and v’ by Lemma 5. By a merge of P’ and P” w.r.t. (u,u’)
and (v,v’), we have a hamiltonian path.

Case 3.2: ey = (v§,vi, ). Without loss of generality, we assume that i < j.

Case3.2.1: 1< j<k.Whense Bandte W,

(H [s VP C(1: 5 —1)NRE2:m)], Hu™ vi|C(k+1:n)],
vi —>’UJ1 1 [] t|C(j: k))) if m is even
P = (H[s,v_1|C(1:5—1)NR(2:m)],
[gv ]|C( )OR(I m_l)]a 1_>U%7
Hlvy, v |C(k+ 1 :n)], vt — t) if m is odd
When s € W and t € B,
(s = of", Hop, v, |C(k + 1 :n))],
H[v},vl 2101 k)NR(A:m —2)], 0" — ot

7 )

p— [14_1 ,t\C(ZJrl EYNR(m—1: m)]) if m is even
(Hls, v [C(L:j =) NR(m —1:m)],o"~" — o7
[vm 2ollCc(1: k)N R(1:m —2)],
Hloy, v |C(k+1:n)], 0" — t) if m is odd

Case 3.2.2: i < k < j. We can construct a hamiltonian path P as follows.
When m is even, let s’ = v" and ¢/ = v if s € B; s’ =vf and t' =), if s € W.
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When m is odd and s € B, let s = v and ¢ = v}, if k is even; s’ = v}
and ¥’ = v} if k is odd. P = (H[s,s'|C(1 : k)], H[t',t|C(k + 1 : n)]). When m
is odd and s € W, P = (H[s,v"|C(i : k)], 0,1 — vi g — v, H[vl, v} |C(1
i— 1), Hv t|C(k+2:n)NR(2:m)]). O

Theorem 3. For m > 2,n > 4 even, My(m,n) is 1-fault strongly hamiltonian
laceable.

Proof. By Lemma 8, My(m,n) with a single faulty vertex is strongly hamiltonian
laceable. By Lemma 9, Ms(m, n) with a single faulty edge has a hamiltonian path
between any two vertices with different colors. It remains to show that there is
an L°Pt-path (of length mn — 2) joining every pair of vertices s and ¢ with the
same color. Let (u,v) be the faulty edge. Without loss of generality, we assume
that w € B and v € W. When s and t are black, we can find an L°P'-path P
between s and t regarding v as a faulty vertex by using Lemma 8. P does not
pass through (u,v) as well as v, and the length of P is mn — 2. Thus, P is a
desired L°Pt-path. In a similar way, we can construct an L°P'-path for a pair of
white vertices. ad

4 Fault hamiltonicity of Hypercubes

An n-dimensional hypercube, denoted by @Q,,, consists of 2" vertices that can be
represented in the form of binary strings, b,b,_1...b1. Two vertices are adjacent
if and only if their labels differ in exactly one bit. An edge is referred to as an i-
dimension edge if the vertices it connects differ in bit position 7. A k-dimensional
subcube in Q,, is represented by a string of n symbols over set {0, 1, x}, where x
is a don’t care symbol, such that there are exactly k *’s in the string.

Lemma 10. For fo <n—-3and1 <r <n-— f.—2, Q, with f. faulty edges
has M(2",2™~") as a spanning subgraph.

Proof. Let D = {1,2,...,n} be the set of dimensions in Q,, Dy = {f1, fo, ..., fi}
be the set of dimensions which contain faulty edges, and Dy = D — Dy =
{s1,52,...,5;}. Since f. < n — 3, we have |D,| > 3.

If we replace bs, , bs,, ..., bs,. bits of each vertex label in @), by ‘*’, then @, can
be partitioned into 2" ™" r-subcubes and theses subcubes form @,,_, by replacing
each subcube as a vertex. We denote such a graph by a condensation graph Q%_T
of Q,. Let u, v be the vertices in @,,, and C,, C, be the components containing
u and v, respectively. We assume that an edge (C,,C,) of QS _, is faulty if
(u,v) is faulty. For all n > 2, @, with n — 2 faulty edges has a hamiltonian
cycle[11]. Since f. < n — r — 2, there exists a hamiltonian cycle in Q¢_,. Let
C = (x1,22,..., &g, ..., Tan—r, 1) be a hamiltonian cycle in be_r, where 1 < d <
2"~". Each vertex of Q,, can be mapped to v% of My(m,n) as follows:

In b,b,_1...b1 of each vertex label of Q,,

(i) bs, bs,...bs, is the k-th sequence of r-bit Gray code, and

(ii) (n — r)-bits (except bs,, bs,, ..., bs, bits) represent the label of the d-th

vertex in C.
Thus, @, has fault-free M5(2",2"~") as a spanning subgraph. O
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By applying fault-hamiltonicity of Ms(m,n) to a hypercube, we have the
following theorem.

Theorem 4. Q, with f <n —2 and f, <1 is strongly hamiltonian laceable.

5 Conclusion

In this paper, we considered the fault hamiltonian properties of m x n meshes
with two wraparound edges in the first row and the last row. We showed that
My (m,n) with odd n is hamiltonian-connected and 1-fault hamiltonian. Ms(m, n)
has these hamiltonian properties by adding minimum edges to an m xn mesh. For
n > 4 even, we showed that Ms(m,n) is 1-fault strongly hamiltonian laceable.
By applying fault hamiltonicity of Ma(m,n) to a hypercube, we obtained that
@, with at most n — 2 faulty elements and at most one faulty vertex is strongly
hamiltonian laceable. Also, our results can be applied to the fault hamiltonian
properties of other interconnection networks which has Msy(m,n) as a spanning
subgraph.

References

1. C.-H.Tsai, J. M. Tan, Y. C. Chuang and L.-H. Hsu, Fault-free cycles and links in
faulty recursive circulant graphs, Proceedings of the 2000 International Computer
Symposium: Workshop on Computer Algorithms and Theory of Computation
(2000) 74-77.

2. J.-H.Park and H.-C. Kim, Fault hamiltonicity of product graph of path and cycle,
International Computing and Combinatorics Conference(COCOON) (2003) 319-
328.

3. G.Simmons, Almost all n-dimensional rectangular lattices are Hamilton laceable,
Congressus Numerantium 21 (1978) 103-108.

4. S.Y.Hsieh, G. H. Chen and C. W. Ho, Hamiltonian-laceability of star graphs, Net-
works 36 (2000) 225-232.

5. A.Itai, C.H.Papadimitriou and J.L.Czwarcfiter, Hamiltonian paths in grid
graphs. SIAM Journal of Computing 11 (4) (1982) 676-686.

6. S.D. Chen, H. Shen and R. W. Topor, An efficient algorithm for constructing hamil-
tonian paths in meshes, Parallel Computing 28 (2002) 1293-1305.

7. J.S.Kim, S.R.Maeng and H. Yoon, Embedding of rings in 2-D meshes and tori
with faulty nodes, Journal of Systems Architecture 43 (1997) 643-654.

8. M. Lewinter and W. Widulski, Hyper-hamilton laceable and caterpillar-spannable
product graphs, Computer Math. Applic. 34 (11) (1997) 99-104.

9. C.-H.Tsai, J. M. Tan, T. Lian and L. -H. Hsu, Fault-tolerant hamiltonian laceabil-
ity of hypercubes, Information Processing Letters 83 (2002) 301-306.

10. C.C.Chen and N.F.Quimpo, On strongly Hamiltonian abelian group graphs.
Combinatorial Mathematics VIII. Lecture Notes in Mathematics 884 (1980) 23-34.

11. S.Latifi, S.Zheng, N. Bagherzadeh, Optimal ring embedding in hypercubes with
faulty links, International Symposium on Fault-Tolerant Computing(FTCS) (1992)
178-184.



