Fault Hamiltonicity of Meshes with Two Wraparound Edges^{*}

Kyoung-Wook Park¹, Hyeong-Seok Lim¹, Jung-Heum Park², and Hee-Chul ${\rm Kim^3}$

¹ Department of Computer Science, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Korea kwpark@csblue.chonnam.ac.kr,hslim@chonnam.ac.kr
² School of Computer Science and Information Engineering, The Catholic University of Korea j.h.park@catholic.ac.kr
³ School of Computer Information and Communications Engineering, Hankuk University of Foreign Studies hckim@hufs.ac.kr

Abstract. We consider the fault hamiltonian properties of $m \times n$ meshes with two wraparound edges in the first row and the last row, denoted by $M_2(m,n), m \ge 2, n \ge 3$. $M_2(m,n)$ is a spanning subgraph of $P_m \times C_n$ which has interesting fault hamiltonian properties. We show that $M_2(m,n)$ with odd n is hamiltonian-connected and 1-fault hamiltonian. For even n, $M_2(m,n)$, which is bipartite, with a single faulty element is shown to be 1-fault strongly hamiltonian-laceable. In previous works[1, 2], it was shown that $P_m \times C_n$ also has these hamiltonian properties. Our result shows that two additional wraparound edges are sufficient for an $m \times n$ mesh to have such properties rather than m wraparound edges. As an application of fault-hamiltonicity of $M_2(m,n)$, we show that the n-dimensional hypercube is strongly hamiltonian laceable if there are at most n - 2 faulty elements and at most one faulty vertex.

1 Introduction

Meshes represent the communication structures of many applications in scientific computations as well as the topologies of many large-scale interconnection networks. One of the central issues in parallel processing is embedding of linear arrays and rings into a faulty interconnection network. The embedding is closely related to a hamiltonian problem in graph theory.

An interconnection network is often modeled as an undirected graph, in which vertices and edges correspond to nodes and links, respectively. A graph G is called *hamiltonian-connected* if there exists a hamiltonian path joining every pair of vertices in G. We consider the hamiltonian properties of a graph in the presence of faulty elements(vertices and/or edges). A graph G is called *k-fault hamiltonian*

^{*} This work was supported by grant No. R01-2003-000-11676-0 from the Basic Research Program of the Korea Science & Engineering Foundation.

 $\mathbf{2}$

(resp. k-fault hamiltonian-connected) if G - F has a hamiltonian cycle (resp. a hamiltonian path joining every pair of vertices) for any set F of faulty elements such that $|F| \leq k$. Apparently, a bipartite graph is not hamiltonian-connected. In [3], the concept of hamiltonian laceability for hamiltonian bipartite graphs was introduced. Bipartition sets of a bipartite graph are often represented as sets of black and white vertices. A bipartite graph G is hamiltonian-laceable if there is a hamiltonian path joining every pair of vertices with different colors. In [4], this concept was extended into strongly hamiltonian laceability. A hamiltonian laceable graph G with N vertices is strong if there is a path of length N-2 joining every pair of vertices with the same color.

For any faulty set F such that $|F| \leq k$, a bipartite graph G which has an L^{opt} -path joining every pair of fault-free vertices is called k-fault strongly hamiltonian laceable[2]. An L^{opt} -path is defined as follows. Let G be a bipartite graph and let B and W be the sets of black and white vertices in G, respectively. Denote by F_v and F_e the sets of faulty vertices and edges in G, respectively. Let $F = F_v \cup F_e$, $f_v = |F_v|$, $f_e = |F_e|$, and f = |F|. The numbers of fault-free black and white vertices are denoted by n_b and n_w , respectively. When $n_b = n_w$, a fault-free path of length $2n_b - 1$ joining a pair of vertices with different colors is called an L^{opt} -path. For a pair of vertices with the same color, a fault-free path of length $2n_w$ for a pair of black vertices, of length $2n_w - 1$ for a pair of vertices, are called L^{opt} -paths. Similary, an L^{opt} -path can be defined when $n_w > n_b$. A fault-free cycle of length $2 \cdot \min\{n_b, n_w\}$ is called an L^{opt} -cycle. The lengths of an L^{opt} -path and an L^{opt} -

Fault hamiltonicity of various interconnection networks has been investigated. In [5] and [6], linear-time algorithms that find hamiltonian paths in $m \times n$ meshes were developed. In [7] and [8], the fault hamiltonian properties of $m \times n$ torus and $P_m \times C_n$ were considered, where $P_m \times C_n$ is a graph obtained by product of a path P_m with m vertices and a cycle C_n with n vertices. $P_m \times C_n$ forms an $m \times n$ mesh with a wraparound edge in each row. Futhermore, it was shown that $P_m \times C_n$ is hamiltonian-connected and 1-fault hamiltonian if it is not bipartite[1]; otherwise, $P_m \times C_n$ is 1-fault strongly hamiltonian laceable[2].

In this paper, we consider the hamiltonian properties of $m \times n$ mesh $(m \ge 2, n \ge 3)$ with two wraparound edges in the first row and the last row. We denote the graph by $M_2(m, n)$. We show that $M_2(m, n)$ with odd n is hamiltonian-connected and 1-fault hamiltonian. For a graph G to be hamiltonian-connected, G should be non-bipartite and $\delta(G) \ge 3$, where $\delta(G)$ is the minimum degree of G. For a graph G to be k-fault hamiltonian, it is necessary that $k \le \delta(G) - 2$. Thus, $M_2(m, n)$ with odd n satisfies the above condition by adding two(minimum) edges to an $m \times n$ mesh. Furthermore, for n even, we show that $M_2(m, n)$, which is bipartite, with a single faulty element is strongly hamiltonian laceable. In previous works [1,2], it was shown that $P_m \times C_n$ also has these hamiltonian properties. Our result shows that two additional wraparound edges are sufficient for an $m \times n$ mesh to have such properties rather than m wraparound edges.

Fig. 1. Examples of $M_1(m, n)$ and $M_2(m, n)$

For some m and n, $M_2(m, n)$ is a spanning subgraph of many interconnection networks such as tori, hypercubes, k-ary n-cubes, double loop networks, and recursive circulants. Thus, our results can be applied to discover the fault hamiltonicity of such interconnection networks. It was shown in [9] that n-dimensional hypercube Q_n with n-2 faulty edges is strongly hamiltonian laceable. By applying fault hamiltonicity of $M_2(m, n)$, we show that Q_n with at most n-2faulty elements and at most one faulty vertex is strongly hamiltonian laceable.

2 Preliminaries

Let M(m,n) = (V,E) be an $m \times n$ mesh, where the vertex set V is $\{v_j^i | 1 \leq i \leq m, 1 \leq j \leq n\}$ and the edge set E is $\{(v_j^i, v_{j+1}^i) | 1 \leq i \leq m, 1 \leq j < n\} \cup \{(v_j^i, v_j^{i+1}) | 1 \leq i < m, 1 \leq j \leq n\}$. We propose a graph which has two wraparound edges in the first row and the last row in M(m, n).

Definition 1. Let M(m, n) = (V, E). $M_2(m, n)$ is defined as (V_{M_2}, E_{M_2}) , where the vertex set $V_{M_2} = V$ and the edge set $E_{M_2} = E \cup \{(v_1^1, v_n^1), (v_1^m, v_n^m)\}$.

The vertices of $M_2(m, n)$ are colored with black and white as follows: v_j^i is called a *black* vertex if i + j is even; otherwise it is a *white* vertex. We denote by R(i) and C(j) the vertices in row i and column j, respectively. That is, $R(i) = \{v_j^i | 1 \le j \le n\}$ and $C(j) = \{v_j^i | 1 \le i \le m\}$. We let $R(i : j) = \bigcup_{i \le k \le j} R(k)$ if $i \le j$; otherwise $R(i : j) = \emptyset$. Similarly, $C(i : j) = \bigcup_{i \le k \le j} C(k)$ if $i \le j$; otherwise $C(i : j) = \emptyset$.

We denote by H[s,t|X] a hamiltonian path from s to t in the subgraph $G\langle X \rangle$ induced by a vertex set X, if any. A path is represented as a sequence of vertices. If X is an empty set, H[s,t|X] is an empty sequence. We denote by $v_j^i \rightarrow v_{j'}^i$ a path $(v_j^i, v_{j+1}^i, \cdots, v_{j'-1}^i, v_{j'}^i)$ if j < j'; otherwise, $(v_j^i, v_{j-1}^i, \cdots, v_{j'+1}^i, v_{j'}^i)$. Similary, $v_j^i \rightarrow v_j^{i'}$ a path from v_j^i to $v_j^{i'}$ in the subgraph $G\langle C(j)\rangle$. We employ three lemmas on the hamiltonian properties of M(m, n) and $P_m \times C_n$. We call a vertex in a mesh a *corner vertex* if it is of degree two.

Lemma 1. [10] (a) If mn is even, then M(m, n) has a hamiltonian path from any corner vertex v to any other vertex with color different from v. (b) If mn

is odd, then M(m,n) has a hamiltonian path from any corner vertex v to any other vertex with the same color as v.

Lemma 2. [5] Let two vertices s, t have different color each other. (a) If $m, n \ge 4$ and mn is even, then M(m, n) has a hamiltonian path joining s and t. (b) If $m = 2, n \ge 3$, and $s, t \notin C(k)(2 \le k \le n - 1)$, then M(m, n) has a hamiltonian path joining s and t.

Lemma 3. (a) For $m \ge 2, n \ge 3$ odd, $P_m \times C_n$ is hamiltonian-connected and 1-fault hamiltonian[1]. (b) For $m \ge 2, n \ge 4$ even, $P_m \times C_n$ is 1-fault strongly hamiltonian-laceable[2].

Let P and Q be two vertex-disjoint paths (a_1, a_2, \dots, a_k) and (b_1, b_2, \dots, b_l) in a graph G, respectively, such that (a_i, b_1) and (a_{i+1}, b_l) are edges in G. If we replace (a_i, a_{i+1}) with (a_i, b_1) and (a_{i+1}, b_l) , then P and Q are merged into a single path $(a_1, a_2, \dots, a_i, b_1, b_2, \dots, b_l, a_{i+1}, \dots, a_k)$. We call such a replacement a *merge* of P and Q w.r.t. (a_i, b_1) and (a_{i+1}, b_l) . If P is a closed path(that is, a cycle), the merge operation results in a single cycle. We denote by V(P) the set of vertices on a path P.

To show the fault hamiltonicity of $M_2(m, n)$, we first show some hamiltonian properties of $M_1(m, n)$ which has a single wraparound edge on the first row in M(m, n). An $M_1(m, n)$ has two corner vertices v_1^m and v_n^m .

Lemma 4. For $m \ge 2$, $n \ge 3$ odd, $M_1(m, n)$ has a hamiltonian path between any corner vertex s and any other vertex t.

Proof. The proof is by induction on m. Without loss of generality, we assume that $s = v_1^m$. First, we observe that the lemma holds for m = 2. For $t \in B$, there exists a hamiltonian path by Lemma 1; otherwise we can construct a hamiltonian path $P = (s, v_1^1, H[v_n^1, t|C(2:n)])$. By Lemma 1, $H[v_n^1, t|C(2:n)]$ exists.

For $m \ge 3$, we assume that the lemma is true for every k < m. The proof is divided into two cases.

Case 1: $t \in R(1:m-1)$. When $t \neq v_n^{m-1}$, we can construct a hamiltonian path $P = (s, v_2^m \to v_n^m, H[v_n^{m-1}, t|R(1:m-1)])$. By induction hypothesis, $H[v_n^{m-1}, t|R(1:m-1)]$ exists. When $t = v_n^{m-1}, P = (s, v_1^{m-1} \to v_1^1, H[s', t|C(2:n)])$, where s' is v_n^1 if m is odd; s' is v_2^1 if m is even.

Case 2: $t \in R(m)$. Let $t = v_i^m$. By induction hypothesis, there exists a hamiltonian path P' joining v_{i-1}^{m-1} and v_n^{m-1} in $G \langle R(1:m-1) \rangle$. We construct a hamiltonian path $P = (s, v_2^m \to v_{i-1}^m, P', v_n^m, v_{n-1}^m \to t)$.

In the following lemmas, we just summarize the results and omit the proofs.

Lemma 5. For $m \ge 2, n \ge 4$ even, $M_1(m, n)$ is strongly hamiltonian laceable.

Lemma 6. For $m \ge 2, n \ge 4$ even, $M_1(m, n)$ with a single faulty vertex v_f has an L^{opt} -path joining a corner vertex s and any other vertex t if s has a different color from v_f and at most one of v_f and t is adjacent to s.

3 Hamiltonian properties of $M_2(m, n)$

3.1 $M_2(m,n)$ with odd n

When n is odd, $M_2(m, n)$ is not bipartite. We show that $M_2(m, n)$ is hamiltonianconnected and 1-fault hamiltonian.

Theorem 1. For $m \ge 2, n \ge 3$ odd, $M_2(m, n)$ is hamiltonian-connected.

Proof. The proof is by induction on m. $M_2(2, n)$ is isomorphic to $P_2 \times C_n$. Thus, the theorem is true by Lemma 3 when m = 2. For $m \ge 3$, we assume that the theorem is true for every k < m. Let $s = v_i^x$, $t = v_j^y$. We show that $M_2(m, n)$ has a hamiltonian path P between s and t. The proof is divided into two cases.

Case 1: $s, t \in R(1:m-1)$. If we assume that a virtual edge (v_1^{m-1}, v_n^{m-1}) exists, then there exists a hamiltonian path P' joining s and t in $G \langle R(1:m-1) \rangle$ by induction hypothesis. If P' passes through the edge (v_1^{m-1}, v_n^{m-1}) , then we can construct a hamiltonian path P by replacing (v_1^{m-1}, v_n^{m-1}) with a path $(v_1^{m-1}, v_1^m \to v_n^m, v_n^{m-1})$; otherwise we choose an edge (u, v) in $G \langle R(m-1) \rangle$ such that P' includes it. Let u' and v' be the vertices in R(m) adjacent to u and v, respectively. Since $\langle R(m) \rangle$ forms a cycle, it has a hamiltonian path P'' joining u' and v'. By a merge of P' and P'' w.r.t. (u, u') and (v, v'), we have a hamiltonian path.

Case 2: $s \in R(1:m-1)$ and $t \in R(m)$. When $s \in R(2:m-1)$, this case is symmetric to Case 1. Thus, we only consider the case that $s \in R(1)$.

Case 2.1: m = 3. If either s or t is on the first column or the last column, then there exist a hamiltonian path by Lemma 4. Otherwise(that is, $s, t \in C(2 : n - 1)$), by Lemma 1 and Lemma 2, we can construct a hamiltonian path P as follows:

(i) $s,t \in W, P = (s, v_{i+1}^1 \to v_n^1, v_1^1 \to v_{i-1}^1, H[v_{i-1}^2, v_1^3|R(2:3)] \cap C(1:j-1)], H[v_n^3, t|R(2:3) \cap C(j:n)]).$

(ii) $s \in B$ and $t \in W$, $P = (H[s, v_1^3 | C(1:i)], H[v_n^3, t | C(i+1:n)]).$ (iii) $s, t \in B$,

$$P = \begin{cases} (H[s, v_{i+1}^1 | C(1:i+1)], H[v_{i+2}^1, t| C(i+2:n)]) & \text{if } i \neq j \\ (s, H[v_{i-1}^1, v_{i-1}^2 | C(1:i-1)], v_i^2, H[v_{i+1}^2, v_{i+1}^3 | C(i+1:n)], t) & \text{if } i = j \end{cases}$$

Case 2.2: $m \ge 4$. By Lemma 4, there exist two paths $P' = (H[s, v_1^{m-2}|R(1: m-2)])$ and $P'' = (H[v_1^{n-1}, t|R(m-1:m)])$. (P', P'') forms a hamiltonian path.

Theorem 2. For $m \ge 2, n \ge 3$ odd, $M_2(m, n)$ is 1-fault hamiltonian.

Proof. We prove by induction on m. Due to Lemma 3, the theorem holds for m = 2. For $m \ge 3$, we assume that the theorem is true for every k < m, and we consider $M_2(m, n)$. Without loss of generality, we assume that the faulty element is contained in $G \langle R(1 : m - 1) \rangle$.

If we assume that a virtual edge (v_1^{m-1}, v_n^{m-1}) exists, then there exists a fault-free hamiltonian cycle C' in $G \langle R(1:m-1) \rangle$ by induction hypothesis. If

C' passes through (v_1^{m-1}, v_n^{m-1}) , then we can construct a hamiltonian cycle C by replacing (v_1^{m-1}, v_n^{m-1}) with a path $(v_1^{m-1}, v_1^m \to v_n^m, v_n^{m-1})$; If C' does not pass through (v_1^{m-1}, v_n^{m-1}) , we choose an edge (u, v) in $G \langle R(m-1) \rangle$ such that C' includes it. Let u' and v' be the vertices in R(m) adjacent to u and v, respectively. Since $G \langle R(m) \rangle$ forms a cycle, it has a hamiltonian path P' joining u' and v'. By a merge of C' - (u, v) and P' w.r.t. (u, u') and (v, v'), we have a fault-free hamiltonian cycle C.

3.2 $M_2(m,n)$ with even n

When n is even, $M_2(m,n)$ is bipartite. First, we show that $M_2(m,n)$ with a single faulty vertex is strongly hamiltonian-laceable.

Lemma 7. For $n \ge 4$ even, $M_2(3,n)$ with a single faulty vertex is strongly hamiltonian laceable.

Proof. L^{opt} -paths can be constructed for all cases: i) $s, t \in R(1:2)$, ii) $s \in R(1:2)$, $t \in R(3)$, iii) $s, t \in R(3)$. The details are omitted.

Lemma 8. For $m \ge 2, n \ge 4$ even, $M_2(m, n)$ with a single faulty vertex is strongly hamiltonian laceable.

Proof. The proof is by induction on m. For m = 2 and m = 3, the lemma is true by Lemma 3 and Lemma 7, respectively. For $m \ge 4$, we assume that the lemma holds for every k < m, and we consider $M_2(m, n)$. Let $s = v_i^x$, $t = v_j^y$. Without loss of generality, we assume that a faulty vertex $v_f \in W$ and $v_f \in R(1:m-2)$.

Case 1: $s, t \in R(1 : m - 1)$. Similar to Case 1 in Theorem 1, we can constructed an L^{opt} -path.

Case 2: $s \in R(1:m-1)$ and $t \in R(m)$.

Case 2.1: $s \in R(1:m-2)$. We choose a black vertex s' which is one of the two vertices v_1^{m-2} and v_n^{m-2} . If s = s' or s' is adjacent to both v_f and s, then let s' be the black vertex in $R(m-2) \cap C(2:n-1)$. There exists an L^{opt} -path P' joining s and s' in $G \langle R(1:m-2) \rangle$ as follows. When either s or s' is v_n^{m-2} (resp. v_1^{m-2}) and m is even(resp. odd), P' exists by Lemma 6. Otherwise P' can be constructed as follows:

$$P' = \begin{cases} (H[s, v_{n-1}^1 | R(1:m-3) \cap C(n-1:n)], \\ H[v_{n-2}^1, s' | R(1:m-2) \cap C(1:n-2)]) & \text{ if } m \text{ is even} \\ (H[s, v_1^1 | R(1:m-3) \cap C(1:2)], \\ H[v_n^1, s' | R(1:m-2) \cap C(3:n)]) & \text{ if } m \text{ is odd} \end{cases}$$

Let t' be the vertex in R(m-1) adjacent to s'. By Lemma 5, there exists an L^{opt} -path P'' joining t' and t in G(R(m-1:m)). P' and P'' form an L^{opt} -path.

Case 2.2: $s \in R(m-1)$. If v_f is in R(2:m-2), then this case is symmetric to Case 1. Thus, we only consider the case that $v_f \in R(1)$. We choose two vertices u and v as follows. When $s, t \in B$, let $u = v_2^{m-2}$ and $v = v_n^{m-2}$ if m is even; otherwise $u = v_1^{m-2}$ and $v = v_{n-1}^{m-2}$. When at least one of s or t is white, $u = v_1^{m-2}$ and $v = v_n^{m-2}$. Let u' and v' be the vertices in R(m-1) adjacent

to u and v, respectively. By Lemma 6, there exists an L^{opt} -path P' joining u and v in G(R(1:m-2)). Let P'' and P''' be two vertex-disjoint paths in G(R(m-1:m)) such that $V(P'') \cup V(P''') = R(m-1:m)$ and they are joining s and u', v' and t, or s and v', u' and t, respectively. We can construct an L^{opt} -path P = (P'', P', P'''). P'' and P''' can be constructed as follows:

Without loss of generality, we assume that m is even.

Case 2.2.1 $i \leq j$. (i) $s, t \in B$,

$$P'' = \begin{cases} (s, u') & \text{if } t \in C(2) \\ (H[s, u'|C(1:i) \cap R(m-1:m)]) & \text{if } t \in C(3:n) \\ (H[v', v_n^m|C(3:n) \cap R(m-1:m)], v_1^m, t) & \text{if } t \in C(2) \\ (H[v', t|C(i+1:n) \cap R(m-1:n)]) & \text{if } t \in C(3:n) \end{cases}$$

- (ii) $s \in W$ and $t \in B$, $P'' = (H[s, u'|C(1:i) \cap R(m-1:m)])$ and $P''' = (H[v', t|C(i+1:n) \cap R(m-1:m)]).$ (iii) $s \in B$ and $t \in W$, $P'' = (s, v_{i-1}^{m-1} \to u')$ and

 $P''' = (H[v', v_n^m | C(j+1:n) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(i+1:m)] = (H[v', v_n^m | C(j+1:n) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:n) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)], v_1^m \to v_i^m, H[v_{i+1}^m, t| C(j+1:m) \cap R(m-1:m)] = (H[v', v_n^m | C(j+1:m) \cap R(m-1:m)])$ $j) \cap R(m-1:m)]).$

(iv) $s, t \in W$. $P'' = (H[s, v'|C(1:j-1) \cap R(m-1:m)])$ and

 $P''' = (H[v', v_{j+1}^y | C(j+1:n) \cap R(m-1:m)], t).$

Case 2.2.2 i > j. Similar to Case 2.2.1, P'' and P''' can be constructed. The details of P'' and P''' are omitted.

Case 3: $s, t \in R(m)$. If v_f is in R(2:m-2), then this case is symmetric to Case 1. Thus, we only consider the case that $v_f \in R(1)$. The same way as Case 2.2, we can construct an L^{opt} -path P except the case that $s \in B$ and $t \in W$. We only show the case that $s \in B$ and $t \in W$. An L^{opt}-path P' in G(R(1:m-2)) can be obtained by using the same way as Case 2.2, and two vertex-disjoint paths P'' and P''' in $G\langle R(m-1:m)\rangle$ can be constructed as follows: $P'' = (H[s, v_{j-1}^{m-1} | C(i:j-1) \cap R(m-1:m)], v_j^{m-1} \to v')$ and $P''' = (H[s, v_{j-1}^{m-1} | C(i:j-1) \cap R(m-1:m)], v_j^{m-1} \to v')$ $(H[u', v_1^m | C(1:i-1) \cap R(m-1:m)], v_n^m \to t). (P'', P'', P''')$ forms an L^{opt} path.

Lemma 9. For $m \ge 2, n \ge 4$ even, $M_2(m, n)$ with a single faulty edge is hamiltonian laceable.

Proof. We prove by induction on m. Due to Lemma 3, the lemma holds for m = 2. For $m \ge 3$, we assume that the lemma is true for every k < m, and we consider $M_2(m,n)$. There exists a hamiltonian path by Lemma 2, if e_f is one of (v_1^1, v_n^1) and (v_1^m, v_n^m) . Let $s = v_i^x$ and $t = v_i^y$. Without loss of generality, we assume that the faulty edge $e_f \in G \langle R(1:m-1) \rangle$.

Case 1: $s,t \in R(1 : m - 1)$. Similarly to Case 1 in Theorem 1, we can construct an L^{opt} path.

Case 2: $s \in R(1:m-1)$ and $t \in R(m)$. Case 2.1: $e_f = (v_k^z, v_k^{z+1})$. When x > z, there exists a hamiltonian path P'joining s and t in G(R(z+1:m)) by Lemma 5. We choose an edge (u,v) in G(R(z+1)) such that P' includes it and neither u nor v is v_k^{z+1} . Let u' and v' be the vertices in R(z) adjacent to u and v, respectively. By Lemma 5, there exists a hamiltonian path P'' joining u and v in G(R(1:z)). By a merge of P'

and P'' w.r.t. (u, u') and (v, v'), we have a hamiltonian path P. When $x \leq z$, we choose a vertex s' in R(z) such that s' has a different color from s and is not v_k^z . Let t' be the vertex in G(R(z+1)) adjacent to s'. By Lemma 5, we can construct a hamiltonian path P = (H[s, s'|R(1:z)], H[t', t|R(z+1:m)]).

Case 2.2: $e_f = (v_k^z, v_{k+1}^z)$. Without loss of generality, P can be constructed according to the three cases. (i) $i \leq k < j$, (ii) $i \leq j \leq k$, and (iii) $k < i \leq j$. We only show the case that $i \leq k < j, s \in B$, and $t \in W$. Proofs of other cases are omitted.

a) For k = 1, If x > z, then $s \in B$ and $s \in C(1)$.

$$P = (s \to v_1^1, H[v_n^1, v_{j-1}^x | C(2:n) \cap R(1:x)], H[v_{j-1}^{x+1}, t | R(x+1:m)])$$

If
$$x \leq z$$
,

8

$$P = \begin{cases} (s \to v_1^m, v_2^m \to v_2^x, H[v_2^{x-1}, v_3^{x-1}|R(1:x-1)], \\ H[v_3^x, t|C(3:n) \cap R(x:m)]) & \text{if } j = n \\ (s \to v_1^m, v_n^m \to v_n^x, H[v_n^{x-1}, v_{n-1}^{x-1}|R(1:x-1)], \\ H[v_{n-1}^x, t|C(2:n-1) \cap R(x:m)]) & \text{if } j \neq n \end{cases}$$

b) For 1 < k < n - 1,

$$P = \begin{cases} (H[s, v_k^m | C(1:k)], H[v_{k+1}^m, t| C(k+1:n)]) & \text{ if } j = n \\ (H[s, v_1^m | C(1:k)], H[v_n^m, t| C(k+1:n)]) & \text{ if } j \neq n \end{cases}$$

Case 3: $s, t \in R(m)$.

Case 3.1: $e_f = (v_k^z, v_k^{z+1})$. By Lemma 5, there exists a hamiltonian path P' joining s and t in $G \langle R(z+1:m) \rangle$. We choose an edge (u, v) in $G \langle R(z+1) \rangle$ such that P' includes it and neither u nor v is v_k^{z+1} . Let u' and v' be the vertices in R(z) adjacent to u and v, respectively. In G(R(1:z)), there exists a hamiltonian path P'' joining u' and v' by Lemma 5. By a merge of P' and P'' w.r.t. (u, u')and (v, v'), we have a hamiltonian path.

Case 3.2: $e_f = (v_k^z, v_{k+1}^z)$. Without loss of generality, we assume that i < j. Case 3.2.1: $i < j \leq k$. When $s \in B$ and $t \in W$,

$$P = \begin{cases} (H[s, v_1^m | C(1:j-1) \cap R(2:m)], H[v_n^m, v_n^1 | C(k+1:n)], \\ v_1^1 \to v_{j-1}^1, H[v_j^1, t | C(j:k)]) & \text{if } m \text{ is even} \\ (H[s, v_{j-1}^2 | C(1:j-1) \cap R(2:m)], \\ H[v_j^2, v_j^1 | C(j:k) \cap R(1:m-1)], v_{j-1}^1 \to v_1^1, \\ H[v_n^1, v_{k+1}^m | C(k+1:n)], v_k^m \to t) & \text{if } m \text{ is odd} \end{cases}$$

When $s \in W$ and $t \in B$,

$$P = \begin{cases} (s \to v_1^m, H[v_n^m, v_n^1|C(k+1:n)], \\ H[v_1^1, v_1^{m-2}|C(1:k) \cap R(1:m-2)], v_1^{m-1} \to v_i^{m-1}, \\ H[v_{i+1}^{m-1}, t|C(i+1:k) \cap R(m-1:m)]) & \text{if } m \text{ is even} \\ (H[s, v_{j-1}^{m-1}|C(1:j-1) \cap R(m-1:m)], v_j^{m-1} \to v_k^{m-1}, \\ H[v_k^{m-2}, v_1^1|C(1:k) \cap R(1:m-2)], \\ H[v_n^1, v_{k+1}^m|C(k+1:n)], v_k^m \to t) & \text{if } m \text{ is odd} \end{cases}$$

Case 3.2.2: $i \leq k < j$. We can construct a hamiltonian path P as follows. When m is even, let $s' = v_1^m$ and $t' = v_n^m$ if $s \in B$; $s' = v_1^1$ and $t' = v_n^1$ if $s \in W$. When *m* is odd and $s \in B$, let $s' = v_k^m$ and $t' = v_{k+1}^m$ if *k* is even; $s' = v_1^1$ and $t' = v_n^1$ if *k* is odd. P = (H[s, s'|C(1:k)], H[t', t|C(k+1:n)]). When *m* is odd and $s \in W$, $P = (H[s, v_k^m|C(i:k)], v_{k+1}^m \to v_{k+1}^1 \to v_n^1, H[v_1^1, v_n^1|C(1:i-1)], H[v_n^n, t|C(k+2:n) \cap R(2:m)])$.

Theorem 3. For $m \ge 2, n \ge 4$ even, $M_2(m, n)$ is 1-fault strongly hamiltonian laceable.

Proof. By Lemma 8, $M_2(m, n)$ with a single faulty vertex is strongly hamiltonian laceable. By Lemma 9, $M_2(m, n)$ with a single faulty edge has a hamiltonian path between any two vertices with different colors. It remains to show that there is an L^{opt} -path (of length mn - 2) joining every pair of vertices s and t with the same color. Let (u, v) be the faulty edge. Without loss of generality, we assume that $u \in B$ and $v \in W$. When s and t are black, we can find an L^{opt} -path P between s and t regarding v as a faulty vertex by using Lemma 8. P does not pass through (u, v) as well as v, and the length of P is mn - 2. Thus, P is a desired L^{opt} -path. In a similar way, we can construct an L^{opt} -path for a pair of white vertices. □

4 Fault hamiltonicity of Hypercubes

An *n*-dimensional hypercube, denoted by Q_n , consists of 2^n vertices that can be represented in the form of binary strings, $b_n b_{n-1} \dots b_1$. Two vertices are adjacent if and only if their labels differ in exactly one bit. An edge is referred to as an *i*dimension edge if the vertices it connects differ in bit position *i*. A *k*-dimensional subcube in Q_n is represented by a string of *n* symbols over set $\{0, 1, *\}$, where *is a *don't care* symbol, such that there are exactly *k* *'s in the string.

Lemma 10. For $f_e \leq n-3$ and $1 \leq r \leq n-f_e-2$, Q_n with f_e faulty edges has $M_2(2^r, 2^{n-r})$ as a spanning subgraph.

Proof. Let $D = \{1, 2, ..., n\}$ be the set of dimensions in Q_n , $D_f = \{f_1, f_2, ..., f_i\}$ be the set of dimensions which contain faulty edges, and $D_s = D - D_f = \{s_1, s_2, ..., s_j\}$. Since $f_e \leq n-3$, we have $|D_s| \geq 3$.

If we replace $b_{s_1}, b_{s_2}, ..., b_{s_r}$ bits of each vertex label in Q_n by '*', then Q_n can be partitioned into 2^{n-r} r-subcubes and theses subcubes form Q_{n-r} by replacing each subcube as a vertex. We denote such a graph by a condensation graph $Q_{n-r}^{\mathcal{C}}$ of Q_n . Let u, v be the vertices in Q_n , and $\mathcal{C}_u, \mathcal{C}_v$ be the components containing u and v, respectively. We assume that an edge $(\mathcal{C}_u, \mathcal{C}_v)$ of $Q_{n-r}^{\mathcal{C}}$ is faulty if (u, v) is faulty. For all $n \geq 2$, Q_n with n-2 faulty edges has a hamiltonian cycle[11]. Since $f_e \leq n-r-2$, there exists a hamiltonian cycle in $Q_{n-r}^{\mathcal{C}}$. Let $C = (x_1, x_2, ..., x_d, ..., x_{2^{n-r}}, x_1)$ be a hamiltonian cycle in $Q_{n-r}^{\mathcal{C}}$, where $1 \leq d \leq 2^{n-r}$. Each vertex of Q_n can be mapped to v_d^k of $M_2(m, n)$ as follows:

In $b_n b_{n-1} \dots b_1$ of each vertex label of Q_n ,

- (i) $b_{s_1}b_{s_2}...b_{s_r}$ is the *k*-th sequence of *r*-bit Gray code, and
- (ii) (n-r)-bits (except $b_{s_1}, b_{s_2}, ..., b_{s_r}$ bits) represent the label of the *d*-th vertex in *C*.

Thus, Q_n has fault-free $M_2(2^r, 2^{n-r})$ as a spanning subgraph.

10 K.-W. Park, H.-S. Lim, J.-H. Park, and H.-C. Kim

By applying fault-hamiltonicity of $M_2(m, n)$ to a hypercube, we have the following theorem.

Theorem 4. Q_n with $f \leq n-2$ and $f_v \leq 1$ is strongly hamiltonian laceable.

5 Conclusion

In this paper, we considered the fault hamiltonian properties of $m \times n$ meshes with two wraparound edges in the first row and the last row. We showed that $M_2(m, n)$ with odd n is hamiltonian-connected and 1-fault hamiltonian. $M_2(m, n)$ has these hamiltonian properties by adding minimum edges to an $m \times n$ mesh. For $n \ge 4$ even, we showed that $M_2(m, n)$ is 1-fault strongly hamiltonian laceable. By applying fault hamiltonicity of $M_2(m, n)$ to a hypercube, we obtained that Q_n with at most n-2 faulty elements and at most one faulty vertex is strongly hamiltonian laceable. Also, our results can be applied to the fault hamiltonian properties of other interconnection networks which has $M_2(m, n)$ as a spanning subgraph.

References

- C.-H. Tsai, J. M. Tan, Y. C. Chuang and L.-H. Hsu, Fault-free cycles and links in faulty recursive circulant graphs, Proceedings of the 2000 International Computer Symposium: Workshop on Computer Algorithms and Theory of Computation (2000) 74–77.
- J.-H. Park and H.-C. Kim, Fault hamiltonicity of product graph of path and cycle, International Computing and Combinatorics Conference(COCOON) (2003) 319– 328.
- G. Simmons, Almost all n-dimensional rectangular lattices are Hamilton laceable, Congressus Numerantium 21 (1978) 103–108.
- S. Y. Hsieh, G. H. Chen and C. W. Ho, Hamiltonian-laceability of star graphs, Networks 36 (2000) 225–232.
- A. Itai, C. H. Papadimitriou and J. L. Czwarcfiter, Hamiltonian paths in grid graphs. SIAM Journal of Computing 11 (4) (1982) 676–686.
- S. D. Chen, H. Shen and R. W. Topor, An efficient algorithm for constructing hamiltonian paths in meshes, Parallel Computing 28 (2002) 1293–1305.
- J. S. Kim, S. R. Maeng and H. Yoon, Embedding of rings in 2-D meshes and tori with faulty nodes, Journal of Systems Architecture 43 (1997) 643–654.
- M. Lewinter and W. Widulski, Hyper-hamilton laceable and caterpillar-spannable product graphs, Computer Math. Applic. 34 (11) (1997) 99–104.
- C.-H. Tsai, J. M. Tan, T. Lian and L.-H. Hsu, Fault-tolerant hamiltonian laceability of hypercubes, Information Processing Letters 83 (2002) 301–306.
- C. C. Chen and N. F. Quimpo, On strongly Hamiltonian abelian group graphs. Combinatorial Mathematics VIII. Lecture Notes in Mathematics 884 (1980) 23–34.
- S. Latifi, S. Zheng, N. Bagherzadeh, Optimal ring embedding in hypercubes with faulty links, International Symposium on Fault-Tolerant Computing(FTCS) (1992) 178–184.