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Abstract. We consider the fault hamiltonian properties of m×n meshes
with two wraparound edges in the first row and the last row, denoted
by M2(m, n), m ≥ 2, n ≥ 3. M2(m, n) is a spanning subgraph of Pm ×
Cn which has interesting fault hamiltonian properties. We show that
M2(m, n) with odd n is hamiltonian-connected and 1-fault hamiltonian.
For even n, M2(m, n), which is bipartite, with a single faulty element is
shown to be 1-fault strongly hamiltonian-laceable. In previous works[1,
2], it was shown that Pm×Cn also has these hamiltonian properties. Our
result shows that two additional wraparound edges are sufficient for an
m × n mesh to have such properties rather than m wraparound edges.
As an application of fault-hamiltonicity of M2(m, n), we show that the
n-dimensional hypercube is strongly hamiltonian laceable if there are at
most n− 2 faulty elements and at most one faulty vertex.

1 Introduction

Meshes represent the communication structures of many applications in scien-
tific computations as well as the topologies of many large-scale interconnection
networks. One of the central issues in parallel processing is embedding of linear
arrays and rings into a faulty interconnection network. The embedding is closely
related to a hamiltonian problem in graph theory.

An interconnection network is often modeled as an undirected graph, in which
vertices and edges correspond to nodes and links, respectively. A graph G is called
hamiltonian-connected if there exists a hamiltonian path joining every pair of ver-
tices in G. We consider the hamiltonian properties of a graph in the presence of
faulty elements(vertices and/or edges). A graph G is called k-fault hamiltonian
? This work was supported by grant No. R01-2003-000-11676-0 from the Basic Re-
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(resp. k-fault hamiltonian-connected) if G − F has a hamiltonian cycle (resp. a
hamiltonian path joining every pair of vertices) for any set F of faulty elements
such that |F | ≤ k. Apparently, a bipartite graph is not hamiltonian-connected.
In [3], the concept of hamiltonian laceability for hamiltonian bipartite graphs
was introduced. Bipartition sets of a bipartite graph are often represented as
sets of black and white vertices. A bipartite graph G is hamiltonian-laceable if
there is a hamiltonian path joining every pair of vertices with different colors. In
[4], this concept was extended into strongly hamiltonian laceability. A hamilto-
nian laceable graph G with N vertices is strong if there is a path of length N −2
joining every pair of vertices with the same color.

For any faulty set F such that |F | ≤ k, a bipartite graph G which has an
Lopt-path joining every pair of fault-free vertices is called k-fault strongly hamil-
tonian laceable[2]. An Lopt-path is defined as follows. Let G be a bipartite graph
and let B and W be the sets of black and white vertices in G, respectively. De-
note by Fv and Fe the sets of faulty vertices and edges in G, respectively. Let
F = Fv ∪ Fe, fv = |Fv|, fe = |Fe|, and f = |F |. The numbers of fault-free black
and white vertices are denoted by nb and nw, respectively. When nb = nw, a
fault-free path of length 2nb− 1 joining a pair of vertices with different colors is
called an Lopt-path. For a pair of vertices with the same color, a fault-free path
of length 2nb− 2 between them is called an Lopt-path. When nb > nw, fault-free
paths of length 2nw for a pair of black vertices, of length 2nw − 1 for a pair of
vertices with different colors, and of length 2nw − 2 for a pair of white vertices,
are called Lopt-paths. Similary, an Lopt-path can be defined when nw > nb. A
fault-free cycle of length 2·min{nb, nw} is called an Lopt-cycle. The lengths of an
Lopt-path and an Lopt-cycle are the largest possible.

Fault hamiltonicity of various interconnection networks has been investi-
gated. In [5] and [6], linear-time algorithms that find hamiltonian paths in m×n
meshes were developed . In [7] and [8], the fault hamiltonian properties of m×n
torus and Pm × Cn were considered, where Pm × Cn is a graph obtained by
product of a path Pm with m vertices and a cycle Cn with n vertices. Pm × Cn

forms an m× n mesh with a wraparound edge in each row. Futhermore, it was
shown that Pm × Cn is hamiltonian-connected and 1-fault hamiltonian if it is
not bipartite[1]; otherwise, Pm × Cn is 1-fault strongly hamiltonian laceable[2].

In this paper, we consider the hamiltonian properties of m × n mesh (m ≥
2, n ≥ 3) with two wraparound edges in the first row and the last row. We de-
note the graph by M2(m,n). We show that M2(m,n) with odd n is hamiltonian-
connected and 1-fault hamiltonian. For a graph G to be hamiltonian-connected,
G should be non-bipartite and δ(G) ≥ 3, where δ(G) is the minimum degree of G.
For a graph G to be k-fault hamiltonian, it is necessary that k ≤ δ(G)−2. Thus,
M2(m,n) with odd n satisfies the above condition by adding two(minimum)
edges to an m×n mesh. Futhermore, for n even, we show that M2(m,n), which
is bipartite, with a single faulty element is strongly hamiltonian laceable. In
previous works[1, 2], it was shown that Pm × Cn also has these hamiltonian
properties. Our result shows that two additional wraparound edges are sufficient
for an m× n mesh to have such properties rather than m wraparound edges.
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(a) M1(3, 5) (b) M2(3, 6)

Fig. 1. Examples of M1(m, n) and M2(m, n)

For some m and n, M2(m,n) is a spanning subgraph of many interconnec-
tion networks such as tori, hypercubes, k-ary n-cubes, double loop networks, and
recursive circulants. Thus, our results can be applied to discover the fault hamil-
tonicity of such interconnection networks. It was shown in [9] that n-dimensional
hypercube Qn with n − 2 faulty edges is strongly hamiltonian laceable. By ap-
plying fault hamiltonicity of M2(m,n), we show that Qn with at most n − 2
faulty elements and at most one faulty vertex is strongly hamiltonian laceable.

2 Preliminaries

Let M(m,n) = (V, E) be an m × n mesh, where the vertex set V is {vi
j |1 ≤

i ≤ m, 1 ≤ j ≤ n} and the edge set E is {(vi
j , v

i
j+1)|1 ≤ i ≤ m, 1 ≤ j <

n} ∪ {(vi
j , v

i+1
j )|1 ≤ i < m, 1 ≤ j ≤ n}. We propose a graph which has two

wraparound edges in the first row and the last row in M(m, n).

Definition 1. Let M(m,n) = (V, E). M2(m,n) is defined as (VM2 , EM2), where
the vertex set VM2 = V and the edge set EM2 = E ∪ {(v1

1 , v1
n), (vm

1 , vm
n )}.

The vertices of M2(m, n) are colored with black and white as follows: vi
j is

called a black vertex if i + j is even; otherwise it is a white vertex. We denote by
R(i) and C(j) the vertices in row i and column j, respectively. That is, R(i) =
{vi

j |1 ≤ j ≤ n} and C(j) = {vi
j |1 ≤ i ≤ m}. We let R(i : j) = ∪i≤k≤jR(k) if

i ≤ j; otherwise R(i : j) = ∅. Similarly, C(i : j) = ∪i≤k≤jC(k) if i ≤ j; otherwise
C(i : j) = ∅.

We denote by H[s, t|X] a hamiltonian path from s to t in the subgraph
G 〈X〉 induced by a vertex set X, if any. A path is represented as a sequence of
vertices. If X is an empty set, H[s, t|X] is an empty sequence. We denote by vi

j →
vi

j′ a path (vi
j , v

i
j+1, · · · , vi

j′−1, v
i
j′) if j < j′; otherwise, (vi

j , v
i
j−1, · · · , vi

j′+1, v
i
j′).

Similary, vi
j → vi′

j a path from vi
j to vi′

j in the subgraph G 〈C(j)〉. We employ
three lemmas on the hamiltonian properties of M(m,n) and Pm × Cn. We call
a vertex in a mesh a corner vertex if it is of degree two.

Lemma 1. [10] (a) If mn is even, then M(m,n) has a hamiltonian path from
any corner vertex v to any other vertex with color different from v. (b) If mn
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is odd, then M(m,n) has a hamiltonian path from any corner vertex v to any
other vertex with the same color as v.

Lemma 2. [5] Let two vertices s, t have different color each other. (a) If m,n ≥
4 and mn is even, then M(m,n) has a hamiltonian path joining s and t. (b) If
m = 2, n ≥ 3, and s, t /∈ C(k)(2 ≤ k ≤ n− 1), then M(m,n) has a hamiltonian
path joining s and t.

Lemma 3. (a) For m ≥ 2, n ≥ 3 odd, Pm × Cn is hamiltonian-connected and
1-fault hamiltonian[1]. (b) For m ≥ 2, n ≥ 4 even, Pm × Cn is 1-fault strongly
hamiltonian-laceable[2].

Let P and Q be two vertex-disjoint paths (a1, a2, · · · , ak) and (b1, b2, · · · , bl)
in a graph G, respectively, such that (ai, b1) and (ai+1, bl) are edges in G. If we
replace (ai, ai+1) with (ai, b1) and (ai+1, bl), then P and Q are merged into a sin-
gle path (a1, a2, · · · , ai, b1, b2, · · · , bl, ai+1, · · · , ak). We call such a replacement
a merge of P and Q w.r.t. (ai, b1) and (ai+1, bl). If P is a closed path(that is, a
cycle), the merge operation results in a single cycle. We denote by V (P ) the set
of vertices on a path P .

To show the fault hamiltonicity of M2(m,n), we first show some hamiltonian
properties of M1(m,n) which has a single wraparound edge on the first row in
M(m,n). An M1(m,n) has two corner vertices vm

1 and vm
n .

Lemma 4. For m ≥ 2, n ≥ 3 odd, M1(m,n) has a hamiltonian path between
any corner vertex s and any other vertex t.

Proof. The proof is by induction on m. Without loss of generality, we assume
that s = vm

1 . First, we observe that the lemma holds for m = 2. For t ∈ B, there
exists a hamiltonian path by Lemma 1; otherwise we can construct a hamiltonian
path P = (s, v1

1 ,H[v1
n, t|C(2 : n)]). By Lemma 1, H[v1

n, t|C(2 : n)] exists.
For m ≥ 3, we assume that the lemma is true for every k < m. The proof is

divided into two cases.
Case 1: t ∈ R(1 : m− 1). When t 6= vm−1

n , we can construct a hamiltonian
path P = (s, vm

2 → vm
n , H[vm−1

n , t|R(1 : m − 1)]). By induction hypothesis,
H[vm−1

n , t|R(1 : m−1)] exists. When t = vm−1
n , P = (s, vm−1

1 → v1
1 ,H[s′, t|C(2 :

n)]), where s′ is v1
n if m is odd; s′ is v1

2 if m is even.
Case 2: t ∈ R(m). Let t = vm

i . By induction hypothesis, there exists a
hamiltonian path P ′ joining vm−1

i−1 and vm−1
n in G 〈R(1 : m− 1)〉. We construct

a hamiltonian path P = (s, vm
2 → vm

i−1, P
′, vm

n , vm
n−1 → t). ut

In the following lemmas, we just summarize the results and omit the proofs.

Lemma 5. For m ≥ 2, n ≥ 4 even, M1(m,n) is strongly hamiltonian laceable.

Lemma 6. For m ≥ 2, n ≥ 4 even, M1(m,n) with a single faulty vertex vf has
an Lopt-path joining a corner vertex s and any other vertex t if s has a different
color from vf and at most one of vf and t is adjacent to s.
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3 Hamiltonian properties of M2(m, n)

3.1 M2(m, n) with odd n

When n is odd, M2(m,n) is not bipartite. We show that M2(m, n) is hamiltonian-
connected and 1-fault hamiltonian.

Theorem 1. For m ≥ 2, n ≥ 3 odd, M2(m,n) is hamiltonian-connected.

Proof. The proof is by induction on m. M2(2, n) is isomorphic to P2×Cn. Thus,
the theorem is true by Lemma 3 when m = 2. For m ≥ 3, we assume that the
theorem is true for every k < m. Let s = vx

i , t = vy
j . We show that M2(m,n)

has a hamiltonian path P between s and t. The proof is divided into two cases.
Case 1: s, t ∈ R(1 : m − 1). If we assume that a virtual edge (vm−1

1 , vm−1
n )

exists, then there exists a hamiltonian path P ′ joining s and t in G 〈R(1 : m− 1)〉
by induction hypothesis. If P ′ passes through the edge (vm−1

1 , vm−1
n ), then we

can construct a hamiltonian path P by replacing (vm−1
1 , vm−1

n ) with a path
(vm−1

1 , vm
1 → vm

n , vm−1
n ); otherwise we choose an edge (u, v) in G 〈R(m− 1)〉

such that P ′ includes it. Let u′ and v′ be the vertices in R(m) adjacent to u
and v, respectively. Since 〈R(m)〉 forms a cycle, it has a hamiltonian path P ′′

joining u′ and v′. By a merge of P ′ and P ′′ w.r.t. (u, u′) and (v, v′), we have a
hamiltonian path.

Case 2: s ∈ R(1 : m− 1) and t ∈ R(m). When s ∈ R(2 : m− 1), this case is
symmetric to Case 1. Thus, we only consider the case that s ∈ R(1).

Case 2.1: m = 3. If either s or t is on the first column or the last column,
then there exist a hamiltonian path by Lemma 4. Otherwise(that is, s, t ∈ C(2 :
n− 1)), by Lemma 1 and Lemma 2, we can construct a hamiltonian path P as
follows:

(i) s, t ∈ W , P = (s, v1
i+1 → v1

n, v1
1 → v1

i−1, H[v2
i−1, v

3
1 |R(2 : 3)] ∩ C(1 : j −

1)],H[v3
n, t|R(2 : 3) ∩ C(j : n)]).

(ii) s ∈ B and t ∈ W , P = (H[s, v3
1 |C(1 : i)],H[v3

n, t|C(i + 1 : n)]).
(iii) s, t ∈ B,

P =
{

(H[s, v1
i+1|C(1 : i + 1)],H[v1

i+2, t|C(i + 2 : n)]) if i 6= j
(s, H[v1

i−1, v
2
i−1|C(1 : i− 1)], v2

i ,H[v2
i+1, v

3
i+1|C(i + 1 : n)], t) if i = j

Case 2.2: m ≥ 4. By Lemma 4, there exist two paths P ′ = (H[s, vm−2
1 |R(1 :

m − 2)]) and P ′′ = (H[vn−1
1 , t|R(m − 1 : m)]). (P ′, P ′′) forms a hamiltonian

path. ut
Theorem 2. For m ≥ 2, n ≥ 3 odd, M2(m,n) is 1-fault hamiltonian.

Proof. We prove by induction on m. Due to Lemma 3, the theorem holds for
m = 2. For m ≥ 3, we assume that the theorem is true for every k < m, and we
consider M2(m,n). Without loss of generality, we assume that the faulty element
is contained in G 〈R(1 : m− 1)〉.

If we assume that a virtual edge (vm−1
1 , vm−1

n ) exists, then there exists a
fault-free hamiltonian cycle C ′ in G 〈R(1 : m− 1)〉 by induction hypothesis. If



6 K.-W. Park, H.-S. Lim, J.-H. Park, and H.-C. Kim

C ′ passes through (vm−1
1 , vm−1

n ), then we can construct a hamiltonian cycle
C by replacing (vm−1

1 , vm−1
n ) with a path (vm−1

1 , vm
1 → vm

n , vm−1
n ); If C ′ does

not pass through (vm−1
1 , vm−1

n ), we choose an edge (u, v) in G 〈R(m− 1)〉 such
that C ′ includes it. Let u′ and v′ be the vertices in R(m) adjacent to u and v,
respectively. Since G 〈R(m)〉 forms a cycle, it has a hamiltonian path P ′ joining
u′ and v′. By a merge of C ′ − (u, v) and P ′ w.r.t. (u, u′) and (v, v′), we have a
fault-free hamiltonian cycle C. ut

3.2 M2(m, n) with even n

When n is even, M2(m,n) is bipartite. First, we show that M2(m,n) with a
single faulty vertex is strongly hamiltonian-laceable.

Lemma 7. For n ≥ 4 even, M2(3, n) with a single faulty vertex is strongly
hamiltonian laceable.

Proof. Lopt-paths can be constructed for all cases: i) s, t ∈ R(1 : 2), ii) s ∈ R(1 :
2), t ∈ R(3), iii) s, t ∈ R(3). The details are omitted. ut
Lemma 8. For m ≥ 2, n ≥ 4 even, M2(m,n) with a single faulty vertex is
strongly hamiltonian laceable.

Proof. The proof is by induction on m. For m = 2 and m = 3, the lemma is true
by Lemma 3 and Lemma 7, respectively. For m ≥ 4, we assume that the lemma
holds for every k < m, and we consider M2(m,n). Let s = vx

i , t = vy
j . Without

loss of generality, we assume that a faulty vertex vf ∈ W and vf ∈ R(1 : m− 2).
Case 1: s, t ∈ R(1 : m − 1). Similar to Case 1 in Theorem 1, we can con-

structed an Lopt-path.
Case 2: s ∈ R(1 : m− 1) and t ∈ R(m).
Case 2.1: s ∈ R(1 : m − 2). We choose a black vertex s′ which is one of the

two vertices vm−2
1 and vm−2

n . If s = s′ or s′ is adjacent to both vf and s, then let
s′ be the black vertex in R(m− 2) ∩ C(2 : n− 1). There exists an Lopt-path P ′

joining s and s′ in G 〈R(1 : m− 2)〉 as follows. When either s or s′ is vm−2
n (resp.

vm−2
1 ) and m is even(resp. odd), P ′ exists by Lemma 6. Otherwise P ′ can be

constructed as follows:

P ′ =





(H[s, v1
n−1|R(1 : m− 3) ∩ C(n− 1 : n)],

H[v1
n−2, s

′|R(1 : m− 2) ∩ C(1 : n− 2)]) if m is even
(H[s, v1

1 |R(1 : m− 3) ∩ C(1 : 2)],
H[v1

n, s′|R(1 : m− 2) ∩ C(3 : n)]) if m is odd

Let t′ be the vertex in R(m− 1) adjacent to s′. By Lemma 5, there exists an
Lopt-path P ′′ joining t′ and t in G 〈R(m− 1 : m)〉. P ′ and P ′′ form an Lopt-path.

Case 2.2: s ∈ R(m− 1). If vf is in R(2 : m− 2), then this case is symmetric
to Case 1. Thus, we only consider the case that vf ∈ R(1). We choose two
vertices u and v as follows. When s, t ∈ B, let u = vm−2

2 and v = vm−2
n if m is

even; otherwise u = vm−2
1 and v = vm−2

n−1 . When at least one of s or t is white,
u = vm−2

1 and v = vm−2
n . Let u′ and v′ be the vertices in R(m − 1) adjacent
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to u and v, respectively. By Lemma 6, there exists an Lopt-path P ′ joining
u and v in G 〈R(1 : m− 2)〉. Let P ′′ and P ′′′ be two vertex-disjoint paths in
G 〈R(m− 1 : m)〉 such that V (P ′′) ∪ V (P ′′′) = R(m − 1 : m) and they are
joining s and u′, v′ and t, or s and v′, u′ and t, respectively. We can construct
an Lopt-path P = (P ′′, P ′, P ′′′). P ′′ and P ′′′ can be constructed as follows:

Without loss of generality, we assume that m is even.
Case 2.2.1 i ≤ j. (i) s, t ∈ B,

P ′′ =
{

(s, u′) if t ∈ C(2)
(H[s, u′|C(1 : i) ∩R(m− 1 : m)]) if t ∈ C(3 : n)

P ′′′ =
{

(H[v′, vm
n |C(3 : n) ∩R(m− 1 : m)], vm

1 , t) if t ∈ C(2)
(H[v′, t|C(i + 1 : n) ∩R(m− 1 : n)]) if t ∈ C(3 : n)

(ii) s ∈ W and t ∈ B, P ′′ = (H[s, u′|C(1 : i) ∩R(m− 1 : m)]) and
P ′′′ = (H[v′, t|C(i + 1 : n) ∩R(m− 1 : m)]).

(iii) s ∈ B and t ∈ W , P ′′ = (s, vm−1
i−1 → u′) and

P ′′′ = (H[v′, vm
n |C(j + 1 : n) ∩ R(m − 1 : m)], vm

1 → vm
i ,H[vm

i+1, t|C(i + 1 :
j) ∩R(m− 1 : m)]).

(iv) s, t ∈ W . P ′′ = (H[s, v′|C(1 : j − 1) ∩R(m− 1 : m)]) and
P ′′′ = (H[v′, vy

j+1|C(j + 1 : n) ∩R(m− 1 : m)], t).
Case 2.2.2 i > j. Similar to Case 2.2.1, P ′′ and P ′′′ can be constructed. The

details of P ′′ and P ′′′ are omitted.
Case 3: s, t ∈ R(m). If vf is in R(2 : m − 2), then this case is symmetric

to Case 1. Thus, we only consider the case that vf ∈ R(1). The same way as
Case 2.2, we can construct an Lopt-path P except the case that s ∈ B and
t ∈ W . We only show the case that s ∈ B and t ∈ W . An Lopt-path P ′ in
G 〈R(1 : m− 2)〉 can be obtained by using the same way as Case 2.2, and two
vertex-disjoint paths P ′′ and P ′′′ in G 〈R(m− 1 : m)〉 can be constructed as
follows: P ′′ = (H[s, vm−1

j−1 |C(i : j − 1) ∩ R(m − 1 : m)], vm−1
j → v′) and P ′′′ =

(H[u′, vm
1 |C(1 : i − 1) ∩ R(m − 1 : m)], vm

n → t). (P ′′, P ′, P ′′′) forms an Lopt-
path. ut
Lemma 9. For m ≥ 2, n ≥ 4 even, M2(m,n) with a single faulty edge is hamil-
tonian laceable.

Proof. We prove by induction on m. Due to Lemma 3, the lemma holds for
m = 2. For m ≥ 3, we assume that the lemma is true for every k < m, and we
consider M2(m,n). There exists a hamiltonian path by Lemma 2, if ef is one
of (v1

1 , v1
n) and (vm

1 , vm
n ). Let s = vx

i and t = vy
j . Without loss of generality, we

assume that the faulty edge ef ∈ G 〈R(1 : m− 1)〉.
Case 1: s, t ∈ R(1 : m − 1). Similary to Case 1 in Theorem 1, we can

construct an Lopt path.
Case 2: s ∈ R(1 : m− 1) and t ∈ R(m).
Case 2.1: ef = (vz

k, vz+1
k ). When x > z, there exists a hamiltonian path P ′

joining s and t in G 〈R(z + 1 : m)〉 by Lemma 5. We choose an edge (u, v) in
G 〈R(z + 1)〉 such that P ′ includes it and neither u nor v is vz+1

k . Let u′ and
v′ be the vertices in R(z) adjacent to u and v, respectively. By Lemma 5, there
exists a hamiltonian path P ′′ joining u and v in G 〈R(1 : z)〉. By a merge of P ′
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and P ′′ w.r.t. (u, u′) and (v, v′), we have a hamiltonian path P . When x ≤ z,
we choose a vertex s′ in R(z) such that s′ has a different color from s and is
not vz

k. Let t′ be the vertex in G 〈R(z + 1)〉 adjacent to s′. By Lemma 5, we can
construct a hamiltonian path P = (H[s, s′|R(1 : z)],H[t′, t|R(z + 1 : m)]).

Case 2.2: ef = (vz
k, vz

k+1). Without loss of generality, P can be constructed
according to the three cases. (i) i ≤ k < j, (ii) i ≤ j ≤ k, and (iii) k < i ≤ j. We
only show the case that i ≤ k < j, s ∈ B, and t ∈ W . Proofs of other cases are
omitted.

a) For k = 1, If x > z, then s ∈ B and s ∈ C(1).
P = (s → v1

1 , H[v1
n, vx

j−1|C(2 : n) ∩R(1 : x)], H[vx+1
j−1 , t|R(x + 1 : m)])

If x ≤ z,

P =





(s → vm
1 , vm

2 → vx
2 ,H[vx−1

2 , vx−1
3 |R(1 : x− 1)],

H[vx
3 , t|C(3 : n) ∩R(x : m)]) if j = n

(s → vm
1 , vm

n → vx
n,H[vx−1

n , vx−1
n−1|R(1 : x− 1)],

H[vx
n−1, t|C(2 : n− 1) ∩R(x : m)]) if j 6= n

b) For 1 < k < n− 1,

P =
{

(H[s, vm
k |C(1 : k)],H[vm

k+1, t|C(k + 1 : n)]) if j = n
(H[s, vm

1 |C(1 : k)],H[vm
n , t|C(k + 1 : n)]) if j 6= n

Case 3: s, t ∈ R(m).
Case 3.1: ef = (vz

k, vz+1
k ). By Lemma 5, there exists a hamiltonian path P ′

joining s and t in G 〈R(z + 1 : m)〉. We choose an edge (u, v) in G 〈R(z + 1)〉 such
that P ′ includes it and neither u nor v is vz+1

k . Let u′ and v′ be the vertices in
R(z) adjacent to u and v, respectively. In G 〈R(1 : z)〉, there exists a hamiltonian
path P ′′ joining u′ and v′ by Lemma 5. By a merge of P ′ and P ′′ w.r.t. (u, u′)
and (v, v′), we have a hamiltonian path.

Case 3.2: ef = (vz
k, vz

k+1). Without loss of generality, we assume that i < j.
Case 3.2.1: i < j ≤ k. When s ∈ B and t ∈ W ,

P =





(H[s, vm
1 |C(1 : j − 1) ∩R(2 : m)], H[vm

n , v1
n|C(k + 1 : n)],

v1
1 → v1

j−1,H[v1
j , t|C(j : k)]) if m is even

(H[s, v2
j−1|C(1 : j − 1) ∩R(2 : m)],

H[v2
j , v1

j |C(j : k) ∩R(1 : m− 1)], v1
j−1 → v1

1 ,
H[v1

n, vm
k+1|C(k + 1 : n)], vm

k → t) if m is odd

When s ∈ W and t ∈ B,

P =





(s → vm
1 , H[vm

n , v1
n|C(k + 1 : n)],

H[v1
1 , vm−2

1 |C(1 : k) ∩R(1 : m− 2)], vm−1
1 → vm−1

i ,
H[vm−1

i+1 , t|C(i + 1 : k) ∩R(m− 1 : m)]) if m is even
(H[s, vm−1

j−1 |C(1 : j − 1) ∩R(m− 1 : m)], vm−1
j → vm−1

k ,

H[vm−2
k , v1

1 |C(1 : k) ∩R(1 : m− 2)],
H[v1

n, vm
k+1|C(k + 1 : n)], vm

k → t) if m is odd

Case 3.2.2: i ≤ k < j. We can construct a hamiltonian path P as follows.
When m is even, let s′ = vm

1 and t′ = vm
n if s ∈ B; s′ = v1

1 and t′ = v1
n if s ∈ W .
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When m is odd and s ∈ B, let s′ = vm
k and t′ = vm

k+1 if k is even; s′ = v1
1

and t′ = v1
n if k is odd. P = (H[s, s′|C(1 : k)],H[t′, t|C(k + 1 : n)]). When m

is odd and s ∈ W , P = (H[s, vm
k |C(i : k)], vm

k+1 → v1
k+1 → v1

n, H[v1
1 , v1

n|C(1 :
i− 1)],H[vm

n , t|C(k + 2 : n) ∩R(2 : m)]). ut
Theorem 3. For m ≥ 2, n ≥ 4 even, M2(m,n) is 1-fault strongly hamiltonian
laceable.

Proof. By Lemma 8, M2(m,n) with a single faulty vertex is strongly hamiltonian
laceable. By Lemma 9, M2(m,n) with a single faulty edge has a hamiltonian path
between any two vertices with different colors. It remains to show that there is
an Lopt-path (of length mn − 2) joining every pair of vertices s and t with the
same color. Let (u, v) be the faulty edge. Without loss of generality, we assume
that u ∈ B and v ∈ W . When s and t are black, we can find an Lopt-path P
between s and t regarding v as a faulty vertex by using Lemma 8. P does not
pass through (u, v) as well as v, and the length of P is mn − 2. Thus, P is a
desired Lopt-path. In a similar way, we can construct an Lopt-path for a pair of
white vertices. ut

4 Fault hamiltonicity of Hypercubes

An n-dimensional hypercube, denoted by Qn, consists of 2n vertices that can be
represented in the form of binary strings, bnbn−1...b1. Two vertices are adjacent
if and only if their labels differ in exactly one bit. An edge is referred to as an i-
dimension edge if the vertices it connects differ in bit position i. A k-dimensional
subcube in Qn is represented by a string of n symbols over set {0, 1, ∗}, where ∗
is a don’t care symbol, such that there are exactly k ∗’s in the string.

Lemma 10. For fe ≤ n − 3 and 1 ≤ r ≤ n − fe − 2, Qn with fe faulty edges
has M2(2r, 2n−r) as a spanning subgraph.

Proof. Let D = {1, 2, ..., n} be the set of dimensions in Qn, Df = {f1, f2, ..., fi}
be the set of dimensions which contain faulty edges, and Ds = D − Df =
{s1, s2, ..., sj}. Since fe ≤ n− 3, we have |Ds| ≥ 3.

If we replace bs1 , bs2 , ..., bsr bits of each vertex label in Qn by ‘∗’, then Qn can
be partitioned into 2n−r r-subcubes and theses subcubes form Qn−r by replacing
each subcube as a vertex. We denote such a graph by a condensation graph QCn−r

of Qn. Let u, v be the vertices in Qn, and Cu, Cv be the components containing
u and v, respectively. We assume that an edge (Cu, Cv) of QCn−r is faulty if
(u, v) is faulty. For all n ≥ 2, Qn with n − 2 faulty edges has a hamiltonian
cycle[11]. Since fe ≤ n − r − 2, there exists a hamiltonian cycle in QC

n−r. Let
C = (x1, x2, ..., xd, ..., x2n−r , x1) be a hamiltonian cycle in QC

n−r, where 1 ≤ d ≤
2n−r. Each vertex of Qn can be mapped to vk

d of M2(m,n) as follows:
In bnbn−1...b1 of each vertex label of Qn,
(i) bs1bs2 ...bsr is the k-th sequence of r-bit Gray code, and
(ii) (n− r)-bits (except bs1 , bs2 , ..., bsr bits) represent the label of the d-th

vertex in C.
Thus, Qn has fault-free M2(2r, 2n−r) as a spanning subgraph. ut
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By applying fault-hamiltonicity of M2(m,n) to a hypercube, we have the
following theorem.

Theorem 4. Qn with f ≤ n− 2 and fv ≤ 1 is strongly hamiltonian laceable.

5 Conclusion

In this paper, we considered the fault hamiltonian properties of m × n meshes
with two wraparound edges in the first row and the last row. We showed that
M2(m,n) with odd n is hamiltonian-connected and 1-fault hamiltonian. M2(m,n)
has these hamiltonian properties by adding minimum edges to an m×n mesh. For
n ≥ 4 even, we showed that M2(m,n) is 1-fault strongly hamiltonian laceable.
By applying fault hamiltonicity of M2(m,n) to a hypercube, we obtained that
Qn with at most n− 2 faulty elements and at most one faulty vertex is strongly
hamiltonian laceable. Also, our results can be applied to the fault hamiltonian
properties of other interconnection networks which has M2(m, n) as a spanning
subgraph.
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