# Panconnectivity and Pancyclicity of Hypercube-Like Interconnection Networks with Faulty Elements* 

Jung-Heum Park ${ }^{1}$, Hyeong-Seok Lim ${ }^{2}$, and Hee-Chul Kim ${ }^{3}$<br>${ }^{1}$ School of Computer Science and Information Engineering, The Catholic University of Korea, Korea<br>j.h.park@catholic.ac.kr<br>${ }^{2}$ School of Electronics and Computer Engineering,<br>Chonnam National University, Korea<br>hslim@chonnam.ac.kr<br>${ }^{3}$ Computer Science and Information Communications Engineering Division, Hankuk University of Foreign Studies, Korea<br>hckim@hufs.ac.kr


#### Abstract

In this paper, we deal with the graph $G_{0} \oplus G_{1}$ obtained from merging two graphs $G_{0}$ and $G_{1}$ with $n$ vertices each by $n$ pairwise nonadjacent edges joining vertices in $G_{0}$ and vertices in $G_{1}$. The main problems studied are how fault-panconnectivity and fault-pancyclicity of $G_{0}$ and $G_{1}$ are translated into fault-panconnectivity and fault-pancyclicity of $G_{0} \oplus G_{1}$, respectively. Applying our results to a subclass of hypercubelike interconnection networks called restricted HL-graphs, we show that in a restricted HL-graph $G$ of degree $m(\geq 3)$, each pair of vertices are joined by a path in $G \backslash F$ of every length from $2 m-3$ to $|V(G \backslash F)|-1$ for any set $F$ of faulty elements (vertices and/or edges) with $|F| \leq m-3$, and there exists a cycle of every length from 4 to $|V(G \backslash F)|$ for any fault set $F$ with $|F| \leq m-2$.


## 1 Introduction

Linear arrays and rings are two of the most important computational structures in interconnection networks. So, embedding of linear arrays and rings into a faulty interconnection network is one of the important issues in parallel processing $[9,13,15]$. An interconnection network is often modeled as a graph, in which vertices and edges correspond to nodes and communication links, respectively. Thus, the embedding problem can be modeled as finding fault-free paths and cycles in the graph with some faulty vertices and/or edges. In the embedding problem, if the longest path or cycle is required the problem is closely related to well-known hamiltonian problems in graph theory. In the rest of this paper, we will use standard terminology in graphs (see ref. [3]).

[^0]Definition 1. A graph $G$ is called $f$-fault hamiltonian (resp. $f$-fault hamiltonianconnected) if there exists a hamiltonian cycle (resp. if each pair of vertices are joined by a hamiltonian path) in $G \backslash F$ for any set $F$ of faulty elements with $|F| \leq f$.

On the other hand, if the paths joining each pair of vertices of every length shorter than or equal to a hamiltonian path are required the problem is concerned with panconnectivity of the graph. If the cycles of arbitrary size (up to a hamiltonian cycle) are required the problem is concerned with pancyclicity of the graph.

Definition 2. A graph $G$ is called $f$-fault $q$-panconnected if each pair of faultfree vertices are joined by a path in $G \backslash F$ of every length from $q$ to $|V(G \backslash F)|-1$ inclusive for any set $F$ of faulty elements with $|F| \leq f$.

Definition 3. A graph $G$ is called $f$-fault pancyclic (resp. $f$-fault almost pancyclic) if $G \backslash F$ contains a cycle of every length from 3 to $|V(G \backslash F)|$ (resp. 4 to $|V(G \backslash F)|)$ inclusive for any set $F$ of faulty elements with $|F| \leq f$.

Pancyclicity of various interconnection networks was investigated in the literature. Recursive circulant $G\left(2^{m}, 4\right)$ of degree $m$ was shown to be 0 -fault almost pancyclic in [2] and then $m$-2-fault almost pancyclic in [12]. Möbius cube of degree $m$ is 0 -fault almost pancyclic[5] and $m-2$-fault almost pancyclic[8]. Crossed cube and twisted cube of degree $m$ were also shown to be $m$ - 2 -fault almost pancyclic in [17] and in [18]. Edge-pancyclicity of some fault-free interconnection networks such as recursive circulants, crossed cubes, twisted cubes was studied in [1], [7], and [6]. The work on panconnectivity of interconnection networks has a relative paucity and some results can be found in $[4,10]$. As the authors know, no results on fault-panconnectivity were reported in the literature.

Many interconnection networks can be expanded into higher dimensional networks by connecting two lower dimensional networks. As a graph modeling of the expansion, we consider the graph obtained by connecting two graphs $G_{0}$ and $G_{1}$ with $n$ vertices. We denote by $V_{i}$ and $E_{i}$ the vertex set and edge set of $G_{i}, i=$ 0,1 , respectively. We let $V_{0}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{1}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. With respect to a permutation $M=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of $\{1,2, \ldots, n\}$, we can "merge" the two graphs into a graph $G_{0} \oplus_{M} G_{1}$ with $2 n$ vertices in such a way that the vertex set $V=V_{0} \cup V_{1}$ and the edge set $E=E_{0} \cup E_{1} \cup E_{2}$, where $E_{2}=\left\{\left(v_{j}, w_{i_{j}}\right) \mid 1 \leq\right.$ $j \leq n\}$. We denote by $G_{0} \oplus G_{1}$ a graph obtained by merging $G_{0}$ and $G_{1}$ w.r.t. an arbitrary permutation $M$. Here, $G_{0}$ and $G_{1}$ are called components of $G_{0} \oplus G_{1}$.

Vaidya et al.[16] introduced a class of hypercube-like interconnection networks, called $H L$-graphs, which can be defined by applying the $\oplus$ operation repeatedly as follows: $H L_{0}=\left\{K_{1}\right\}$; for $m \geq 1, H L_{m}=\left\{G_{0} \oplus G_{1} \mid G_{0}, G_{1} \in\right.$ $\left.H L_{m-1}\right\}$. Then, $H L_{1}=\left\{K_{2}\right\} ; H L_{2}=\left\{C_{4}\right\} ; H L_{3}=\left\{Q_{3}, G(8,4)\right\}$. Here, $C_{4}$ is a cycle graph with 4 vertices, $Q_{3}$ is a 3 -dimensional hypercube, and $G(8,4)$ is a recursive circulant which is isomorphic to twisted cube $T Q_{3}$ and Möbius ladder with 4 spokes as shown in Figure 1. It was shown by Park and Chwa in [11] that every nonbipartite HL-graph is hamiltonian-connected.


Fig. 1. Isomorphic graphs.

In [13], a subclass of nonbipartite HL-graphs, called restricted HL-graphs was introduced which is defined recursively as follows: $R H L_{m}=H L_{m}$ for $0 \leq m \leq 2$; $R H L_{3}=H L_{3} \backslash Q_{3}=\{G(8,4)\} ; R H L_{m}=\left\{G_{0} \oplus G_{1} \mid G_{0}, G_{1} \in R H L_{m-1}\right\}$ for $m \geq 4$. A graph which belongs to $R H L_{m}$ is called an $m$-dimensional restricted $H L$-graph. Many of the nonbipartite hypercube-like interconnection networks such as crossed cube, Möbius cube, twisted cube, multiply twisted cube, Mcube, generalized twisted cube, locally twisted cube, etc. proposed in the literature are restricted HL-graphs. It was shown in [13] that every $m$-dimensional restricted HL-graph, $m \geq 3$, is $m-3$-fault hamiltonian-connected and $m-2$-fault hamiltonian. The result was utilized in [14] to find disjoint paths which cover all the vertices between source-sink pairs in restricted HL-graphs.

We first investigate panconnectivity and pancyclicity of $G_{0} \oplus G_{1}$ with faulty elements. It will be shown that if each $G_{i}$ is $f$-fault $q$-panconnected and $f+1$ fault hamiltonian (with additional conditions $n \geq f+2 q+1$ and $q \geq 2 f+3$ ), then $G_{0} \oplus G_{1}$ is $f+1$-fault $q+2$-panconnected for any $f \geq 2$. To study pancyclicity of $G_{0} \oplus G_{1}$, the notion of hypohamiltonian-connectivity is introduced. A graph $G$ is called $f$-fault hypohamiltonian-connected if each pair of vertices can be joined by a path of length $|V(G \backslash F)|-2$, that is one less than the longest possible length, in $G \backslash F$ for any fault set $F$ with $|F| \leq f$. We will show that if each $G_{i}$ is $f$-fault hamiltonian-connected, $f$-fault hypohamiltonian-connected, and $f+1$ fault almost pancyclic, then $G_{0} \oplus G_{1}$ is $f+2$-fault almost pancyclic for any $f \geq 1$.

Our main results are applied to restricted HL-graphs. We will show that every $m$-dimensional restricted HL-graph with $m \geq 3$ is $m-3$-fault $2 m-3$ panconnected and $m-2$-fault almost pancyclic. Both bounds $m-3$ and $m-2$ on the number of acceptable faulty elements are the maximum possible. Notice that $f$-fault $q$-panconnected graph is $f$-fault hamiltonian-connected, and that $f$-fault almost pancyclic graph is $f$-fault hamiltonian. Our results are not only the extension of some works of $[8,17,18]$ on fault-pancyclicity of restricted HLgraphs, but also a new investigation on fault-panconnectivity of restricted HLgraphs.

## 2 Panconnectivity and Pancyclicity of $G_{0} \oplus G_{1}$

For a vertex $v$ in $G_{0} \oplus G_{1}$, we denote by $\bar{v}$ the vertex adjacent to $v$ which is in a component different from the component in which $v$ is contained. We denote by $F$ the set of faulty elements. When we are to construct a path from $s$ to $t$, $s$ and $t$ are called a source and a sink, respectively, and both of them are called terminals. Throughout this paper, a path in a graph is represented as a sequence of vertices.

Definition 4. A vertex $v$ in $G_{0} \oplus G_{1}$ is called free if $v$ is fault-free and not a terminal, that is, $v \notin F$ and $v$ is neither a source nor a sink. An edge $(v, w)$ is called free if $v$ and $w$ are free and $(v, w) \notin F$.

We denote by $V_{i}$ and $E_{i}$ the sets of vertices and edges in $G_{i}, i=0,1$, and by $E_{2}$ the set of edges joining vertices in $G_{0}$ and vertices in $G_{1}$. We let $n=\left|V_{0}\right|=$ $\left|V_{1}\right| . F_{0}$ and $F_{1}$ denote the sets of faulty elements in $G_{0}$ and $G_{1}$, respectively, and $F_{2}$ denotes the set of faulty edges in $E_{2}$, so that $F=F_{0} \cup F_{1} \cup F_{2}$. Let $f_{0}=\left|F_{0}\right|, f_{1}=\left|F_{1}\right|$, and $f_{2}=\left|F_{2}\right|$.

When we find a path/cycle, sometimes we regard some fault-free vertices and/or edges as faulty elements. They are called virtual faults. If $G_{i}$ is $f$-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=0,1$, then

$$
f \leq \delta\left(G_{i}\right)-3, \text { and thus } f+4 \leq n
$$

where $\delta\left(G_{i}\right)$ is the minimum degree of $G_{i}$.

### 2.1 Panconnectivity of $G_{0} \oplus G_{1}$

Hamiltonian-connectivity of $G_{0} \oplus G_{1}$ with faulty elements was considered in [13]. In this subsection, we study panconnectivity of $G_{0} \oplus G_{1}$ in the presence of faulty elements. We denote by $f_{v}^{0}$ and $f_{v}^{1}$ the numbers of faulty vertices in $G_{0}$ and $G_{1}$, respectively, and by $f_{v}$ the number of faulty vertices in $G_{0} \oplus G_{1}$, so that $f_{v}=f_{v}^{0}+f_{v}^{1}$. Note that the length of a hamiltonian path in $G_{0} \oplus G_{1} \backslash F$ is $2 n-f_{v}-1$.

Theorem 1. Let $G_{0}$ and $G_{1}$ be graphs with $n$ vertices each. Let $f$ and $q$ be nonnegative integers satisfying $n \geq f+2 q+1$ and $q \geq 2 f+3$. If each $G_{i}$ is $f$-fault $q$-panconnected and $f+1$-fault hamiltonian, then
(a) for any $f \geq 2, G_{0} \oplus G_{1}$ is $f+1$-fault $q+2$-panconnected,
(b) for $f=1, G_{0} \oplus G_{1}$ with $2(=f+1)$ faulty elements has a path of every length $q+2$ or more joining $s$ and $t$ unless $s$ and $t$ are contained in the same component and $\bar{s}$ and $\bar{t}$ are the faulty elements(vertices), and
(c) for $f=0, G_{0} \oplus G_{1}$ with $1(=f+1)$ faulty element has a path of every length $q+2$ or more joining $s$ and $t$ unless $s$ and $t$ are contained in the same component and the faulty element is contained in the other component.

Proof. To prove (a), assuming the number of faulty elements $|F| \leq f+1$, we will construct a path of every length $l, q+2 \leq l \leq 2 n-f_{v}-1$, in $G_{0} \oplus G_{1} \backslash F$ joining any pair of vertices $s$ and $t$.

## Case 1: $\quad f_{0}, f_{1} \leq f$.

When both $s$ and $t$ are contained in $G_{0}$, there exists a path $P_{0}$ of length $l_{0}$ in $G_{0}$ joining $s$ and $t$ for every $q \leq l_{0} \leq n-f_{v}^{0}-1$. We are to construct a longer path $P_{1}$ that passes through vertices in $G_{1}$ as well as vertices in $G_{0}$. We first claim that there exists an edge $(x, y)$ on $P_{0}$ such that all of $\bar{x},(x, \bar{x}), \bar{y}$, and $(y, \bar{y})$ are fault-free. There are $l_{0}$ candidate edges on $P_{0}$ and at most $f+1$ faulty elements can "block" the candidates, at most two candidates per one faulty element. By assumption $l_{0} \geq q \geq 2 f+3$, and the claim is proved. The path $P_{1}$ can be obtained by merging $P_{0}$ and a path $P^{\prime}$ in $G_{1}$ between $\bar{x}$ and $\bar{y}$ with the edges $(x, \bar{x})$ and $(y, \bar{y})$. Here, of course the edge $(x, y)$ is discarded. Letting $l^{\prime}$ be the length of $P^{\prime}$, the length $l_{1}$ of $P_{1}$ can be anything in the range $2 q+1 \leq l_{1}=l_{0}+l^{\prime}+1 \leq 2 n-f_{v}-1$. Since $n \geq f+2 q+1$, we have $2 q+1 \leq n-f_{v}^{0}$ and we are done.

When $s$ is in $G_{0}$ and $t$ is in $G_{1}$, we first find a free edge $(x, \bar{x})$ in $E_{2}$ such that $(\bar{x}, t)$ is an edge and fault-free. The existence of such a free edge $(x, \bar{x})$ is due to the fact that there are $\delta\left(G_{1}\right)$ candidates and that at most $f+1$ faulty elements and the source $s$ can block the candidates. Remember $f \leq \delta\left(G_{1}\right)-3$. Assuming $x \in V_{0}$, a path joining $s$ and $x$ in $G_{0}$ and an edge $(\bar{x}, t)$ are merged with $(x, \bar{x})$ into a path $P_{0}$. The length $l_{0}$ of $P_{0}$ is any integer in the range $q+2 \leq l_{0} \leq n-f_{v}^{0}+1$. A longer path $P_{1}$ is obtained by replacing the edge $(\bar{x}, t)$ with a path in $G_{1}$ between $\bar{x}$ and $t$ of length $l^{\prime \prime}, q \leq l^{\prime \prime} \leq n-f_{v}^{1}-1$. The length $l_{1}$ of $P_{1}$ is in the range $2 q+1 \leq l_{1} \leq 2 n-f_{v}-1$. We are done since $2 q+1 \leq n-f_{v}^{0}$ as shown in the previous subcase.

Case 2: $\quad f_{0}=f+1$ (or symmetrically, $f_{1}=f+1$ ).
We have $f_{1}=f_{2}=0$. First, we consider the subcase $s, t \in V_{0}$. Letting $P^{\prime}$ be a path in $G_{1}$ joining $\bar{s}$ and $\bar{t}$, we have a path $P_{0}=\left(s, P^{\prime}, t\right)$ between $s$ and $t$. The length $l_{0}$ of $P_{0}$ is any integer in the range $q+2 \leq l_{0} \leq n+1$. To construct a longer path $P_{1}$, we select an arbitrary faulty element $\alpha$ in $G_{0}$. Regarding $\alpha$ as $a$ virtual fault-free element, find a path $P^{\prime \prime}$ in $G_{0}$ between $s$ and $t$. If $\alpha$ is a faulty vertex on $P^{\prime \prime}$, let $x$ and $y$ be the two vertices on $P^{\prime \prime}$ next to $\alpha$; else if $P^{\prime \prime}$ passes through the faulty edge $\alpha$, let $x$ and $y$ be the endvertices of $\alpha$; else let $(x, y)$ be an arbitrary edge on $P^{\prime \prime}$. The path $P_{1}$ is obtained by merging $P^{\prime \prime} \backslash \alpha$ and a path in $G_{1}$ joining $\bar{x}$ and $\bar{y}$ with edges $(x, \bar{x})$ and $(y, \bar{y})$. If $\alpha$ is faulty vertex on $P^{\prime \prime}$, the length $l_{1}$ of $P_{1}$ is in the range $2 q \leq l_{1} \leq 2 n-f_{v}-1$; otherwise, we have $2 q+1 \leq l_{1} \leq 2 n-f_{v}-1$. In any cases, we are done since $2 q+1 \leq n+2$.

Secondly, we consider the subcase $s \in V_{0}$ and $t \in V_{1}$. We first find a hamiltonian cycle $C$ in $G_{0} \backslash F_{0}$ and let $C=\left(s=z_{0}, z_{1}, z_{2}, \ldots, z_{k}\right)$, where $k=n-f_{v}^{0}-1$. Assuming $\bar{z}_{l} \neq t$ without loss of generality, we can construct a path $P_{0}$ by merging $\left(z_{0}, z_{1}, \ldots, z_{l}\right)$ and a path in $G_{1}$ between $\bar{z}_{l}$ and $t$ with the edge $\left(z_{l}, \bar{z}_{l}\right)$. The length $l_{0}$ of $P_{0}$ is any integer in the range $q+l+1 \leq l_{0} \leq n-f_{v}^{1}+l$. Since $l$ itself is any integer in the range $1 \leq l \leq n-f_{v}^{0}-1$, we have $q+2 \leq l_{0} \leq 2 n-f_{v}-1$.

Finally, we consider the subcase $s, t \in V_{1}$. We have a path $P_{0}$ in $G_{1}$ joining $s$ and $t$, and the length $l_{0}$ of $P_{0}$ is in the range $q \leq l_{0} \leq n-1$. To construct a longer path $P_{1}$, we let $C=\left(z_{0}, z_{1}, z_{2}, \ldots, z_{k}\right)$ be a hamiltonian cycle in $G_{0} \backslash F_{0}$, where $k=n-f_{v}^{0}-1$. If $\bar{s} \notin F$, we assume w.l.o.g. $\bar{s}=z_{0}$. Then, letting w.l.o.g. $\bar{z}_{l} \neq t, P_{1}$ is a concatenation of $\left(s, z_{0}, z_{1}, \ldots, z_{l}\right)$ and a path in $G_{1} \backslash s$ between $\bar{z}_{l}$ and $t$. The length $l_{1}$ of $P_{1}$ is in the range $q+3 \leq l_{1} \leq 2 n-f_{v}-1$. If $\bar{s} \in F$, we let $(x, \bar{x})$ be a free edge such that $\bar{x}$ is adjacent to $s$. Then, letting w.l.o.g. $x=z_{0}$ and $\bar{z}_{l} \neq t, P_{1}$ is a concatenation of $\left(s, \bar{x}, z_{0}, z_{1}, \ldots, z_{l}\right)$ and a path in $G_{1} \backslash\{s, \bar{x}\}$ between $\bar{z}_{l}$ and $t$. Here, the length $l_{1}$ of $P_{1}$ is in the range $q+4 \leq l_{1} \leq 2 n-f_{v}-1$. By the condition of $n \geq f+2 q+1$ and $q \geq 2 f+3$, we can observe $q+4 \leq n$. Therefore, we are done. This completes the proof of (a).

It immediately follows from Case 1 and the first and second subcases of Case 2 , where the assumption $f \geq 2$ is never used, that for $f=0,1, G_{0} \oplus G_{1}$ with $f+1$ faulty elements has a path of every length $q+2$ or more joining $s$ and $t$ unless $s$ and $t$ are contained in the same component and all the faulty elements are contained in the other component. Thus, the proof of (c) is done. To prove (b), assuming w.l.o.g. $\bar{s} \notin F$, it suffices to employ the construction of the last subcase of Case 2 . Note that in the construction, $G_{1}$ is 1-fault $q$-panconnected. This completes the proof.

Corollary 1. Let $G_{0}$ and $G_{1}$ be graphs with $n$ vertices each. Let $f$ and $q$ be nonnegative integers satisfying $n \geq f+2 q+1$ and $q \geq 2 f+3$. If each $G_{i}$ is $f$-fault $q$-panconnected and $f+1$-fault hamiltonian, then $G_{0} \oplus G_{1}$ is $f$-fault $q+2$-panconnected.

### 2.2 Pancyclicity of $G_{0} \oplus G_{1}$

In the presence of faulty elements, the existence of hamiltonian cycle in $G_{0} \oplus G_{1}$ was considered in [13] as in Theorem 2. In this subsection, we investigate almost pancyclicity of $G_{0} \oplus G_{1}$ with faulty elements. We denote by $H[v, w \mid G, F]$ a hamiltonian path in $G \backslash F$ joining a pair of fault-free vertices $v$ and $w$ in a graph $G$ with a set $F$ of faulty elements. $H H[v, w \mid G, F]$ is a hypohamiltonian path in $G \backslash F$ between $v$ and $w$.

Theorem 2. [13] Let a graph $G_{i}$ be $f$-fault hamiltonian-connected and $f+1$ fault hamiltonian, $i=0,1$. Then,
(a) for any $f \geq 1, G_{0} \oplus G_{1}$ is $f+2$-fault hamiltonian, and
(b) for $f=0, G_{0} \oplus G_{1}$ with $2(=f+2)$ faulty elements has a hamiltonian cycle unless one faulty element is contained in $G_{0}$ and the other faulty element is contained in $G_{1}$.

Before presenting our theorem on pancyclicity, we will give two lemmas. The proofs are omitted. They imply that to show an $f$-fault hamiltonian graph is $f$ fault almost pancyclic, it is sufficient to consider only vertex faults and further the maximum number of vertex faults. We call a graph $G$ to be $f$-vertex-fault almost pancyclic, if $G \backslash F_{v}$ contains a cycle of every length from 4 to $\left|V\left(G \backslash F_{v}\right)\right|$ for any set of faulty vertices $F_{v}$ with $\left|F_{v}\right| \leq f$.

Lemma 1. Let a graph $G$ be $f$-fault hamiltonian and $f$-vertex-fault almost pancyclic. Then, $G$ is $f$-fault almost pancyclic.

Lemma 2. Let a graph $G$ be $f$-fault hamiltonian and almost pancyclic when the number of faulty vertices $f_{v}=f$. Then, $G$ is $f$-vertex-fault almost pancyclic.

Theorem 3. Let $G_{i}$ be $f$-fault hamiltonian-connected, $f$-fault hypohamiltonianconnected, and $f+1$-fault almost pancyclic, $i=0,1$. Then,
(a) for any $f \geq 1, G_{0} \oplus G_{1}$ is $f+2$-fault almost pancyclic, and
(b) for $f=0, G_{0} \oplus G_{1}$ with $2(=f+2)$ faulty elements is almost pancyclic unless one faulty element is contained in $G_{0}$ and the other faulty element is contained in $G_{1}$.

Proof. To prove (a), we let $|F|=f+2$, and assume $F$ has only vertex faults by virtue of the above two lemmas. Note that, by Theorem $2(\mathrm{a}), G_{0} \oplus G_{1}$ is $f+2$-fault hamiltonian. Assuming $f_{0} \geq f_{1}$ without loss of generality, we will construct cycles in $G_{0} \oplus G_{1} \backslash F$. By the condition in the theorem, there exist cycles of length from 4 to $n-f_{1}$ in $G_{1} \backslash F_{1}$. Also, the cycle of length $2 n-f_{0}-f_{1}$ exists. So, the construction of remaining cycles of length from $n-f_{1}+1$ to $2 n-f_{0}-f_{1}-1$ will be given.

Case 1: $\quad f_{0} \leq f$.
Subcase 1.1: $n>f_{0}+2 f_{1}$.
There exists a hamiltonian cycle $C_{0}$ of length $n-f_{0}$ in $G_{0} \backslash F_{0}$. On $C_{0}$, we have $n-f_{0}$ different paths $P_{k}$ 's of length $k$ for every $1 \leq k \leq n-f_{0}-1$. Among them, there exists a $P_{k}$ joining $x_{k}$ and $y_{k}$ such that both $\overline{x_{k}}$ and $\overline{y_{k}}$ are fault-free, since we have $n-f_{0}$ candidates and each of $f_{1}$ faulty vertices in $G_{1}$ can block at most two candidates. Then, $C=\left(P_{k}, H H\left[\overline{y_{k}}, \overline{x_{k}} \mid G_{1}, F_{1}\right]\right)$ is a cycle of length $n-f_{1}+k, 1 \leq k \leq n-f_{0}-1$.

Subcase 1.2: $n \leq f_{0}+2 f_{1}$.
We find two free edges $(x, \bar{x})$ and $(y, \bar{y})$ in $E_{2}$. Such free edges exist since there are $n(\geq f+4)$ candidates and $f+2$ blocking elements. Note that there are no terminals. We will construct a cycle by merging $H\left[x, y \mid G_{0}, F^{\prime}\right]$ or $H H\left[x, y \mid G_{0}, F^{\prime}\right]$ with $H\left[\bar{x}, \bar{y} \mid G_{1}, F^{\prime \prime}\right]$ or $H H\left[\bar{x}, \bar{y} \mid G_{1}, F^{\prime \prime}\right]$. Here, $F^{\prime}$ (resp. $F^{\prime \prime}$ ) is a set of faulty elements in $G_{0}$ (resp. $G_{1}$ ) regarding some fault-free vertices as virtual faults. By taking account of $f-f_{0}$ vertices in $G_{0} \backslash F_{0}$ excluding $\{x, y\}$ as virtual faults one by one, we can construct paths of length from $n-f-2$ to $n-f_{0}-1$ between $x$ and $y$. Also, by taking account of $f-f_{1}$ vertices in $G_{1} \backslash F_{1}$ excluding $\{\bar{x}, \bar{y}\}$ as virtual faults one by one, we can construct paths of length from $n-f-2$ to $n-f_{1}-1$ between $\bar{x}$ and $\bar{y}$. By merging two paths in $G_{0}$ and $G_{1}$, we can obtain cycles of length from $2 n-2 f-2$ to $2 n-f_{0}-f_{1}$. If $2 n-2 f-2 \leq n-f_{1}+1$, we will have all cycles of desired lengths. First, we have $2 n-2 f-2 \leq n-f_{1}+2$ since $(2 n-2 f-2)-\left(n-f_{1}+2\right)=n-2 f+f_{1}-4 \leq\left(f_{0}+2 f_{1}\right)-2 f+f_{1}-4=$ $f_{0}+3 f_{1}-2 f-4=2 f_{1}-f-2 \leq 0$. Furthermore, careful observation on the above equation leads to $2 n-2 f-2 \leq n-f_{1}+1$ unless $n=f_{0}+2 f_{1}$ and $f_{0}=f_{1}$.

For the remaining case that $n=f_{0}+2 f_{1}$ and $f_{0}=f_{1}$, it is sufficient to construct a cycle of length $n-f_{1}+1$. To do this, we claim that there exists an edge $(x, y)$ in $G_{0}$ such that both $\bar{x}$ and $\bar{y}$ are fault-free. Let $W=\left\{w \mid w \in V_{0} \backslash F_{0}\right.$,
$\bar{w} \notin F\}$, and let $B=V_{0} \backslash\left(F_{0} \cup W\right)$. It holds true that $|W| \geq|B|$ since $|W| \geq$ $n-f_{0}-f_{1}=f_{1}$ and $|B| \leq f_{1}$. Let $C_{0}$ be a hamiltonian cycle in $G_{0} \backslash F_{0}$. If there is an edge $(a, b)$ on $C_{0}$ such that $a, b \in W$, we are done. Suppose otherwise, we have $|W|=|B|$ and the vertices on $C_{0}$ should alternate in $W$ and $B$. Since $G_{0} \backslash F_{0}$ is hamiltonian-connected, we always have such an edge $(x, y)$ joining vertices in $W$. Note that $|W|,|B| \geq 2$, and that if there are no edges between vertices in $W$, there can not exist a hamiltonian path joining vertices in $B$. Then, we have a desired cycle $\left(x, y, H H\left[\bar{y}, \bar{x} \mid G_{1}, F_{1}\right]\right)$ of length $n-f_{1}+1$.

Case 2: $\quad f_{0}=f+1$.
We find a hamiltonian cycle $C_{0}$ in $G_{0} \backslash F_{0}$, and let $x_{k}$ and $y_{k}$ be two vertices in $C_{0}$ such that both $\overline{x_{k}}$ and $\overline{y_{k}}$ are fault-free and there is a path of length $k$ between $x_{k}$ and $y_{k}$ on $C_{0}, 1 \leq k \leq n-f_{0}-1$. The existence of such $x_{k}$ and $y_{k}$ is due to the fact that the length of $C_{0}$ is at least three and $f_{1}=1$. Let $P_{k}$ be the path of length $k$ on $C_{0}$ whose endvertices are $x_{k}$ and $y_{k}$. We construct cycles $\left(P_{k}, H H\left[\overline{y_{k}}, \overline{x_{k}} \mid G_{1}, F_{1}\right]\right), 1 \leq k \leq n-f_{0}-1$, of length from $n-f_{1}+1$ to $2 n-f_{0}-f_{1}-1$. The hypohamiltonian path in $G_{1}$ between $\overline{y_{k}}$ and $\overline{x_{k}}$ exists since $f_{1}=1 \leq f$.

Case 3: $\quad f_{0}=f+2$.
We select an arbitrary faulty vertex $v_{f}$ in $G_{0}$, regarding it as a virtual fault-free vertex, find a hamiltonian cycle $C_{0}$ in $G_{0} \backslash F^{\prime}$, where $F^{\prime}=F_{0} \backslash v_{f}$. The existence of $C_{0}$ is due to $\left|F^{\prime}\right|=f+1$. Let $P_{k}$ be an arbitrary path of length $k$ on $C_{0} \backslash v_{f}$ whose endvertices are $x_{k}$ and $y_{k}, 1 \leq k \leq n-f_{0}-1$. Then, we have a cycle ( $P_{k}, H H\left[\overline{y_{k}}, \overline{x_{k}} \mid G_{1}, \emptyset\right]$ ) of length $n-f_{1}+k$ for every $1 \leq k \leq n-f_{0}-1$.

The proof of (b) follows immediately from the proof of (a), where the assumption $f \geq 1$ is used only when $f_{1}=1$ in Case 2 .

## 3 Restricted HL-graphs

In this section, we will show that every $m$-dimensional restricted HL-graph is $m-3$-fault $2 m-3$-panconnected and $m-2$-fault almost pancyclic. Faulthamiltonicity of restricted HL-graphs was studied in [13] as follows.

Theorem 4. [13] Every $m$-dimensional restricted HL-graph, $m \geq 3$, is $m-3$ fault hamiltonian-connected and $m-2$-fault hamiltonian.

### 3.1 Panconnectivity of restricted HL-graphs

By induction on $m$, we will prove that every $m$-dimensional restricted HL-graph, $m \geq 3$, is $m-3$-fault $2 m-3$-panconnected. The proofs of lemmas are omitted.

Lemma 3. The 3-dimensional restricted HL-graph is 0 -fault 3-panconnected.
To prove Lemmas 5 and 6 , we employ a property on disjoint paths in $G(8,4) \oplus$ $G(8,4)$ shown in Lemma 4 . Two paths joining $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ such that $\left\{s_{1}, s_{2}\right\} \cap\left\{t_{1}, t_{2}\right\}=\emptyset$ are defined to be either $s_{1}-t_{1}$ and $s_{2}-t_{2}$ paths or $s_{1}-t_{2}$ and $s_{2}-t_{1}$ paths. Two paths $P_{1}$ and $P_{2}$ in a graph $G$ are called disjoint covering paths
if $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\emptyset$ and $V\left(P_{1}\right) \cup V\left(P_{2}\right)=V(G)$, where $V\left(P_{i}\right)$ is the set of vertices in $P_{i}$.
Lemma 4. For any four distinct vertices $s_{1}, s_{2}$, $t_{1}$, and $t_{2}$ in $G(8,4) \oplus G(8,4)$, there exists a vertex $z \notin\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\}$ such that $G(8,4) \oplus G(8,4) \backslash z$ has two disjoint covering paths joining $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$.

Similar to Lemma 4, we can show that $G(8,4) \oplus G(8,4)$ has two disjoint covering paths joining every $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ with $\left\{s_{1}, s_{2}\right\} \cap\left\{t_{1}, t_{2}\right\}=\emptyset$.
Lemma 5. Every 4-dimensional restricted HL-graph is 1-fault 5-panconnected.
Lemma 6. Every 5-dimensional restricted HL-graph is 2-fault 7-panconnected.
By an inductive argument utilizing Theorem 1(a) and Lemmas 3, 5, and 6, we have Theorem 5.

Theorem 5. Every m-dimensional restricted HL-graph, $m \geq 3$, is $m-3$-fault $2 m-3$-panconnected.
Corollary 2. Every m-dimensional restricted HL-graph, $m \geq 3$, is $m-3$-fault hypohamiltonian-connected.

A graph $G$ is called $f$-fault $q$-edge-pancyclic if for any faulty set $F$ with $|F| \leq f$, there exists a cycle of every length from $q$ to $|V(G \backslash F)|$ that passes through an arbitrary fault-free edge. Of course, an $f$-fault $q$-panconnected graph is always $f$-fault $q+1$-edge-pancyclic. From Theorem 5, we have the following.
Theorem 6. Every $m$-dimensional restricted HL-graph, $m \geq 3$, is $m-3$-fault $2 m$ - 2-edge-pancyclic.

### 3.2 Pancyclicity of restricted HL-graphs

To show that every $m$-dimensional restricted HL-graph is $m-2$-fault almost pancyclic, due to Lemmas 1 and 2, we assume that the faulty set $F$ contains $m-2$ faulty vertices. The proofs of lemmas are omitted.

Lemma 7. The 3-dimensional restricted HL-graph is 1-fault almost pancyclic.
Lemma 8. Every 4-dimensional restricted HL-graph is 2 -fault almost pancyclic.
From Theorem 3(a) and Lemmas 7 and 8, we have Theorem 7.
Theorem 7. Every $m$-dimensional restricted $H L$-graph, $m \geq 3$, is $m-2$-fault almost pancyclic.
Corollary 3. (a) Twisted cube $T Q_{m}, m \geq 3$, is $m-2$-fault almost pancyclic[18].
(b) Crossed cube $C Q_{m}, m \geq 3$, is $m-2$-fault almost pancyclic[17].
(c) Multiply twisted cube $M Q_{m}, m \geq 3$, is $m-2$-fault almost pancyclic.
(d) Both 0-Möbius cube and 1-Möbius cube of dimension $m$, $m \geq 3$, are $m-2$ fault almost pancyclic[8].
(e) The $m$-Mcube, $m \geq 3$, is $m-2$-fault almost pancyclic.
(f) Generalized twisted cube $G Q_{m}, m \geq 3$, is $m-2$-fault almost pancyclic.
(g) Locally twisted cube $L T Q_{m}, m \geq 3$, is $m-2$-fault almost pancyclic.
(h) $G\left(2^{m}, 4\right)$, $m$ odd and $m \geq 3$, is $m-2$-fault almost pancyclic[12].

## References

1. T. Araki, "Edge-pancyclicity of recursive circulants," Inform. Proc. Lett. 88, pp. 287-292, 2003.
2. T. Araki and Y. Shibata, "Pancyclicity of recursive circulant graphs," Inform. Proc. Lett. 81, pp. 187-190, 2002.
3. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, 5th printing, American Elsevier Publishing Co., Inc., 1976.
4. J.-M. Chang, J.-S. Yang, Y.-L. Wang, and Y. Cheng, "Panconnectivity, faulttolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs," Networks 44, pp. 302-310, 2004.
5. J. Fan, "Hamilton-connectivity and cycle-embedding of the Möbius cubes," Inform. Proc. Lett. 82, pp. 113-117, 2002.
6. J. Fan, X. Lin, X. Jia, R.W.H. Lau, "Edge-pancyclicity of twisted cubes," in Proc. of International Symposium on Algorithms and Computation ISAAC 2005, pp. 1090-1099, Dec. 2005.
7. J. Fan, X. Lin, X. Jia, "Node-pancyclicity and edge-pancyclicity of crossed cubes," Inform. Proc. Lett. 93, pp. 133-138, 2005.
8. S.-Y. Hsieh and N.-W. Chang, "Cycle embedding on the Möbius cube with both faulty nodes and faulty edges," in Proc. of 11th International Conference on Parallel and Distributed Systems ICPADS 2005, 2005.
9. S. Latifi, N. Bagherzadeh, and R.R. Gajjala, "Fault-tolerant embedding of linear arrays and rings in the star graph," Computers Elect. Engng. 23(2), pp. 95-107, 1997.
10. M. Ma and J.-M. Xu, "Panconnectivity of locally twisted cubes," Applied Mathematics Letters 19, pp. 673-677, 2006.
11. C.-D. Park and K.Y. Chwa, "Hamiltonian properties on the class of hypercube-like networks," Inform. Proc. Lett. 91, pp. 11-17, 2004.
12. J.-H. Park, "Cycle embedding of faulty recursive circulants," Journal of KISS 31(2), pp. 86-94, 2004 (in Korean).
13. J.-H. Park, H.-C. Kim, and H.-S. Lim, "Fault-hamiltonicity of hypercube-like interconnection networks," in Proc. of IEEE International Parallel and Distributed Processing Symposium IPDPS 2005, Denver, Apr. 2005.
14. J.-H. Park, H.-C. Kim, and H.-S. Lim, "Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements," IEEE Trans. on Parallel and Distributed Systems $\mathbf{1 7 ( 3 )}$, pp. 227-240, Mar. 2006.
15. A. Sengupta, "On ring embedding in hypercubes with faulty nodes and links", Inform. Proc. Lett. 68, pp. 207-214, 1998.
16. A.S. Vaidya, P.S.N. Rao, S.R. Shankar, "A class of hypercube-like networks," in Proc. of the 5th IEEE Symposium on Parallel and Distributed Processing SPDP 1993, pp. 800-803, Dec. 1993.
17. M.-C. Yang, T.-K. Li, J.J.M. Tan, and L.-H. Hsu, "Fault-tolerant cycle-embedding of crossed cubes," Inform. Proc. Lett. 88, pp. 149-154, 2003.
18. M.-C. Yang, T.-K. Li, J.J.M. Tan, and L.-H. Hsu, "On embedding cycles into faulty twisted cubes," Information Sciences 176, pp. 676-690, 2006.

[^0]:    * This work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD) (KRF-2005-041-D00645), and also supported by the department specialization Fund, 2006 of The Catholic University of Korea.

