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Abstract. In this paper, we deal with the graph G0⊕G1 obtained from
merging two graphs G0 and G1 with n vertices each by n pairwise non-
adjacent edges joining vertices in G0 and vertices in G1. The main prob-
lems studied are how fault-panconnectivity and fault-pancyclicity of G0

and G1 are translated into fault-panconnectivity and fault-pancyclicity
of G0⊕G1, respectively. Applying our results to a subclass of hypercube-
like interconnection networks called restricted HL-graphs, we show that
in a restricted HL-graph G of degree m(≥ 3), each pair of vertices are
joined by a path in G\F of every length from 2m−3 to |V (G\F )|−1 for
any set F of faulty elements (vertices and/or edges) with |F | ≤ m − 3,
and there exists a cycle of every length from 4 to |V (G\F )| for any fault
set F with |F | ≤ m− 2.

1 Introduction

Linear arrays and rings are two of the most important computational structures
in interconnection networks. So, embedding of linear arrays and rings into a
faulty interconnection network is one of the important issues in parallel process-
ing[9, 13, 15]. An interconnection network is often modeled as a graph, in which
vertices and edges correspond to nodes and communication links, respectively.
Thus, the embedding problem can be modeled as finding fault-free paths and
cycles in the graph with some faulty vertices and/or edges. In the embedding
problem, if the longest path or cycle is required the problem is closely related to
well-known hamiltonian problems in graph theory. In the rest of this paper, we
will use standard terminology in graphs (see ref. [3]).
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Definition 1. A graph G is called f -fault hamiltonian (resp. f -fault hamiltonian-
connected) if there exists a hamiltonian cycle (resp. if each pair of vertices are
joined by a hamiltonian path) in G\F for any set F of faulty elements with
|F | ≤ f .

On the other hand, if the paths joining each pair of vertices of every length
shorter than or equal to a hamiltonian path are required the problem is con-
cerned with panconnectivity of the graph. If the cycles of arbitrary size (up to
a hamiltonian cycle) are required the problem is concerned with pancyclicity of
the graph.

Definition 2. A graph G is called f -fault q-panconnected if each pair of fault-
free vertices are joined by a path in G\F of every length from q to |V (G\F )|− 1
inclusive for any set F of faulty elements with |F | ≤ f .

Definition 3. A graph G is called f -fault pancyclic (resp. f -fault almost pan-
cyclic) if G\F contains a cycle of every length from 3 to |V (G\F )| (resp. 4 to
|V (G\F )|) inclusive for any set F of faulty elements with |F | ≤ f .

Pancyclicity of various interconnection networks was investigated in the lit-
erature. Recursive circulant G(2m, 4) of degree m was shown to be 0-fault almost
pancyclic in [2] and then m−2-fault almost pancyclic in [12]. Möbius cube of de-
gree m is 0-fault almost pancyclic[5] and m−2-fault almost pancyclic[8]. Crossed
cube and twisted cube of degree m were also shown to be m − 2-fault almost
pancyclic in [17] and in [18]. Edge-pancyclicity of some fault-free interconnection
networks such as recursive circulants, crossed cubes, twisted cubes was studied
in [1], [7], and [6]. The work on panconnectivity of interconnection networks has
a relative paucity and some results can be found in [4, 10]. As the authors know,
no results on fault-panconnectivity were reported in the literature.

Many interconnection networks can be expanded into higher dimensional
networks by connecting two lower dimensional networks. As a graph modeling of
the expansion, we consider the graph obtained by connecting two graphs G0 and
G1 with n vertices. We denote by Vi and Ei the vertex set and edge set of Gi, i =
0, 1, respectively. We let V0 = {v1, v2, . . . , vn} and V1 = {w1, w2, . . . , wn}. With
respect to a permutation M = (i1, i2, . . . , in) of {1, 2, . . . , n}, we can “merge” the
two graphs into a graph G0⊕M G1 with 2n vertices in such a way that the vertex
set V = V0 ∪ V1 and the edge set E = E0 ∪ E1 ∪ E2, where E2 = {(vj , wij )|1 ≤
j ≤ n}. We denote by G0⊕G1 a graph obtained by merging G0 and G1 w.r.t. an
arbitrary permutation M . Here, G0 and G1 are called components of G0 ⊕G1.

Vaidya et al.[16] introduced a class of hypercube-like interconnection net-
works, called HL-graphs, which can be defined by applying the ⊕ operation
repeatedly as follows: HL0 = {K1}; for m ≥ 1, HLm = {G0 ⊕ G1|G0, G1 ∈
HLm−1}. Then, HL1 = {K2}; HL2 = {C4}; HL3 = {Q3, G(8, 4)}. Here, C4 is
a cycle graph with 4 vertices, Q3 is a 3-dimensional hypercube, and G(8, 4) is a
recursive circulant which is isomorphic to twisted cube TQ3 and Möbius ladder
with 4 spokes as shown in Figure 1. It was shown by Park and Chwa in [11] that
every nonbipartite HL-graph is hamiltonian-connected.
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(c) Möbius ladder

Fig. 1. Isomorphic graphs.

In [13], a subclass of nonbipartite HL-graphs, called restricted HL-graphs was
introduced which is defined recursively as follows: RHLm = HLm for 0 ≤ m ≤ 2;
RHL3 = HL3\Q3 = {G(8, 4)}; RHLm = {G0 ⊕ G1|G0, G1 ∈ RHLm−1} for
m ≥ 4. A graph which belongs to RHLm is called an m-dimensional restricted
HL-graph. Many of the nonbipartite hypercube-like interconnection networks
such as crossed cube, Möbius cube, twisted cube, multiply twisted cube, Mcube,
generalized twisted cube, locally twisted cube, etc. proposed in the literature are
restricted HL-graphs. It was shown in [13] that every m-dimensional restricted
HL-graph, m ≥ 3, is m− 3-fault hamiltonian-connected and m− 2-fault hamil-
tonian. The result was utilized in [14] to find disjoint paths which cover all the
vertices between source-sink pairs in restricted HL-graphs.

We first investigate panconnectivity and pancyclicity of G0 ⊕G1 with faulty
elements. It will be shown that if each Gi is f -fault q-panconnected and f + 1-
fault hamiltonian (with additional conditions n ≥ f+2q+1 and q ≥ 2f+3), then
G0 ⊕G1 is f + 1-fault q + 2-panconnected for any f ≥ 2. To study pancyclicity
of G0⊕G1, the notion of hypohamiltonian-connectivity is introduced. A graph G
is called f -fault hypohamiltonian-connected if each pair of vertices can be joined
by a path of length |V (G\F )| − 2, that is one less than the longest possible
length, in G\F for any fault set F with |F | ≤ f . We will show that if each Gi is
f -fault hamiltonian-connected, f -fault hypohamiltonian-connected, and f + 1-
fault almost pancyclic, then G0 ⊕ G1 is f + 2-fault almost pancyclic for any
f ≥ 1.

Our main results are applied to restricted HL-graphs. We will show that
every m-dimensional restricted HL-graph with m ≥ 3 is m − 3-fault 2m − 3-
panconnected and m− 2-fault almost pancyclic. Both bounds m− 3 and m− 2
on the number of acceptable faulty elements are the maximum possible. Notice
that f -fault q-panconnected graph is f -fault hamiltonian-connected, and that
f -fault almost pancyclic graph is f -fault hamiltonian. Our results are not only
the extension of some works of [8, 17, 18] on fault-pancyclicity of restricted HL-
graphs, but also a new investigation on fault-panconnectivity of restricted HL-
graphs.
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2 Panconnectivity and Pancyclicity of G0 ⊕ G1

For a vertex v in G0 ⊕G1, we denote by v̄ the vertex adjacent to v which is in
a component different from the component in which v is contained. We denote
by F the set of faulty elements. When we are to construct a path from s to t,
s and t are called a source and a sink, respectively, and both of them are called
terminals. Throughout this paper, a path in a graph is represented as a sequence
of vertices.

Definition 4. A vertex v in G0 ⊕ G1 is called free if v is fault-free and not a
terminal, that is, v /∈ F and v is neither a source nor a sink. An edge (v, w) is
called free if v and w are free and (v, w) /∈ F .

We denote by Vi and Ei the sets of vertices and edges in Gi, i = 0, 1, and by
E2 the set of edges joining vertices in G0 and vertices in G1. We let n = |V0| =
|V1|. F0 and F1 denote the sets of faulty elements in G0 and G1, respectively,
and F2 denotes the set of faulty edges in E2, so that F = F0 ∪ F1 ∪ F2. Let
f0 = |F0|, f1 = |F1|, and f2 = |F2|.

When we find a path/cycle, sometimes we regard some fault-free vertices
and/or edges as faulty elements. They are called virtual faults. If Gi is f -fault
hamiltonian-connected and f + 1-fault hamiltonian, i = 0, 1, then

f ≤ δ(Gi)− 3, and thus f + 4 ≤ n,

where δ(Gi) is the minimum degree of Gi.

2.1 Panconnectivity of G0 ⊕ G1

Hamiltonian-connectivity of G0 ⊕ G1 with faulty elements was considered in
[13]. In this subsection, we study panconnectivity of G0 ⊕G1 in the presence of
faulty elements. We denote by f0

v and f1
v the numbers of faulty vertices in G0

and G1, respectively, and by fv the number of faulty vertices in G0 ⊕ G1, so
that fv = f0

v + f1
v . Note that the length of a hamiltonian path in G0 ⊕G1\F is

2n− fv − 1.

Theorem 1. Let G0 and G1 be graphs with n vertices each. Let f and q be
nonnegative integers satisfying n ≥ f + 2q + 1 and q ≥ 2f + 3. If each Gi is
f -fault q-panconnected and f + 1-fault hamiltonian, then
(a) for any f ≥ 2, G0 ⊕G1 is f + 1-fault q + 2-panconnected,
(b) for f = 1, G0⊕G1 with 2(= f +1) faulty elements has a path of every length
q+2 or more joining s and t unless s and t are contained in the same component
and s̄ and t̄ are the faulty elements(vertices), and
(c) for f = 0, G0⊕G1 with 1(= f +1) faulty element has a path of every length
q+2 or more joining s and t unless s and t are contained in the same component
and the faulty element is contained in the other component.
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Proof. To prove (a), assuming the number of faulty elements |F | ≤ f + 1, we
will construct a path of every length l, q + 2 ≤ l ≤ 2n − fv − 1, in G0 ⊕ G1\F
joining any pair of vertices s and t.

Case 1: f0, f1 ≤ f .
When both s and t are contained in G0, there exists a path P0 of length l0
in G0 joining s and t for every q ≤ l0 ≤ n − f0

v − 1. We are to construct a
longer path P1 that passes through vertices in G1 as well as vertices in G0. We
first claim that there exists an edge (x, y) on P0 such that all of x̄, (x, x̄), ȳ,
and (y, ȳ) are fault-free. There are l0 candidate edges on P0 and at most f + 1
faulty elements can “block” the candidates, at most two candidates per one
faulty element. By assumption l0 ≥ q ≥ 2f + 3, and the claim is proved. The
path P1 can be obtained by merging P0 and a path P ′ in G1 between x̄ and
ȳ with the edges (x, x̄) and (y, ȳ). Here, of course the edge (x, y) is discarded.
Letting l′ be the length of P ′, the length l1 of P1 can be anything in the range
2q+1 ≤ l1 = l0+l′+1 ≤ 2n−fv−1. Since n ≥ f +2q+1, we have 2q+1 ≤ n−f0

v

and we are done.

When s is in G0 and t is in G1, we first find a free edge (x, x̄) in E2 such that
(x̄, t) is an edge and fault-free. The existence of such a free edge (x, x̄) is due to
the fact that there are δ(G1) candidates and that at most f + 1 faulty elements
and the source s can block the candidates. Remember f ≤ δ(G1)− 3. Assuming
x ∈ V0, a path joining s and x in G0 and an edge (x̄, t) are merged with (x, x̄) into
a path P0. The length l0 of P0 is any integer in the range q+2 ≤ l0 ≤ n−f0

v +1.
A longer path P1 is obtained by replacing the edge (x̄, t) with a path in G1

between x̄ and t of length l′′, q ≤ l′′ ≤ n− f1
v − 1. The length l1 of P1 is in the

range 2q + 1 ≤ l1 ≤ 2n− fv − 1. We are done since 2q + 1 ≤ n− f0
v as shown in

the previous subcase.

Case 2: f0 = f + 1 (or symmetrically, f1 = f + 1).
We have f1 = f2 = 0. First, we consider the subcase s, t ∈ V0. Letting P ′ be a
path in G1 joining s̄ and t̄, we have a path P0 = (s, P ′, t) between s and t. The
length l0 of P0 is any integer in the range q + 2 ≤ l0 ≤ n + 1. To construct a
longer path P1, we select an arbitrary faulty element α in G0. Regarding α as a
virtual fault-free element, find a path P ′′ in G0 between s and t. If α is a faulty
vertex on P ′′, let x and y be the two vertices on P ′′ next to α; else if P ′′ passes
through the faulty edge α, let x and y be the endvertices of α; else let (x, y) be
an arbitrary edge on P ′′. The path P1 is obtained by merging P ′′\α and a path
in G1 joining x̄ and ȳ with edges (x, x̄) and (y, ȳ). If α is faulty vertex on P ′′,
the length l1 of P1 is in the range 2q ≤ l1 ≤ 2n − fv − 1; otherwise, we have
2q + 1 ≤ l1 ≤ 2n− fv − 1. In any cases, we are done since 2q + 1 ≤ n + 2.

Secondly, we consider the subcase s ∈ V0 and t ∈ V1. We first find a hamilto-
nian cycle C in G0\F0 and let C = (s = z0, z1, z2, ..., zk), where k = n− f0

v − 1.
Assuming z̄l 6= t without loss of generality, we can construct a path P0 by merg-
ing (z0, z1, ..., zl) and a path in G1 between z̄l and t with the edge (zl, z̄l). The
length l0 of P0 is any integer in the range q+ l+1 ≤ l0 ≤ n−f1

v + l. Since l itself
is any integer in the range 1 ≤ l ≤ n− f0

v − 1, we have q + 2 ≤ l0 ≤ 2n− fv − 1.
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Finally, we consider the subcase s, t ∈ V1. We have a path P0 in G1 joining
s and t, and the length l0 of P0 is in the range q ≤ l0 ≤ n − 1. To construct a
longer path P1, we let C = (z0, z1, z2, ..., zk) be a hamiltonian cycle in G0\F0,
where k = n− f0

v − 1. If s̄ /∈ F , we assume w.l.o.g. s̄ = z0. Then, letting w.l.o.g.
z̄l 6= t, P1 is a concatenation of (s, z0, z1, . . . , zl) and a path in G1\s between z̄l

and t. The length l1 of P1 is in the range q + 3 ≤ l1 ≤ 2n− fv − 1. If s̄ ∈ F , we
let (x, x̄) be a free edge such that x̄ is adjacent to s. Then, letting w.l.o.g. x = z0

and z̄l 6= t, P1 is a concatenation of (s, x̄, z0, z1, . . . , zl) and a path in G1\{s, x̄}
between z̄l and t. Here, the length l1 of P1 is in the range q+4 ≤ l1 ≤ 2n−fv−1.
By the condition of n ≥ f + 2q + 1 and q ≥ 2f + 3, we can observe q + 4 ≤ n.
Therefore, we are done. This completes the proof of (a).

It immediately follows from Case 1 and the first and second subcases of Case
2, where the assumption f ≥ 2 is never used, that for f = 0, 1, G0 ⊕ G1 with
f + 1 faulty elements has a path of every length q + 2 or more joining s and t
unless s and t are contained in the same component and all the faulty elements
are contained in the other component. Thus, the proof of (c) is done. To prove
(b), assuming w.l.o.g. s̄ /∈ F , it suffices to employ the construction of the last
subcase of Case 2. Note that in the construction, G1 is 1-fault q-panconnected.
This completes the proof. ut
Corollary 1. Let G0 and G1 be graphs with n vertices each. Let f and q be
nonnegative integers satisfying n ≥ f + 2q + 1 and q ≥ 2f + 3. If each Gi

is f -fault q-panconnected and f + 1-fault hamiltonian, then G0 ⊕ G1 is f -fault
q + 2-panconnected.

2.2 Pancyclicity of G0 ⊕ G1

In the presence of faulty elements, the existence of hamiltonian cycle in G0⊕G1

was considered in [13] as in Theorem 2. In this subsection, we investigate almost
pancyclicity of G0 ⊕ G1 with faulty elements. We denote by H[v, w|G,F ] a
hamiltonian path in G\F joining a pair of fault-free vertices v and w in a graph
G with a set F of faulty elements. HH[v, w|G, F ] is a hypohamiltonian path in
G\F between v and w.

Theorem 2. [13] Let a graph Gi be f -fault hamiltonian-connected and f + 1-
fault hamiltonian, i = 0, 1. Then,
(a) for any f ≥ 1, G0 ⊕G1 is f + 2-fault hamiltonian, and
(b) for f = 0, G0 ⊕G1 with 2(= f + 2) faulty elements has a hamiltonian cycle
unless one faulty element is contained in G0 and the other faulty element is
contained in G1.

Before presenting our theorem on pancyclicity, we will give two lemmas. The
proofs are omitted. They imply that to show an f -fault hamiltonian graph is f -
fault almost pancyclic, it is sufficient to consider only vertex faults and further
the maximum number of vertex faults. We call a graph G to be f-vertex-fault
almost pancyclic, if G\Fv contains a cycle of every length from 4 to |V (G\Fv)|
for any set of faulty vertices Fv with |Fv| ≤ f .
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Lemma 1. Let a graph G be f -fault hamiltonian and f -vertex-fault almost pan-
cyclic. Then, G is f-fault almost pancyclic.

Lemma 2. Let a graph G be f -fault hamiltonian and almost pancyclic when the
number of faulty vertices fv = f . Then, G is f-vertex-fault almost pancyclic.

Theorem 3. Let Gi be f -fault hamiltonian-connected, f -fault hypohamiltonian-
connected, and f + 1-fault almost pancyclic, i = 0, 1. Then,
(a) for any f ≥ 1, G0 ⊕G1 is f + 2-fault almost pancyclic, and
(b) for f = 0, G0⊕G1 with 2(= f +2) faulty elements is almost pancyclic unless
one faulty element is contained in G0 and the other faulty element is contained
in G1.

Proof. To prove (a), we let |F | = f + 2, and assume F has only vertex faults
by virtue of the above two lemmas. Note that, by Theorem 2(a), G0 ⊕ G1 is
f + 2-fault hamiltonian. Assuming f0 ≥ f1 without loss of generality, we will
construct cycles in G0 ⊕ G1\F . By the condition in the theorem, there exist
cycles of length from 4 to n− f1 in G1\F1. Also, the cycle of length 2n− f0− f1

exists. So, the construction of remaining cycles of length from n − f1 + 1 to
2n− f0 − f1 − 1 will be given.

Case 1: f0 ≤ f .
Subcase 1.1: n > f0 + 2f1.

There exists a hamiltonian cycle C0 of length n− f0 in G0\F0. On C0, we have
n − f0 different paths Pk’s of length k for every 1 ≤ k ≤ n − f0 − 1. Among
them, there exists a Pk joining xk and yk such that both x̄k and ȳk are fault-free,
since we have n − f0 candidates and each of f1 faulty vertices in G1 can block
at most two candidates. Then, C = (Pk,HH[ȳk, x̄k|G1, F1]) is a cycle of length
n− f1 + k, 1 ≤ k ≤ n− f0 − 1.

Subcase 1.2: n ≤ f0 + 2f1.
We find two free edges (x, x̄) and (y, ȳ) in E2. Such free edges exist since there
are n(≥ f + 4) candidates and f + 2 blocking elements. Note that there are no
terminals. We will construct a cycle by merging H[x, y|G0, F

′] or HH[x, y|G0, F
′]

with H[x̄, ȳ|G1, F
′′] or HH[x̄, ȳ|G1, F

′′]. Here, F ′ (resp. F ′′) is a set of faulty
elements in G0 (resp. G1) regarding some fault-free vertices as virtual faults. By
taking account of f − f0 vertices in G0\F0 excluding {x, y} as virtual faults one
by one, we can construct paths of length from n− f − 2 to n− f0 − 1 between
x and y. Also, by taking account of f − f1 vertices in G1\F1 excluding {x̄, ȳ}
as virtual faults one by one, we can construct paths of length from n− f − 2 to
n− f1− 1 between x̄ and ȳ. By merging two paths in G0 and G1, we can obtain
cycles of length from 2n− 2f − 2 to 2n− f0− f1. If 2n− 2f − 2 ≤ n− f1 +1, we
will have all cycles of desired lengths. First, we have 2n − 2f − 2 ≤ n − f1 + 2
since (2n− 2f − 2)− (n− f1 + 2) = n− 2f + f1− 4 ≤ (f0 + 2f1)− 2f + f1− 4 =
f0 + 3f1 − 2f − 4 = 2f1 − f − 2 ≤ 0. Furthermore, careful observation on the
above equation leads to 2n−2f−2 ≤ n−f1 +1 unless n = f0 +2f1 and f0 = f1.

For the remaining case that n = f0 + 2f1 and f0 = f1, it is sufficient to
construct a cycle of length n− f1 + 1. To do this, we claim that there exists an
edge (x, y) in G0 such that both x̄ and ȳ are fault-free. Let W = {w|w ∈ V0\F0,
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w̄ /∈ F}, and let B = V0\(F0 ∪ W ). It holds true that |W | ≥ |B| since |W | ≥
n−f0−f1 = f1 and |B| ≤ f1. Let C0 be a hamiltonian cycle in G0\F0. If there is
an edge (a, b) on C0 such that a, b ∈ W , we are done. Suppose otherwise, we have
|W | = |B| and the vertices on C0 should alternate in W and B. Since G0\F0

is hamiltonian-connected, we always have such an edge (x, y) joining vertices in
W . Note that |W |, |B| ≥ 2, and that if there are no edges between vertices in
W , there can not exist a hamiltonian path joining vertices in B. Then, we have
a desired cycle (x, y, HH[ȳ, x̄|G1, F1]) of length n− f1 + 1.

Case 2: f0 = f + 1.
We find a hamiltonian cycle C0 in G0\F0, and let xk and yk be two vertices
in C0 such that both x̄k and ȳk are fault-free and there is a path of length k
between xk and yk on C0, 1 ≤ k ≤ n − f0 − 1. The existence of such xk and
yk is due to the fact that the length of C0 is at least three and f1 = 1. Let Pk

be the path of length k on C0 whose endvertices are xk and yk. We construct
cycles (Pk,HH[ȳk, x̄k|G1, F1]), 1 ≤ k ≤ n − f0 − 1, of length from n − f1 + 1
to 2n− f0 − f1 − 1. The hypohamiltonian path in G1 between ȳk and x̄k exists
since f1 = 1 ≤ f .

Case 3: f0 = f + 2.
We select an arbitrary faulty vertex vf in G0, regarding it as a virtual fault-free
vertex, find a hamiltonian cycle C0 in G0\F ′, where F ′ = F0\vf . The existence
of C0 is due to |F ′| = f + 1. Let Pk be an arbitrary path of length k on C0\vf

whose endvertices are xk and yk, 1 ≤ k ≤ n − f0 − 1. Then, we have a cycle
(Pk,HH[ȳk, x̄k|G1, ∅]) of length n− f1 + k for every 1 ≤ k ≤ n− f0 − 1.

The proof of (b) follows immediately from the proof of (a), where the as-
sumption f ≥ 1 is used only when f1 = 1 in Case 2. ut

3 Restricted HL-graphs

In this section, we will show that every m-dimensional restricted HL-graph
is m − 3-fault 2m − 3-panconnected and m − 2-fault almost pancyclic. Fault-
hamiltonicity of restricted HL-graphs was studied in [13] as follows.

Theorem 4. [13] Every m-dimensional restricted HL-graph, m ≥ 3, is m − 3-
fault hamiltonian-connected and m− 2-fault hamiltonian.

3.1 Panconnectivity of restricted HL-graphs

By induction on m, we will prove that every m-dimensional restricted HL-graph,
m ≥ 3, is m− 3-fault 2m− 3-panconnected. The proofs of lemmas are omitted.

Lemma 3. The 3-dimensional restricted HL-graph is 0-fault 3-panconnected.

To prove Lemmas 5 and 6, we employ a property on disjoint paths in G(8, 4)⊕
G(8, 4) shown in Lemma 4. Two paths joining {s1, s2} and {t1, t2} such that
{s1, s2} ∩ {t1, t2} = ∅ are defined to be either s1-t1 and s2-t2 paths or s1-t2 and
s2-t1 paths. Two paths P1 and P2 in a graph G are called disjoint covering paths
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if V (P1) ∩ V (P2) = ∅ and V (P1) ∪ V (P2) = V (G), where V (Pi) is the set of
vertices in Pi.

Lemma 4. For any four distinct vertices s1, s2, t1, and t2 in G(8, 4)⊕G(8, 4),
there exists a vertex z /∈ {s1, s2, t1, t2} such that G(8, 4) ⊕ G(8, 4)\z has two
disjoint covering paths joining {s1, s2} and {t1, t2}.

Similar to Lemma 4, we can show that G(8, 4) ⊕ G(8, 4) has two disjoint
covering paths joining every {s1, s2} and {t1, t2} with {s1, s2} ∩ {t1, t2} = ∅.
Lemma 5. Every 4-dimensional restricted HL-graph is 1-fault 5-panconnected.

Lemma 6. Every 5-dimensional restricted HL-graph is 2-fault 7-panconnected.

By an inductive argument utilizing Theorem 1(a) and Lemmas 3, 5, and 6,
we have Theorem 5.

Theorem 5. Every m-dimensional restricted HL-graph, m ≥ 3, is m − 3-fault
2m− 3-panconnected.

Corollary 2. Every m-dimensional restricted HL-graph, m ≥ 3, is m− 3-fault
hypohamiltonian-connected.

A graph G is called f -fault q-edge-pancyclic if for any faulty set F with
|F | ≤ f , there exists a cycle of every length from q to |V (G\F )| that passes
through an arbitrary fault-free edge. Of course, an f -fault q-panconnected graph
is always f -fault q + 1-edge-pancyclic. From Theorem 5, we have the following.

Theorem 6. Every m-dimensional restricted HL-graph, m ≥ 3, is m − 3-fault
2m− 2-edge-pancyclic.

3.2 Pancyclicity of restricted HL-graphs

To show that every m-dimensional restricted HL-graph is m − 2-fault almost
pancyclic, due to Lemmas 1 and 2, we assume that the faulty set F contains
m− 2 faulty vertices. The proofs of lemmas are omitted.

Lemma 7. The 3-dimensional restricted HL-graph is 1-fault almost pancyclic.

Lemma 8. Every 4-dimensional restricted HL-graph is 2-fault almost pancyclic.

From Theorem 3(a) and Lemmas 7 and 8, we have Theorem 7.

Theorem 7. Every m-dimensional restricted HL-graph, m ≥ 3, is m − 2-fault
almost pancyclic.

Corollary 3. (a) Twisted cube TQm, m ≥ 3, is m−2-fault almost pancyclic[18].
(b) Crossed cube CQm, m ≥ 3, is m− 2-fault almost pancyclic[17].
(c) Multiply twisted cube MQm, m ≥ 3, is m− 2-fault almost pancyclic.
(d) Both 0-Möbius cube and 1-Möbius cube of dimension m, m ≥ 3, are m− 2-
fault almost pancyclic[8].
(e) The m-Mcube, m ≥ 3, is m− 2-fault almost pancyclic.
(f) Generalized twisted cube GQm, m ≥ 3, is m− 2-fault almost pancyclic.
(g) Locally twisted cube LTQm, m ≥ 3, is m− 2-fault almost pancyclic.
(h) G(2m, 4), m odd and m ≥ 3, is m− 2-fault almost pancyclic[12].
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