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Abstract

A general technique is proposed for determining the conditional diagnosability of interconnection networks under
the PMC model. Several graph invariants are involved in the approach, such as the length of the shortest cycle, the
minimum number of neighbors, γp (resp. γ′p), over all p-vertex subsets (resp. cycles), and a variant of connectivity,
called the r-super-connectivity. An n-dimensional torus network is defined as a Cartesian product of n cycles, Ck1×· · ·×

Ckn , where Ck j is a cycle of length k j for 1 ≤ j ≤ n. The proposed technique is applied to the two or higher-dimensional
torus networks, and their conditional diagnosabilities are established completely: the conditional diagnosability of
every torus network G is equal to γ′4(G) + 1, excluding the three small ones C3 ×C3, C3 ×C4, and C4 ×C4. In addition,
γp(G) as well as γ′4(G) is derived for 2 ≤ p ≤ 4 and the r-super-connectivity is also derived for 1 ≤ r ≤ 3 .

Keywords: Fault diagnosis, PMC model, conditional diagnosability, torus network, minimum neighborhood,
r-super-connectivity.

1. Introduction

In a multiprocessor system, the probability that failure occurs increases as the number of processors increases.
A system consisting of a large number of processors is required to continue operating even if failure occurs in the
processors. Fault tolerance is an essential feature of such systems due to the catastrophic consequences of not tolerating
faults. One of the major issues in fault tolerance of a multiprocessor system is fault diagnosis, which is to identify the
faulty processors in the system. Several models for self-diagnosis of a system have been proposed [7, 17, 18].

Preparata et al. [18] introduced a model, the so-called PMC model, for system-level diagnosis in multiprocessor
systems. In the PMC model, a system consists of processors, and only processors with a direct link are allowed to test
each other. When processor u tests processor v, u evaluates v as fault-free or faulty. The test result is reliable only if the
testing processor is fault-free. A system is t-diagnosable if from the test results, all the faulty processors can always
be identified provided the number of faulty processors does not exceed t [18]. The diagnosability of a system is the
maximum value of t such that the system is t-diagnosable. The t-diagnosable system was characterized by Hakimi and
Amin [9], and a polynomial-time algorithm for finding the diagnosability of a system was designed by Sullivan [20].

In the event of a random processor failure, it is very unlikely that all of the processors adjacent to a single proces-
sor fail simultaneously. Motivated by this, Lai et al. [15] introduced a new diagnosability measure, called conditional
diagnosability. A system is conditionally t-diagnosable if from the test results, all faulty processors can always be
identified provided the number of faulty processors does not exceed t and also, all adjacent processors to each proces-
sor are not faulty at the same time. The conditional diagnosability of a system is the maximum value of t such that
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the system is conditionally t-diagnosable. The conditional diagnosability under the PMC model has been studied for
several interconnection networks, such as hypercubes [15], k-ary n-cubes [5], matching composition networks [22],
BC networks [27], augmented cubes [4], balanced hypercubes [23], folded hypercubes [28], and alternating group
graphs [10].

An alternative model for fault diagnosis in multiprocessor systems, the so-called MM model, was introduced by
Maeng and Malek [17]. This model is a comparison-based model in which a processor sends the same task to each
pair of its neighbors. Upon the receipt of the two responses, the processor compares them and proclaims that the two
neighbors are both fault-free or at least one of them is faulty. Conditional diagnosability for interconnection networks
under the MM model has been investigated in various studies [6, 11, 12, 13, 14, 16, 19, 25, 26].

An interconnection network of a multiprocessor system is represented as a graph, where vertices correspond to
processors and edges correspond to communication links. In this paper, we suggest an approach for determining the
conditional diagnosability of an interconnection network under the PMC model. The approach involves a few graph
invariants, including the length of a shortest cycle, called the girth, the minimum number of neighbors, denoted by
γp (resp. γ′p), over all p-vertex subsets (resp. cycles) for some p, and a variant of connectivity, called the r-super-
connectivity, for some integer r. The proposed technique is applied to two or higher-dimensional torus networks to
determine their conditional diagnosabilities.

A torus network is one of the most popular interconnection networks. An n-dimensional torus, denoted by
T (k1, k2, . . . , kn), is defined as a Cartesian product of n cycles, Ck1 × · · · × Ckn , where Ck j is a cycle of length k j

for every 1 ≤ j ≤ n. The k-ary n-cube [3, 5, 8] is a special type of an n-dimensional torus where k j = k for ev-
ery 1 ≤ j ≤ n. For more discussion on torus networks, refer to [1, 21, 24]. For all n-dimensional torus networks
where n ≥ 2, their conditional diagnosabilities are established completely, and the aforementioned graph invariants
are determined: γp for 2 ≤ p ≤ 4, γ′4, and the r-super-connectivity for 1 ≤ r ≤ 3. The conditional diagnosability of
T (k1, . . . , kn), where n ≥ 2 and 3 ≤ k1 ≤ k2 ≤ · · · ≤ kn, is

4 if (n, k1, k2) = (2, 3, 3),
5 if (n, k1, k2) = (2, 3, 4),
7 if (n, k1, k2) = (2, 4, 4),
8n − 7 if k1 ≥ 4, (n, k1, k2) , (2, 4, 4),
8n − 9 if k1 = 3 & k2 ≥ 4, (n, k1, k2) , (2, 3, 4),
8n − 11 if k1 = k2 = 3, (n, k1, k2) , (2, 3, 3).

The organization of this paper is as follows. In the next section, definitions and notation are given. In Section 3, a
general approach is addressed for determining the conditional diagnosability under the PMC model. In Section 4, the
graph invariants of torus networks are investigated and then their conditional diagnosabilities are established. Finally,
the paper is concluded in Section 5.

2. Preliminaries

Let G be a graph, where V(G) and E(G) represent the vertex set and the edge set of G, respectively. If (u, v) ∈ E(G),
u is adjacent to v or u is a neighbor of v. The degree of a vertex is the number of vertices adjacent to it. A path between
v1 and vk is a sequence of vertices, (v1, v2, . . . , vk), such that (v j, v j+1) ∈ E(G) for every 1 ≤ j < k. The length of this
path is k − 1. A cycle is a closed path (v1, v2, . . . , vk) such that k ≥ 3 and (vk, v1) ∈ E(G). The length of this cycle is
k. The connected component of G is a maximal connected subgraph of G. The size of a connected component is the
number of vertices in it. The connectivity of G, κ(G), is the minimum number of vertices whose removal results in a
trivial graph or a disconnected graph.

For a vertex subset S ⊆ V(G), the subgraph of G induced by S , denoted by G〈S 〉, is a graph whose vertex set
is S and for every pair of vertices u, v ∈ S , (u, v) is an edge of the graph G〈S 〉 if and only if (u, v) ∈ E(G). For a
vertex subset S ⊆ V(G), we denote by G \ S the resultant subgraph obtained from G by deleting all the vertices of S
(including the edges incident to them). Note that G \ S is the subgraph of G induced by V(G) \ S . The neighborhood
of a vertex v, denoted by NG(v), is {u ∈ V(G) : (u, v) ∈ E(G)}. The neighborhood of a vertex subset S , denoted by
NG(S ), is

⋃
v∈S NG(v) \ S . A vertex subset S is a conditional set if NG(v) * S for every v ∈ V(G). Graph theoretic

terms not defined here can be found in [2].
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Figure 1: F1 and F2 are consistent with this syndrome.

Definition 1 (Minimum-neighborhood set). A p-vertex subset, T , of G is said to be a minimum-neighborhood set
of order p if |NG(T )| = γp(G), where γp(G) is the minimum cardinality of neighborhoods over all p-vertex subsets of
G, i.e., γp(G) = min{|NG(S )| : S ⊆ V(G), |S | = p}.

Definition 2 (Minimum-neighborhood cycle). A cycle of length p, C, of G is said to be a minimum-neighborhood
cycle of order p if |NG(V(C))| = γ′p(G), where V(C) denotes the vertex set of C and γ′p(G) = min{|NG(S )| : S ⊆
V(G), |S | = p, and G〈S 〉 contains a cycle of length p}.

γ′p(G) is left undefined if G contains no cycle of length p. Obviously, γ′p(G) ≥ γp(G) if both γ′p(G) and γp(G) are
well-defined.

Definition 3 (r-Super-connectivity). For a nonnegative integer r, the r-super-connectivity of a graph G, denoted by
κr

s(G), is defined as the minimum number of vertices whose removal results in a trivial graph or a disconnected graph
composed of one large connected component and the remaining connected components with more than r vertices in
total.

Clearly, κr
s(G) ≤ |V(G)| − 1. The r-super-connectivity is a generalization of the ordinary connectivity in that κ0

s (G) is
nothing but κ(G).

In the PMC model, each processor has a capability of testing adjacent processors. Let a graph G represent the
interconnection network of a multiprocessor system. It is assumed that for every edge (u, v) ∈ E(G), u tests v and
v tests u. Each processor can be either fault-free or faulty. The test outcome is 0 (resp. 1) if the testing processor
evaluates the tested processor as fault-free (resp. faulty). The test outcome is reliable only if the testing processor is
fault-free. The collection of all test outcomes is called the syndrome of the system. The test performed by processor
u on processor v is represented as a test (u, v). For a syndrome σ, σ(u, v) represents the outcome of the test (u, v). For
a given syndrome σ, a subset F of V(G) is called a consistent fault set if σ(u, v) = 1 for every test (u, v) such that
u ∈ V(G) \ F and v ∈ F, and σ(u, v) = 0 for every test (u, v) such that u, v ∈ V(G) \ F.

The same syndrome can come from different fault sets, that is, there might be more than one fault set consistent
with the syndrome. We say that F1 and F2 are indistinguishable if there is a syndrome for which they are consistent
fault sets; otherwise, F1 and F2 are distinguishable. Figure 1 shows a syndrome for which both F1 and F2 are consis-
tent fault sets; thus, the two fault sets are indistinguishable. A system G is t-diagnosable if and only if for each pair of
distinct sets F1, F2 ⊂ V(G) with |F1|, |F2| ≤ t, F1 and F2 are distinguishable [15]. A fault set F ⊂ V(G) is a conditional
fault set if it is a conditional set, i.e., NG(v) * F for every v ∈ V(G). A system G is conditionally t-diagnosable if and
only if F1 and F2 are distinguishable for each pair of distinct conditional fault sets F1, F2 ⊂ V(G) with |F1|, |F2| ≤ t
[15]. The conditional diagnosability of G is denoted by tc(G).

3. Approach for Determining Conditional Diagnosability

In this section, a general technique is developed for determining the conditional diagnosability of connected
graphs, especially graphs proposed as interconnection networks. Those graphs G are usually regular or almost regular,
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and the minimum degree, δ(G), is much smaller than the number of vertices, |V(G)|, say, logarithmic or sublogarithmic
in |V(G)|; γp+1(G) is greater than γp(G) for p sufficiently smaller than |V(G)|.

We begin with some lemmas on fundamental properties of a graph that has two conditional fault sets which are
indistinguishable. We denote by F14F2 the symmetric difference of F1 and F2, i.e. F14F2 ≡ (F1 \ F2) ∪ (F2 \ F1).

Lemma 1. Let F1, F2 be distinct conditional fault sets of a graph G that are indistinguishable, and let R = V(G) \
(F1 ∪ F2).
(a) There exists no edge joining a pair of vertices u ∈ F14F2 and v ∈ R.
(b) NG(F14F2) ⊆ F1 ∩ F2.
(c) F1 * F2 and F2 * F1.

Proof. To prove (a), let F1 and F2 be consistent with some syndrome σ. Suppose such an edge (u, v) exists. If u is in
F1 \ F2, then the outcome of the test from v to u should be 1 since v < F1 and u ∈ F1, while its outcome should be 0
since u, v < F2, which is a contradiction. Similarly, if u is in F2 \ F1, a contradiction also arises. Therefore, no such
edge (u, v) exists. The statement (b) is a direct consequence of (a). To prove (c), suppose to the contrary that F1 ⊆ F2.
From (b), NG(F2 \ F1) ⊆ F1 ∩ F2. This implies NG(v) ⊆ F2 for every v ∈ F2 \ F1, which is a contradiction to the fact
that F2 is a conditional set. Symmetrically, F2 * F1 can also be derived. Thus, the proof is completed. �

Lemma 2. Let F1, F2 be distinct conditional fault sets of a graph G that are indistinguishable.
(a) Every vertex of Fi \ F j has at least two neighbors: one in Fi \ F j and the other in F j \ Fi, where {i, j} = {1, 2}.
(b) |F1 \ F2|, |F2 \ F1| ≥ 2 and thus |F14F2| ≥ 4.
(c) If |F14F2| = 4, then the subgraph induced by F14F2 contains a cycle of length four, C4, as a spanning subgraph.

Proof. Let v be a vertex in F1 \ F2. Then, NG(v) ⊆ F1 ∪ F2 by Lemma 1(a). Since both F1 and F2 are conditional,
NG(v) * F1 and NG(v) * F2. Thus, there exists a neighbor u ∈ F1 \ F2 of v and there exists a neighbor x ∈ F2 \ F1
of v. Similarly, a vertex of F2 \ F1 also has two neighbors: one in F1 \ F2 and the other in F2 \ F1, proving (a). The
statement (b) is direct from Lemmas 1(c) and 2(a). To prove (c), let y ∈ F2 \ F1 be a neighbor of x. From |F14F2| = 4,
F14F2 = {u, v, x, y}, which forms a path of length three, (u, v, x, y). If (y, u) is an edge of G, the path becomes a cycle
of length four and we are done. If (y, u) < E(G), both (y, v) and (u, x) should be edges of G by (a), forming a cycle of
length four (u, v, y, x). This completes the proof. �

Remark 1. If |F14F2| = 4, the subgraph induced by F14F2 is isomorphic to either C4 or C4 with additional chord
edges. In many interconnection networks such as meshes, hypercube-like graphs, recursive circulants, etc., two ad-
jacent vertices have at most one common neighbor. This is the case in the torus networks considered in this paper,
which will be shown later in Lemma 7. In such networks, the induced subgraph is isomorphic to C4.

Lemma 3. Let F1, F2 be distinct conditional fault sets of a graph G that are indistinguishable, and let R = V(G) \
(F1 ∪ F2). Then, R = ∅ or F1 ∩ F2 is a conditional vertex cut of G separating F14F2 and R.

Proof. Suppose R , ∅. Due to Lemma 1(a), F1 ∩ F2 is a vertex cut of G separating F14F2 and R. Since every subset
of a conditional set is also conditional, F1 ∩ F2 is a conditional cut. �

To establish the conditional diagnosability of a graph G, denoted by tc(G), we need to find two conditional fault
sets F1 and F2 such that they are indistinguishable and max{|F1|, |F2|} is as small as possible. Then, tc(G) will be
max{|F1|, |F2|} − 1. In this case, we claim that NG(F14F2) = F1 ∩ F2. By Lemma 1(b), NG(F14F2) ⊆ F1 ∩ F2. It will
be shown that NG(F14F2) is not a proper subset of F1∩F2. Suppose to the contrary that NG(F14F2) is a proper subset
of F1 ∩ F2. Let F′1 = (F1 \ F2) ∪ NG(F14F2) and F′2 = (F2 \ F1) ∪ NG(F14F2). F′1 and F′2 become conditional fault
sets since F′i ⊆ Fi for 1 ≤ i ≤ 2. They are also indistinguishable. This is a contradiction to the fact that max{|F1|, |F2|}

is the minimum possible, proving the claim.
For the purpose of finding F1 and F2 that suggest the conditional diagnosability of G, we concentrate on F14F2,

in fact, on the subgraph of G induced by F14F2 since it can be assumed that F1 ∩ F2 = NG(F14F2). Let H be the
subgraph of G induced by F14F2. Every vertex of H has two neighbors, one in F1 \F2 and the other in F2 \F1, due to
Lemma 2(a). This property can be rephrased as the coloring of vertices, which differs from ordinary vertex coloring,
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as follows: the vertices of H can be colored in two colors, blue and orange, such that every vertex has a blue-colored
neighbor and an orange-colored neighbor. This bicoloring is said to be embraceable. A nonempty graph that admits
an embraceable bicoloring has at least four vertices, as Lemma 2(b) suggests. Not every graph with a minimum degree
of at least two has an embraceable bicoloring, which is apparent in a cycle of length six. A graph may have multiple
embraceable bicolorings.

For a bicoloring φ : V(H) → {blue, orange} of a nonempty induced subgraph H of G, ν(φ,H) denotes the
maximum of |Vb| and |Vo| if φ is embraceable, where Vb = {v ∈ V(H) : φ(v) = blue} and Vo = {v ∈ V(H) : φ(v) =

orange}; ν(φ,H) = ∞ if φ is not embraceable. Then, the conditional diagnosability tc(G) of G can be stated in terms
of its induced subgraphs and their embraceable bicolorings, as shown in the following.

Lemma 4. tc(G) is the minimum of ν(φ,H) + |NG(V(H))| − 1 over all pairs of a nonempty induced subgraph H of G
and its (embraceable) bicoloring φ such that Vb ∪ NG(V(H)) and Vo ∪ NG(V(H)) are conditional sets.

Proof. The proof is straightforward from the discussion above. �

One might expect that the first step of our approach will be to identify the smallest induced subgraph H that
admits an embraceable bicoloring. If G has a cycle of length four, then H will be any cycle of length four possibly
with additional chords, which clearly has an embraceable bicoloring. Actually, many interconnection networks, such
as torus networks, hypercubes, and recursive circulants, contain a cycle of length four as a subgraph. The following
theorem serves as a starting point for this discussion. Let g(G) denote the girth of a graph G, which is defined to be
the length of the shortest cycle contained in the graph.

Theorem 1. Let G be a graph of girth 4q − 4 < g(G) ≤ 4q for some integer q ≥ 1. If a nonempty induced subgraph
H of G admits an embraceable bicoloring, then H contains a path of 4q vertices, and whenever |V(H)| = 4q, H has a
(hamiltonian) cycle of length 4q.

Proof. Suppose that every vertex of H is colored by some embraceable bicoloring. By the definition of an embraceable
bicoloring, H has a path of four vertices, and whenever |V(H)| = 4, H has a cycle of length four, as suggested by
Lemma 2. It suffices to consider q ≥ 2. Let a blue-colored vertex u1 ∈ V(H) have a blue-colored neighbor u2 and have
an orange-colored neighbor v1. The vertex v1 also has an orange-colored neighbor v2. Also, for each even i such that
i ≤ 2q − 2, ui has an orange-colored neighbor vi+1 and vi has a blue-colored neighbor ui+1; for each odd i such that
i ≤ 2q − 2, ui has a blue-colored neighbor ui+1 and vi has an orange-colored neighbor vi+1. Then, since g(G) > 4q − 4,
the subgraph of H induced by B ∪ O, where B = {u1, . . . , u2q−2} and O = {v1, . . . , v2q−2}, forms an induced path of
4q− 4 vertices. Moreover, the 4q− 2 vertices of B′ ∪O′ are all distinct and form a path joining u2q−1 and v2q−1, where
B′ = B ∪ {u2q−1} and O′ = O ∪ {v2q−1}.

Suppose for the first case that u2q−1 and v2q−1 have a blue-colored neighbor u2q < B and an orange-colored neighbor
v2q < O, respectively. Then, there are 2q blue vertices and 2q orange vertices, forming a path P of 4q vertices between
u2q and v2q, where P = (u2q, u2q−1, v2q−2, v2q−3, . . . , u2q−3, u2q−2, v2q−1, v2q). It suffices to show (u2q, v2q) ∈ E(H) if
|V(H)| = 4q. u2q has no neighbor in O; suppose otherwise, i.e., (u2q, vi) ∈ E(H) for some vi ∈ O, then the edge (u2q, vi)
and the subpath P′ starting at u2q of the path P such that the length of P′ is 4q − 5 would create a cycle of length less
than or equal to 4q−4, which contradicts the fact that g(G) > 4q−4. (Note that u2q−3, u2q−2, v2q−1, v2q < O.) Similarly,
v2q has no neighbor in B. Thus, (u2q, v2q) ∈ E(H); suppose otherwise, both (u2q, v2q−1) and (v2q, u2q−1) should be edges
of H, which is impossible since the two edges would create a cycle of length four (v2q−1, v2q, u2q−1, u2q).

For the remaining case, it is assumed w.l.o.g. (without loss of generality) that every blue neighbor of u2q−1 is
contained in B. Then, u2q−2 is a unique blue neighbor of u2q−1; suppose otherwise, then H would have a cycle of
length at most 4q − 4, which is a contradiction to g(G) > 4q − 4. Similarly, v2q−1 has no neighbor contained in
O \ {v2q−2}. In addition, v2q−2 cannot be a neighbor of v2q−1 since suppose otherwise, there would be a cycle of length
four (v2q−2, v2q−1, u2q−2, u2q−1), which is a contradiction. So, v2q−1 has an orange neighbor v2q < O. v2q should have
a blue neighbor u. Then, u cannot be a vertex of B′: suppose u ∈ {u2q−1, u2q−2, u2q−3}, then there would exist a cycle
of length three or four, which is a contradiction; supposing u ∈ B \ {u2q−2, u2q−3} would lead to a cycle of length
at most 4q − 4, which is also a contradiction. Thus, there exists a path of 4q vertices joining u and u2q−1. To show
that H has a cycle of length 4q whenever |V(H)| = 4q, let u j be a blue neighbor of u. We claim j = 2q − 3. By our
assumption, j , 2q − 1. If j = 2q − 2, there would be a cycle of length four, which is a contradiction. If j ≤ 2q − 4,
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then q ≥ 3 and there would be a path joining u j and u2q−2 of length at most 2q− 2 lying on a cycle induced by B′ ∪O,
where the path and (u2q−2, v2q−1, v2q, u, u j) would create a cycle of length at most (2q − 2) + 4 ≤ 4q − 4, which is a
contradiction. Thus, the claim is proved. For u j = u2q−3, merging of the path induced by (B ∪ O) \ {u2q−2} and path
(v2q−2, u2q−1, u2q−2, v2q−1, v2q, u, u2q−3) results in a hamiltonian cycle of length 4q. This completes the entire proof. �

This theorem leads to an upper bound on the conditional diagnosability tc(G) of a graph G.

Theorem 2. Let G be a graph of girth 4q − 4 < g(G) ≤ 4q for some q and let G have a cycle of length 4q, C4q =

(u1, v1, x1, y1, u2, v2, x2, y2, . . . , uq, vq, xq, yq). If both F1 ≡ NG(V(C4q))∪
⋃q

i=1{ui, vi} and F2 ≡ NG(V(C4q))∪
⋃q

i=1{xi, yi}

are conditional sets, then tc(G) ≤ |NG(V(C4q))| + 2q − 1.

Proof. Let R = V(G) \ (NG(V(C4q)) ∪ V(C4q)). Consider a syndrome σ such that the test outcome σ(u, v) = 1 if and
only if u ∈ Fi & v < Fi or u < Fi & v ∈ Fi for some i such that 1 ≤ i ≤ 2, as shown in Figure 1. Then, both F1 and F2
are consistent fault sets with σ. Thus, tc(G) < max{|F1|, |F2|} = |NG(V(C4q))| + 2q and the theorem follows. �

Remark 2. tc(G) ≤ γ′4q(G) + 2q − 1 if there exists a cycle C4q such that (i) |NG(V(C4q))| = γ′4q(G) and (ii) F1 and F2
of Theorem 2 are conditional. Recall that γ′4q(G) denotes the minimum |NG(V(C4q))| over all cycles of length 4q, C4q,
in G.

To develop a lower bound on the conditional diagnosability, every induced subgraph possessing an embraceable
bicoloring needs to be touched. Accordingly, developing the lower bound would be harder than the upper bound for
which it suffices to pick up a good induced subgraph. Let G be a graph of girth 4q − 4 < g(G) ≤ 4q for some q. To
prove tc(G) ≥ t for some t, we suppose to the contrary that tc(G) < t. Then, there exist distinct conditional fault sets
F1 and F2 that are indistinguishable such that |F1|, |F2| ≤ t. Let H be the subgraph of G induced by F14F2. Then,

max{|F1|, |F2|} ≥ |F1 ∩ F2| + d|V(H)|/2e.

Notice that since F1 and F2 are conditional fault sets, H admits an embraceable bicoloring with all vertices of
F1 \ F2 being blue-colored and all vertices of F2 \ F1 being orange-colored. Furthermore, H contains a path P of 4q
vertices by Theorem 1. To derive max{|F1|, |F2|} > t, which is a contradiction to the assumption of |F1|, |F2| ≤ t, we
may utilize the (4q − 1)-super-connectivity of G, κ4q−1

s (G).

1. If |F1 ∩ F2| < κ
4q−1
s (G), then G \ (F1 ∩ F2) either is connected or has one large connected component and the

remaining connected components with at most 4q − 1 vertices in total. Therefore, the 4q vertices of path P
should be included in the large connected component. Let R = V(G) \ (F1 ∪ F2). There is no edge between R
and V(H), and thus the large connected component is contained in H which contains P. Since |R| ≤ 4q − 1, H
may be large enough.

2. If |F1 ∩ F2| ≥ κ
4q−1
s (G), then F1 ∩ F2 may be large enough when, hopefully, κ4q−1

s (G) is big.

Based on these observations, a lower bound on tc(G) can be derived for a graph having a cycle of length 4·dg(G)/4e.

Theorem 3. Let G be a graph of girth 4q − 4 < g(G) ≤ 4q for some q and let G have a cycle of length 4q. Then,
tc(G) ≥ t for an integer t ≤ γ′4q(G) + 2q − 1 if (i) d|V(G)|/2e ≥ t + 1, (ii) γp(G) ≥ p for every 1 ≤ p ≤ 4q − 1, and (iii)

κ
4q−1
s (G) ≥ t − 2q.

Proof. Suppose to the contrary that tc(G) < t. Then, there exist distinct conditional fault sets F1 and F2 with
|F1|, |F2| ≤ t, which are indistinguishable. Let H be the aforementioned subgraph induced by F14F2. Then H contains
a path of 4q vertices by Theorem 1. Therefore, |V(H)| ≥ 4q.

Case 1: |F1 ∩ F2| < κ
4q−1
s (G).

Let R = V(G) \ (F1 ∪ F2). If R = ∅, then F1 ∪ F2 = V(G). Thus,

max{|F1|, |F2|} ≥ d|V(G)|/2e ≥ t + 1,
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Figure 2: Examples of torus networks.

which is a contradiction. Now, R , ∅. From the fact that |F1 ∩ F2| < κ
4q−1
s (G) and H has a path of length 4q, it follows

that |R| ≤ 4q − 1. Furthermore, NG(R) ⊆ F1 ∩ F2 by Lemma 1(a), and |NG(R)| ≥ γ|R|(G) ≥ |R| by the condition (ii).
Thus,

max{|F1|, |F2|} ≥ |F1 ∩ F2| + d|V(H)|/2e
= |F1 ∩ F2| + d(|V(G)| − |F1 ∩ F2| − |R|)/2e
= d(|V(G)| + |F1 ∩ F2| − |R|)/2e
≥ d(|V(G)| + |F1 ∩ F2| − |NG(R)|)/2e
≥ d|V(G)|/2e
≥ t + 1,

which is also a contradiction.
Case 2: |F1 ∩ F2| ≥ κ

4q−1
s (G).

If |V(H)| ≥ 4q + 1, then

max{|F1|, |F2|} ≥ |F1 ∩ F2| + d|V(H)|/2e ≥ κ4q−1
s (G) + (2q + 1) ≥ t + 1,

which is a contradiction. If |V(H)| = 4q, then H contains a cycle of length 4q due to Theorem 1. Moreover, NG(V(H)) ⊆
F1 ∩ F2 by Lemma 1(b). Thus,

max{|F1|, |F2|} ≥ |F1 ∩ F2| + d|V(H)|/2e ≥ |NG(V(H))| + 2q ≥ γ′4q(G) + 2q ≥ t + 1,

which is a contradiction. This completes the entire proof. �

4. Torus Networks

An n-dimensional torus network, denoted by T (k1, k2, . . . , kn) where n ≥ 1 and k j ≥ 3 for 1 ≤ j ≤ n, is a graph
consisting of k1k2 · · · kn vertices, each of which is identified by vi1,i2,...,in where 1 ≤ i j ≤ k j for 1 ≤ j ≤ n. Two vertices
vi1,i2,...,in and vi′1,i

′
2,...,i

′
n of the torus network are adjacent if i′p = (ip mod kp) + 1 for some p such that 1 ≤ p ≤ n, and

i′j = i j for every j other than p. T (k1, k2, . . . , kn) can also be defined as a Cartesian product of cycles, Ck1×Ck2×· · ·×Ckn .
See Figure 2 for examples of torus networks. If (k′1, k

′
2, . . . , k

′
n) is a permutation of (k1, k2, . . . , kn), then T (k′1, k

′
2, . . . , k

′
n)

is isomorphic to T (k1, k2, . . . , kn). So, it is assumed w.l.o.g. that 3 ≤ k1 ≤ k2 ≤ · · · ≤ kn throughout this paper.
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Lemma 5. Let G be an n-dimensional torus T (k1, k2, . . . , kn) where n ≥ 1.
(a) G is a 2n-regular graph of connectivity κ(G) = 2n.
(b) If n ≥ 2, G has a cycle of length four; moreover, g(G) = 3 if k1 = 3; g(G) = 4 if k1 ≥ 4, where g(G) denotes the
girth of G.

Proof. The proofs by induction on n are straightforward. �

An n-dimensional torus T (k1, k2, . . . , kn) where n ≥ 2, can be defined recursively as Ck1 × T (k2, k3, . . . , kn). This
recursive structure of the torus networks will be fully exploited in this section. Let G represent an n-dimensional torus
T (k1, k2, . . . , kn). For 1 ≤ j ≤ k1, we denote by V j a subset of V(G) such that V j ≡ {vi1,i2,...,in : i1 = j, 1 ≤ ip ≤ kp for
2 ≤ p ≤ n}, and by G j the subgraph of G induced by V j. If we define V ≡ {V1,V2, . . . ,Vk1 }, then V becomes a partition
of V(G). Let E represent an adjacency relation on V so that (V j,V j′ ) ∈ E if there exists an edge (x, y) ∈ E(G) such that
x ∈ V j and y ∈ V j′ . The graph G whose vertex set and edge set are respectively V and E is referred to as the skeleton
of G.

Lemma 6. Let G be the skeleton of G, an n-dimensional torus T (k1, k2, . . . , kn) where n ≥ 2.
(a) G is isomorphic to a cycle of length k1, Ck1 .
(b) For 1 ≤ j ≤ k1, G j is isomorphic to an (n − 1)-dimensional torus T (k2, . . . , kn).
(c) If (V j,V j′ ) ∈ E, there are |V j| edges of G joining V j and V j′ . These edges form a perfect matching of the induced
subgraph of G, G〈V j ∪ V j′〉.

Proof. The proofs are trivial. �

Here, a matching of a graph is a set of pairwise nonadjacent edges, and a matching that covers all vertices of the
graph is called perfect.

For analysis of the conditional diagnosability of a two or higher-dimensional torus network, Theorems 2 and 3
will be employed. To apply these theorems, we need to find out several structural properties, including the minimum-
neighborhood set of order p for 2 ≤ p ≤ 4, the minimum-neighborhood cycle of order four, and the 3-super-
connectivity. The minimum-neighborhood set/cycle and the 3-super-connectivity will be studied in Sections 4.1 and
4.2 respectively, and then the conditional diagnosability will be determined in Section 4.3.

4.1. The Minimum-Neighborhood Set/Cycle

Let G be an n-dimensional torus T (k1, k2, . . . , kn) where n ≥ 1. In this subsection, γp(G) will be determined for
1 ≤ p ≤ 4 (γ4(G) will be used later in Section 4.2 for the 3-super-connectivity). Recall that γp(G) = |NG(T )|, where
T is a minimum-neighborhood set of order p of G. Also, γ′4(G) will be derived, where γ′4(G) = |NG(V(C))| for a
minimum-neighborhood cycle, C, of order four of G. It is obvious that γ1(G) = δ(G) = 2n. As a basic property for the
minimum neighborhood, the number of common neighbors of two distinct vertices x, y of G is counted first. Keep in
mind that every G j, the subgraph induced by V j, 1 ≤ j ≤ k1, is isomorphic to T (k2, . . . , kn) when n ≥ 2.

Lemma 7. Let G be an n-dimensional torus T (k1, k2, . . . , kn) where n ≥ 1.
(a) For a pair of nonadjacent vertices x and y, |NG(x) ∩ NG(y)| ≤ 2.
(b) For a pair of adjacent vertices x and y, |NG(x) ∩ NG(y)| = 0 if k1 ≥ 4; |NG(x) ∩ NG(y)| ≤ 1 if k1 = 3.

Proof. The proof is by induction on n. It is straightforward to verify the base case of n = 1, where G is isomorphic
to Ck1 . For the inductive step of n ≥ 2, it may be assumed that x ∈ V1. The case first considered is when y ∈ V1. In
V(G) \ V1, there is no common neighbor of x and y. It follows that NG(x) ∩ NG(y) = NG1 (x) ∩ NG1 (y), where G1 is
isomorphic to T (k2, . . . , kn). If (x, y) < E(G1), then by the induction hypothesis, |NG1 (x) ∩ NG1 (y)| ≤ 2, proving (a).
Suppose (x, y) ∈ E(G1). Then, also by the induction hypothesis, |NG1 (x) ∩ NG1 (y)| = 0 if k2 ≥ 4; |NG1 (x) ∩ NG1 (y)| ≤ 1
if k2 = 3. Therefore, if k1 ≥ 4, then k2 ≥ 4 and thus |NG(x) ∩ NG(y)| = 0; if k1 = 3, then |NG(x) ∩ NG(y)| ≤ 1 whether
k2 ≥ 4 or k2 = 3, proving (b).

Next consider the case when y < V1. Assume w.l.o.g. y ∈ Vp for some p such that 2 ≤ p < k1. Then, NG(y) =

NGp (y) ∪ Y where Y = {y′, y′′} for some y′ ∈ Vp+1 and y′′ ∈ Vp−1. Similarly, NG(x) = NG1 (x) ∪ X where X = {x′, x′′}
for some x′ ∈ Vk1 and x′′ ∈ V2. It is clear that NG1 (x) ∩ NGp (y) = ∅, |NG1 (x) ∩ Y | ≤ 1, |NGp (y) ∩ X| ≤ 1, and
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|X ∩ Y | ≤ 2. If (x, y) < E(G), then X ∩ Y = ∅ for p = 2 and NG1 (x) ∩ Y = NGp (y) ∩ X = ∅ for p , 2. Thus,
|NG(x) ∩ NG(y)| = |NG1 (x) ∩ Y | + |X ∩ NGp (y)| + |X ∩ Y | ≤ max{1 + 1 + 0, 0 + 0 + 2} = 2, proving (a). Suppose
(x, y) ∈ E(G). Then, p = 2, i.e., y ∈ V2. In addition, y′′ = x, x′′ = y, y′ ∈ V3, and x′ ∈ Vk1 , where k1 ≥ 3. Therefore,
NG(x)∩ NG(y) = (NG1 (x)∩ {y′})∪ ({x′} ∩ NG2 (y))∪ ({x′} ∩ {y′}) = {x′} ∩ {y′}. Furthermore, |{x′} ∩ {y′}| = 1 if and only
if k1 = 3, proving (b). �

Let T2 = {x, y} be a vertex subset of G where

x = v1,1,...,1 and y = v2,1,...,1.

Then, x ∈ V1, y ∈ V2, and (x, y) ∈ E(G). It will be shown in the following lemma that T2 is a minimum-neighborhood
set of order two of G.

Lemma 8. Let G be an n-dimensional torus T (k1, . . . , kn) where n ≥ 1. Then,

γ2(G) =

{
4n − 2 if k1 ≥ 4,
4n − 3 if k1 = 3.

Proof. It will be proved that T2 is a minimum-neighborhood set of order two of G. The proof for n = 1 is trivial,
so let n ≥ 2. |NG(T2)| is first calculated. |NG(T2)| = 2(n − 1) + 2(n − 1) + 1 + 1 = 4n − 2 if k1 ≥ 4; |NG(T2)| =

2(n − 1) + 2(n − 1) + 1 = 4n − 3 if k1 = 3. It remains to show that |NG(S )| ≥ |NG(T2)| for every two-vertex subset
S = {u, v} of G. Suppose k1 ≥ 4 for the first case. Then, by Lemma 7, |NG(S )| ≥ 2n + 2n − 2 = 4n − 2 if (u, v) < E(G);
|NG(S )| = (2n − 1) + (2n − 1) = 4n − 2 if (u, v) ∈ E(G). Thus, |NG(S )| ≥ |NG(T2)| for k1 ≥ 4. Now, suppose k1 = 3 for
the second case. Then, also by Lemma 7, |NG(S )| ≥ 4n− 2 if (u, v) < E(G); |NG(S )| ≥ (2n− 1) + (2n− 1)− 1 = 4n− 3
if (u, v) ∈ E(G). Thus, |NG(S )| ≥ |NG(T2)| for k1 = 3. This completes the proof. �

γ3(G) for n ≥ 2 will be obtained in the following lemma. When n = 1, it is straightforward that γ3(G) = 2 if
k1 ≥ 5; γ3(G) = 1 if k1 = 4; γ3(G) = 0 if k1 = 3. For n ≥ 2, let T3 = {x, y, z} be a subset of V(G), where

x = v1,1,1,...,1, y = v1,2,1,...,1, and z = v2,1,1,...,1.

Then, the subgraph induced by T3 is a path of three vertices (y, x, z), where x, y ∈ V1 and z ∈ V2. Notice that {x, y} is a
minimum-neighborhood set of order two of G1, which follows from the construction of T2.

Lemma 9. Let G be an n-dimensional torus T (k1, . . . , kn) where n ≥ 2. Then,

γ3(G) =


6n − 5 if k1 ≥ 4,
6n − 6 if k1 = 3 & k2 ≥ 4,
6n − 7 if k1 = k2 = 3.

Proof. In order to prove that T3 is a minimum-neighborhood set of order three of G, |NG(T3)| will be calculated first
as before. Since {x, y} is a minimum-neighborhood set of G1, |NG1 ({x, y})| = γ2(G1), i.e., |NG1 ({x, y})| = 4(n − 1) − 2 if
k2 ≥ 4; |NG1 ({x, y})| = 4(n−1)−3 if k2 = 3. (Recall that G1 is isomorphic to an (n−1)-dimensional torus T (k2, . . . , kn).)
For k1 ≥ 4,

|NG(T3)| = |NG1 ({x, y})| + |NG2 (z)| + |NG({x, y}) ∩ Vk1 | + |NG(z) ∩ V3|.

Thus, |NG(T3)| = (4(n − 1) − 2) + 2(n − 1) + 2 + 1 = 6n − 5. For k1 = 3,

|NG(T3)| = |NG1 ({x, y})| + |NG2 (z)| + |NG({x, y}) ∩ V3|.

Thus, if k1 = 3 & k2 ≥ 4, then |NG(T3)| = (4(n − 1) − 2) + 2(n − 1) + 2 = 6n − 6; if k1 = k2 = 3, then |NG(T3)| =
(4(n − 1) − 3) + 2(n − 1) + 2 = 6n − 7.

In the remaining part of this proof, we will show, by induction on n, that |NG(S )| ≥ |NG(T3)| for every three-vertex
subset S of G. Let S j = S ∩ V j for 1 ≤ j ≤ k1, and assume w.l.o.g. |S 1| ≥ |S j| for every j. There are three cases
depending on the size of S 1.
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Case 1: |S 1| = 3.
In this case, S 1 = S and

|NG(S )| = |NG1 (S 1)| + |NG(S 1) ∩ V2| + |NG(S 1) ∩ Vk1 | = |NG1 (S 1)| + 6.

Suppose n = 2 for the first subcase. Note that G1 is isomorphic to Ck2 , a cycle of length k2. Thus, |NG1 (S 1)| ≥ 1 if
k2 ≥ 4; |NG1 (S 1)| = 0 if k2 = 3. Thus, if k1 ≥ 4 or k1 = 3 & k2 ≥ 4, then |NG(S )| ≥ 1 + 6 = 7 ≥ |NG(T3)|; if k1 = k2 = 3,
then |NG(S )| ≥ 0 + 6 > |NG(T3)|. Suppose n ≥ 3 for the second subcase. Then, |NG1 (S 1)| ≥ γ3(G1), where by the
induction hypothesis, γ3(G1) is 6(n − 1) − 5 if k2 ≥ 4; 6(n − 1) − 6 if k2 = 3 & k3 ≥ 4; 6(n − 1) − 7 if k2 = k3 = 3.
Therefore, if k1 ≥ 4 or k1 = 3 & k2 ≥ 4, then k2 ≥ 4 and thus |NG(S )| ≥ (6(n − 1) − 5) + 6 = 6n − 5 ≥ |NG(T3)|; if
k1 = k2 = 3, then |NG(S )| ≥ (6(n − 1) − 7) + 6 = 6n − 7 = |NG(T3)|.

Case 2: |S 1| = 2.
Assume w.l.o.g. |S p| = 1 for some p such that 2 < p ≤ k1. (The case of p = 2 is symmetric to the case of p = k1.)
Consider the first subcase where k1 ≥ 4. Let q = p + 1 if p = 3; let q = p − 1 otherwise, so that (Vp,Vq) ∈ E and
q < {1, 2} where E is the edge set of the skeleton of G. Then,

|NG(S )| ≥ |NG1 (S 1)| + |NGp (S p)| + |NG(S 1) ∩ V2| + |NG(S p) ∩ Vq|,

where |NG1 (S 1)| ≥ γ2(G1) = 4(n−1)−2 by Lemma 8. Thus, |NG(S )| ≥ (4(n−1)−2)+2(n−1)+2+1 = 6n−5 = |NG(T3)|.
Now, consider the second subcase where k1 = 3. Then, p = 3, i.e., |S 3| = 1, and

|NG(S )| ≥ |NG1 (S 1)| + |NG3 (S 3)| + |NG(S 1) ∩ V2|.

If k1 = 3 & k2 ≥ 4, then |NG(S )| ≥ (4(n − 1) − 2) + 2(n − 1) + 2 = 6n − 6 = |NG(T3)|; if k1 = k2 = 3, then
|NG(S )| ≥ (4(n − 1) − 3) + 2(n − 1) + 2 = 6n − 7 = |NG(T3)|.

Case 3: |S 1| = 1.
There exist two integers p and q, 2 ≤ p < q ≤ k1, such that |S p| = |S q| = 1. Consider the first subcase where k1 ≥ 4.
Let r < {1, p, q} be an index such that (Vr,V j) ∈ E for some j ∈ {1, p, q}. Then,

|NG(S )| ≥ |NG1 (S 1)| + |NGp (S p)| + |NGq (S q)| + |NG(S ) ∩ Vr |.

Thus, |NG(S )| ≥ 2(n − 1) + 2(n − 1) + 2(n − 1) + 1 = 6n − 5 = |NG(T3)|. For the remaining subcase where k1 = 3,

|NG(S )| ≥ |NG1 (S 1)| + |NGp (S p)| + |NGq (S q)|.

Thus, |NG(S )| ≥ 6n − 6 ≥ |NG(T3)|, whether k1 = 3 & k2 ≥ 4 or k1 = k2 = 3. This completes the proof. �

Theorem 4 determines γ4(G) for n ≥ 2. When n = 1, it is obvious that γ4(G) = 2 if k1 ≥ 6; γ4(G) = 1 if k1 = 5;
γ4(G) = 0 if k1 = 4. γ4(G) is left undefined if n = 1 and k1 = 3. For n ≥ 2, let T4 = {x, y, z,w} be a vertex subset of G,
where

(x, y, z,w) =


(v1,1, v2,1, v3,1, v2,2) if k1 ≥ 4 & n = 2,
(v1,1,1,1,...,1, v1,1,2,1,...,1, v1,2,1,1,...,1, v2,1,1,1,...,1) if k1 ≥ 4 & n ≥ 3,
(v1,1,1,,...,1, v1,2,1,...,1, v2,2,1,...,1, v2,1,1,...,1) if k1 = 3.

The subgraph induced by T4 is isomorphic to a complete bipartite graph, K1,3, if k1 ≥ 4 (whether n = 2 or n ≥ 3);
the induced subgraph is isomorphic to a cycle of length four, C4, if k1 = 3. It will be shown below that T4 is a
minimum-neighborhood set of order four of G.

Theorem 4. Let G be an n-dimensional torus T (k1, . . . , kn) where n ≥ 2. Then,

γ4(G) =


8 (= 8n − 8) if k1 ≥ 5 & n = 2,
8n − 9 if k1 ≥ 4 & n ≥ 3 or k1 = 4 & n = 2,
8n − 10 if k1 = 3 & k2 ≥ 4,
8n − 12 if k1 = k2 = 3.
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Proof. Let us calculate |NG(T4)| first as before. Firstly, suppose k1 ≥ 4 & n = 2. Then, |NG(T4)| = |NG1 (x)| +
|NG2 ({y,w})| + |NG3 (z)| + |(NG(x) ∩ Vk1 ) ∪ (NG(z) ∩ V4)|, where the last term is equal to two if k1 ≥ 5; it is equal to one
if k1 = 4. Notice that |NG1 (x)| = |NG2 ({y,w})| = |NG3 (z)| = 2. Thus, |NG(T4)| = 2 + 2 + 2 + 2 = 8(= 8n − 8) if k1 ≥ 5;
|NG(T4)| = 2+2+2+1 = 7(= 8n−9) if k1 = 4. Secondly, suppose k1 ≥ 4 & n ≥ 3. Observe that {x, y, z} is a minimum-
neighborhood set of order three of G1 from the construction of T3. Thus, |NG1 ({x, y, z})| = γ3(G1) = 6(n − 1) − 5 by
Lemma 9. Furthermore, the neighborhood in V2 of {y, z} is a subset of NG2 (w). Then, |NG(T4)| = |NG1 ({x, y, z})| +
|NG2 (w)| + |NG({x, y, z}) ∩ Vk1 | + |NG(w) ∩ V3| = (6(n − 1) − 5) + 2(n − 1) + 3 + 1 = 8n − 9. Finally, suppose k1 = 3.
Then, |NG(T4)| = |NG1 ({x, y})| + |NG2 ({w, z})| + |NG({x, y})∩ V3|. Note that {x, y} and {w, z} are minimum-neighborhood
sets of order two of G1 and G2, respectively. Hence by Lemma 8, |NG1 ({x, y})| = |NG2 ({w, z})| = 4(n − 1) − 2 if k2 ≥ 4;
|NG1 ({x, y})| = |NG2 ({w, z})| = 4(n − 1) − 3 if k2 = 3. Thus, |NG(T4)| = (4(n − 1) − 2) + (4(n − 1) − 2) + 2 = 8n − 10 if
k1 = 3 & k2 ≥ 4; |NG(T4)| = (4(n − 1) − 3) + (4(n − 1) − 3) + 2 = 8n − 12 if k1 = k2 = 3.

Now, it suffices to show that |NG(S )| ≥ |NG(T4)| for every four-vertex subset S of G. The proof is by induction on
n. Let S j = S ∩ V j for 1 ≤ j ≤ k1, and assume w.l.o.g. |S 1| ≥ |S j| for every j.

Case 1: |S 1| = 4.
In this case, S 1 = S . Then,

|NG(S )| = |NG1 (S 1)| + |NG(S 1) ∩ V2| + |NG(S 1) ∩ Vk1 | = |NG1 (S 1)| + 8.

If n = 2, then it is clear that |NG(S )| ≥ 8 ≥ |NG(T4)|. Suppose n ≥ 3. If k1 ≥ 4 or k1 = 3 & k2 ≥ 4, then k2 ≥ 4 and
thus |NG1 (S 1)| ≥ 8(n − 1) − 9 by the induction hypothesis. Thus |NG(S )| ≥ 8n − 9 ≥ |NG(T4)|. If k1 = k2 = 3, then
|NG(S )| ≥ 8n − 12 = |NG(T4)| since |NG1 (S 1)| ≥ 8(n − 1) − 12 by the induction hypothesis.

Case 2: |S 1| = 3.
Assume w.l.o.g. |S p| = 1 for some p such that 2 < p ≤ k1. Suppose k1 ≥ 4 for the first subcase. Let q = p + 1 if p = 3;
let q = p − 1 otherwise, so that (Vp,Vq) ∈ E and q < {1, 2}. Then,

|NG(S )| ≥ |NG1 (S 1)| + |NGp (S p)| + |NG(S 1) ∩ V2| + |NG(S p) ∩ Vq|.

For n = 2, it is clear that |NG1 (S 1)| ≥ 2 if k2 ≥ 5; |NG1 (S 1)| = 1 if k2 = 4. Thus, |NG(S )| ≥ 2 + 2 + 3 + 1 = 8 = |NG(T4)|
if k1 ≥ 5; |NG(S )| ≥ 1 + 2 + 3 + 1 = 7 = |NG(T4)| if k1 = 4. Let n ≥ 3. Then, |NG1 (S 1)| ≥ γ3(G1) = 6(n − 1) − 5 by
Lemma 9. Thus, |NG(S )| ≥ (6(n − 1) − 5) + 2(n − 1) + 3 + 1 = 8n − 9 = |NG(T4)|.

Suppose k1 = 3 for the second subcase. Then, p = 3 and

|NG(S )| ≥ |NG1 (S 1)| + |NG3 (S 3)| + |NG(S 1) ∩ V2|.

For n = 2, |NG(S )| ≥ 1 + 2 + 3 = 6 = |NG(T4)| if k1 = 3 & k2 ≥ 4; |NG(S )| ≥ 0 + 2 + 3 = 5 > |NG(T4)| if k1 = k2 = 3.
Let n ≥ 3. If k1 = 3 & k2 ≥ 4, then |NG(S )| ≥ (6(n − 1) − 5) + 2(n − 1) + 3 = 8n − 10 = |NG(T4)|. If k1 = k2 = 3, then
|NG(S )| ≥ (6(n − 1) − 7) + 2(n − 1) + 3 = 8n − 12 = |NG(T4)|.

Case 3: |S 1| = 2.
Case 3.1: |S p| = 2 for some p such that 2 ≤ p ≤ k1.

Assume w.l.o.g. p , 2. Suppose k1 ≥ 4 for the first subcase. As in Case 2, let q = p + 1 if p = 3; let q = p − 1
otherwise. Then,

|NG(S )| ≥ |NG1 (S 1)| + |NGp (S p)| + |NG(S 1) ∩ V2| + |NG(S p) ∩ Vq|.

Here, |NG1 (S 1)|, |NGp (S p)| ≥ γ2(G1) = 4(n−1)−2 by Lemma 8. Thus, |NG(S )| ≥ (4(n−1)−2)+ (4(n−1)−2)+2+2 =

8n − 8 ≥ |NG(T4)|, which holds true whether n = 2 or n ≥ 3. Suppose k1 = 3 for the second subcase. Then p = 3 and

|NG(S )| ≥ |NG1 (S 1)| + |NG3 (S 3)| + |NG(S 1) ∩ V2|.

If k1 = 3 and k2 ≥ 4, then |NG(S )| ≥ (4(n − 1) − 2) + (4(n − 1) − 2) + 2 = 8n − 10 = |NG(T4)|. If k1 = k2 = 3, then
|NG(S )| ≥ (4(n − 1) − 3) + (4(n − 1) − 3) + 2 = 8n − 12 = |NG(T4)|.

Case 3.2: |S p| = 1 and |S q| = 1 for some p, q such that 2 ≤ p < q ≤ k1.
Suppose k1 ≥ 4 for the first subcase. There exists an index r < {1, p, q} such that (Vr,V j) ∈ E for some j ∈ {1, p, q}.
Then,

|NG(S )| ≥ |NG1 (S 1)| + |NGp (S p)| + |NGq (S q)| + |NG(S ) ∩ Vr |.

11



Thus, |NG(S )| ≥ (4(n−1)−2)+2(n−1)+2(n−1)+1 = 8n−9 = |NG(T4)| except for only the case when k1 ≥ 5 & n = 2.
For the exceptional case, we can pick up another index r′ < {1, p, q, r} such that (Vr′ ,V j) ∈ E for some j ∈ {1, p, q}
since k1 ≥ 5. Then, |NG(S )∩Vr′ | ≥ 1 and thus |NG(S )| ≥ |NG1 (S 1)|+|NGp (S p)|+|NGq (S q)|+|NG(S )∩Vr |+|NG(S )∩Vr′ | ≥

2 + 2 + 2 + 1 + 1 = 8 = |NG(T4)|.
Suppose k1 = 3 for the second subcase. Then, p = 2, q = 3, and

|NG(S )| ≥ |NG1 (S 1)| + |NG2 (S 2)| + |NG3 (S 3)|.

If k1 = 3 & k2 ≥ 4, then |NG(S )| ≥ (4(n − 1) − 2) + 2(n − 1) + 2(n − 1) = 8n − 10 = |NG(T4)|. If k1 = k2 = 3, then
|NG(S )| ≥ (4(n − 1) − 3) + 2(n − 1) + 2(n − 1) = 8n − 11 > |NG(T4)|.

Case 4: |S 1| = 1.
In this case, k1 ≥ 4 and |S p| = |S q| = |S r | = 1 for some 2 ≤ p < q < r ≤ k1. Thus |NG(S )| ≥ |NG1 (S 1)| + |NGp (S p)| +
|NGq (S q)|+ |NGr (S r)| = 2(n−1) + 2(n−1) + 2(n−1) + 2(n−1) = 8n−8 ≥ |NG(T4)|. This completes the entire proof. �

Finally, γ′4(G) will be determined, where γ′4(G) = |NG(V(C))| for a minimum-neighborhood cycle C of order
four of G. Recall that for k1 = 3, the subgraph of G induced by T4 which is a minimum-neighborhood set of order
four contains a cycle of length four. Thanks to Theorem 4, it suffices to consider the case when k1 ≥ 4. Notice
γ′4(G) ≥ γ4(G) by the definition. Let C be the cycle of length four (x, y, z,w), such that

(x, y, z,w) = (v1,1,1,...,1, v1,2,1,...,1, v2,2,1,...,1, v2,1,1,...,1).

Notice that V(C) is equal to T4 for k1 = 3, which is a minimum neighborhood set for k1 = 3. It will be shown below
that C is a minimum-neighborhood cycle of order four of G, whether k1 = 3 or k1 ≥ 4.

Theorem 5. Let G be an n-dimensional torus T (k1, . . . , kn) where n ≥ 2. Then,

γ′4(G) =

{
8n − 8 if k1 ≥ 4,
γ4(G) if k1 = 3.

Proof. Suppose k1 ≥ 4 due to Theorem 4. Then, |NG(V(C))| = |NG1 ({x, y})| + |NG2 ({z,w})| + |NG({x, y}) ∩ Vk1 | +

|NG({z,w}) ∩ V3| = (4(n − 1) − 2) + (4(n − 1) − 2) + 2 + 2 = 8n − 8. It remains to show that |NG(S )| ≥ |NG(V(C))| for
every four-vertex subset S of G by which the induced subgraph, G〈S 〉, contains a cycle of length four. The proof is
by induction on n. Let S j = S ∩ V j for 1 ≤ j ≤ k1, and assume w.l.o.g. |S 1| ≥ |S j| for every j. Then, |S 1| , 3 by the
structure of a torus network.

Case 1: |S 1| = 4.
Obviously, |NG(S )| = |NG1 (S 1)| + |NG(S 1) ∩ V2| + |NG(S 1) ∩ Vk1 | = |NG1 (S 1)| + 8. It follows that if n = 2, then
|NG(S )| ≥ 8 = |NG(V(C))|; if n ≥ 3, where |NG1 (S 1)| ≥ 8(n − 1) − 8 by the induction hypothesis, then |NG(S )| ≥
8n − 8 = |NG(V(C))|.

Case 2: |S 1| = 2.
Assume w.l.o.g. |S 2| = 2. Then, |NG(S )| = |NG1 (S 1)| + |NG2 (S 2)| + |NG(S 1) ∩ Vk1 | + |NG(S 2) ∩ V3| ≥ (4(n − 1) − 2) +

(4(n − 1) − 2) + 2 + 2 = 8n − 8 = |NG(V(C))|.
Case 3: |S 1| = 1.

In this case, k1 = 4 and |S 2| = |S 3| = |S 4| = 1. Thus, |NG(S )| = |NG1 (S 1)| + |NG2 (S 2)| + |NG3 (S 3)| + |NG4 (S 4)| =

4 · 2(n − 1) = 8n − 8 = |NG(V(C))|. The proof is completed. �

4.2. The Super-Connectivity

Let G be an n-dimensional torus network, T (k1, k2, . . . , kn), where n ≥ 2. In this subsection, the 3-super-
connectivity, κ3

s (G), of a torus network will be determined: κ3
s (G) = γ4(G) for every torus network with only two

exceptions, T (3, 3) and T (4, 4). As by-products of this result, the 2- and 1-super-connectivities of torus networks are
also obtained. We begin with the two exceptional tori.

Lemma 10. (a) Let G be T (3, 3). Then, κ3
s (G) = κ2

s (G) = 8 and κ1
s (G) = 5.

(b) Let G be T (4, 4). Then, κ3
s (G) = κ2

s (G) = κ1
s (G) = 6.
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Figure 3: T (4, 4) with a vertex subset F, where the six vertices of F are marked as “×”.

Proof. For a vertex subset F of a graph G, let G′ denote the largest connected component of G \ F and let R =

V(G) \ (F ∪ V(G′)). To prove (a), let G be T (3, 3). If |V(G′)| = 1, then each component of G \ F is a trivial graph
and thus F contains at least two vertices in G j for 1 ≤ j ≤ 3. Recall that G j is the subgraph of G induced by V j.
Thus |F| ≥ 6 and |R| ≤ 2. If |V(G′)| ≥ 2, let S be a subset of V(G′) such that |S | = 2. Since NG(S ) ⊂ V(G′) ∪ F,
it follows that |V(G′) ∪ F| ≥ |S | + |NG(S )| ≥ 2 + 5 = 7, which means |R| ≤ 2. Hence, there is no F such that the
total number of vertices contained in the connected components of G \ F other than G′ is greater than two. From
the definition of κr

s(G), κ3
s (G) = κ2

s (G) = |V(G)| − 1 = 8. To show κ1
s (G) = 5, we claim κ1

s (G) ≥ 5 first. Suppose
to the contrary κ1

s (G) < 5, i.e., there exists a vertex subset F such that |F| ≤ 4 and |R| ≥ 2. Clearly |F| = 4 since
the connectivity of G is four. Also, |V(G′)| ≥ 2; suppose otherwise, then there are two isolated vertices u, v in G \ F
and NG({u, v}) ⊆ F, but |NG({u, v})| ≥ 6 by Lemma 7(a), which is a contradiction. Furthermore, |V(G′)|, |R| ≥ 4
since NG(V(G′)),NG(R) ⊆ F and γ2(G) = γ3(G) = 5 > |F| by Lemmas 8 and 9. This leads to a contradiction that
|V(G)| = |F| + |V(G′)| + |R| ≥ 4 + 4 + 4 > |V(G)|, proving the claim. For the set, S , of two end-vertices of an edge of
G, let F = NG(S ). Then |F| = 5, |V(G′)| = 2, and |R| = 2. Thus κ1

s (G) ≤ |F| = 5.
To prove (b), let G be T (4, 4). Figure 3 shows a vertex subset F of G, where |F| = 6, such that G \ F has two

connected components, each of size five. This implies κr
s(G) ≤ 6 for 1 ≤ r ≤ 3 (in fact, for 1 ≤ r ≤ 4). It remains to

show κr
s(G) ≥ 6 for 1 ≤ r ≤ 3. Let F ⊂ V(G) be of size at most five. Suppose G \ F is disconnected. Then, |F| = 4 or

|F| = 5. We denote by H1 and H2 respectively the subgraphs of G induced by V1 ∪V2 and V3 ∪V4. Observe that every
vertex of H1 has a unique neighbor contained in H2, and vice versa (G is isomorphic to the 4-dimensional hypercube,
and each of H1 and H2 is isomorphic to the 3-dimensional one). Assume w.l.o.g. that |V(H1) ∩ F| ≤ 2. Then, H1 \ F
is connected, and thus, the large connected component, containing V(H1) \ F, of G \ F also contains every vertex of
H2 \F whose unique neighbor in H1 is not a member of F. Since |V(H1)∩F| ≤ 2, there may be at most two vertices of
H2 \ F not contained in the large component. We claim the number of such vertices is one, which leads to completing
the proof of (b). Suppose to the contrary that the number is two. Let x, y be the two vertices of H2 \ F not contained
in the large component. Then, |V(H1) ∩ F| = 2 and |V(H2) ∩ F| ≤ 3. It is obvious that |NH2 ({x, y})| ≥ 4. Thus, at least
one of NH2 ({x, y}) is contained in the large component since |V(H2) ∩ F| ≤ 3. This implies that at least one of x, y is
also contained in the large component, which is a contradiction. �

Hereafter, we consider torus networks where either n = 2 & (k1, k2) < {(3, 3), (4, 4)} or n ≥ 3. An upper bound on
κ3

s (G) can be derived without difficulty as follows. Note that if n = 2, then k1 = 3 & k2 ≥ 4, or k1 = 4 & k2 ≥ 5, or
k1 ≥ 5.

Lemma 11. Let G be an n-dimensional torus T (k1, k2, . . . , kn) such that n ≥ 2 and (n, k1, k2) < {(2, 3, 3), (2, 4, 4)}.
Then, κ3

s (G) ≤ γ4(G).

Proof. Consider the case where (n, k1, k2) = (2, 3, 4) first. For a vertex subset F = {v1,1, v1,3, v2,1, v2,3, v3,2, v3,4}, G \ F
is a disconnected graph which has four connected components of size 2, 2, 1, and 1. This means that κ3

s (G) ≤ |F| =
6 = γ4(G). For the remaining cases, let S be a minimum-neighborhood set of order four of G and let F = NG(S ). Then

13



|F| = γ4(G). We claim |R| ≥ 4 where R = V(G) \ (S ∪ F). If n = 2, then

|R| = |V(G)| − (4 + γ4(G)) ≥


k1k2 − (4 + 8) ≥ 4 if k1 ≥ 5,
k1k2 − (4 + 7) ≥ 4 if k1 = 4 & k2 ≥ 5,
k1k2 − (4 + 6) ≥ 4 if k1 = 3 & k2 ≥ 5.

If n ≥ 3, then |R| ≥ 3n − (4 + (8n − 9)) = (3n − 8n) + 5 ≥ 4. Thus, the claim is proved. This implies that for every
connected component of G \ F, its vertex set is completely contained either in S or in R. The total number of vertices
contained in the connected components of G \ F other than the largest one is at least four. Thus κ3

s (G) ≤ γ4(G). �

To prove κ3
s (G) ≥ γ4(G), let F be an arbitrary subset of V(G) such that |F| < γ4(G). We will show that G \ F

has a large connected component with size of at least |V(G)| − |F| − 3. The two-dimensional torus problem is first
considered and the higher-dimensional torus problem will be discussed later. Let F j = V j ∩ F for 1 ≤ j ≤ k1.
Assume w.l.o.g. |F1| ≤ |F j| for every j. Let G be a two-dimensional torus T (k1, k2). Then |F1| ≤ 1; suppose otherwise,
|F| ≥ 2k1 ≥ γ4(G) by Theorem 4, which contradicts the condition for |F|. Recall that for vertex set V of the skeleton
G of G, V = {V1,V2, . . . ,Vk1 }. Let Z be the subset of V such that

Z ≡ {V j ∈ V : |F j| ≥ 2} and let Z̄ ≡ V \ Z.

Then, for every V j ∈ Z̄, G j \ F is connected. This is because κ(G j) = 2 where κ(G j) is the connectivity of G j. Notice
that G j denotes G〈V j〉, the subgraph induced by V j, and remember V1 ∈ Z̄.

Lemma 12. Let G be a two-dimensional torus T (k1, k2) where (k1, k2) < {(3, 3), (4, 4)}. Let F be an arbitrary subset
of V(G) such that |F| < γ4(G).
(a) If |Z| ≤ 2, there is a path in G \ F between any pair of vertices of

⋃
V j∈Z̄ V j \ F.

(b) If |Z| ≥ 3, then F1 = ∅.

Proof. For the proof of (a), it will be shown that for every Vp ∈ Z̄ where p , 1, there exists a path in G \ F joining a
vertex of Vp \ Fp and a vertex of V1 \ F1. If k1 = 3 & k2 ≥ 4, then p ∈ {2, 3} and thus there is an edge (x, y) for some
x ∈ Vp \ Fp and y ∈ V1 \ F1. Suppose k1 ≥ 4 & k2 ≥ 5 or k1 ≥ 5. There exists a four-vertex subset W of Vp \ Fp since
k2 ≥ 5 and |Fp| ≤ 1. Let W = {vp,i1 , vp,i2 , vp,i3 , vp,i4 }. From each vertex vp,i j of W, we define two paths in G to v1,i j ∈ V1:
an upward path Pu

j = (vp,i j , vp−1,i j , . . . , v1,i j ) and a downward path Pd
j = (vp,i j , vp+1,i j , . . . , vk1,i j , v1,i j ). These eight paths

in total are internally vertex-disjoint. If |F1| = 0, at least one of the eight paths is a path of G \ F between Vp \ Fp and
V1 \ F1 since |F| < γ4(G) ≤ 8. Consider the case when |F1| = 1. In this case, |Fp| = 1. Among the eight paths above,
there are at least six paths such that the last vertex of each path is not in F1. At least one of these six paths is also a
path of G \F between Vp \Fp and V1 \F1 since |F| − |F1| − |Fp| = |F| −2 < γ4(G)−2 ≤ 6, completing the proof of (a).

To prove (b), suppose to the contrary that F1 , ∅. Then, |F| ≥ 2|Z| + (k1 − |Z|) ≥ k1 + 3 ≥ γ4(G) by Theorem 4,
which contradicts the condition for |F|. �

For a subset F of V(G), let B =
⋃

V j∈Z̄ V j \ F if |Z| ≤ 2, and let B = V1 if |Z| ≥ 3. Note that in G \ F, there is a
path joining any pair of vertices of B. The connected component of G \ F that contains B will be referred to as a big
component. Observe that the big component is of size at least |V(G)| − |F| − 3 if and only if RW ∩ B , ∅ for every
four-vertex subset W of G \ F, where RW is the set of vertices reachable from some vertex w ∈ W along a path of
G \ F. By definition, W ⊆ RW . The condition is equivalent to saying that at least one vertex of W is contained in the
big component. The subgraph of G induced by RW is not necessarily connected. It will be proved in the following
lemma that the big component is indeed the large connected component of size at least |V(G)| − |F| − 3.

Lemma 13. Let G be a two-dimensional torus T (k1, k2) where (k1, k2) < {(3, 3), (4, 4)}. Let F be an arbitrary subset
of V(G) such that |F| < γ4(G). For every four-vertex subset W of G \ F, RW ∩ B , ∅.

Proof. First, consider the case when |Z| ≤ 2. In this case, B =
⋃

V j∈Z̄ V j \F. Suppose RW ∩B = ∅ for some four-vertex
subset W. Then, RW ⊂

⋃
Vp∈Z Vp. For each Vp ∈ Z, there exists some Vq ∈ Z̄ such that (Vp,Vq) ∈ E. Since |Fq| ≤ 1

and there exists a perfect matching in G〈Vp ∪Vq〉 joining Vp and Vq, at most one vertex of Vp is contained in RW . This
implies |RW | ≤ 2, which is a contradiction to |RW | ≥ |W | = 4.
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Next, consider the case when |Z| ≥ 3. Note that F1 = ∅ from Lemma 12(b), and B = V1 ∈ Z̄. Also, we have
k1 = |Z|+ |Z̄| ≥ 3 + 1 = 4, and moreover k2 ≥ 5. Suppose to the contrary that RW ∩V1 = ∅ for some four-vertex subset
W. Let R j

W = RW ∩ V j for V j ∈ V. Let Vp ∈ V such that |RW ∩ Vp| ≥ |RW ∩ V j| for every V j ∈ V. Then, 2 ≤ p ≤ k1.
There are three cases depending on |Rp

W |.
Case 1: |Rp

W | ≥ 4.
From each vertex of Rp

W , there exist two paths in G to some vertex of V1, one upward path and one downward path
defined in the proof of Lemma 12. The 2|Rp

W | paths in total are internally vertex-disjoint and RW ∩ V1 = ∅, which
implies |F| ≥ 2|Rp

W | ≥ 8. Moreover, 8 ≥ γ4(G) from Theorem 4. This contradicts the condition for |F|.
Case 2: |Rp

W | = 3.
In this case, |Fp| ≥ 2 since |Vp| = k2 ≥ 5. Similar to Case 1, there are six internally vertex-joint paths between Rp

W and
V1. Furthermore, RW ∩ V1 = ∅. Thus, |F| = |Fp| + 6 ≥ 2 + 6 ≥ γ4(G), which is a contradiction.

Case 3: |Rp
W | ≤ 2.

Let J = { j : R j
W , ∅}. For each j ∈ J, |F j| ≥ 2; suppose otherwise, |R j

W | ≥ k2 − 1 ≥ 4 > |Rp
W |, which is a contradiction.

Let q = min J, r = max J. Then, either |J| ≥ 3 or |J| = 2 & |Rq
W | = |Rr

W | = 2. Recall |RW | ≥ |W | = 4. There exist
|Rq

W | upward paths (between Rq
W and V1) and |Rr

W | downward paths (between Rr
W and V1). These paths are internally

vertex-disjoint. Thus, |F| ≥
∑

j∈J |F j| + (|Rq
W | + |R

r
W |) ≥ min{2 · 3 + (1 + 1), 2 · 2 + (2 + 2)} = 8 ≥ γ4(G), which is a

contradiction. This completes the entire proof. �

Theorem 6. Let G be a two-dimensional torus T (k1, k2). Then,

κ3
s (G) =


8 if k1 = k2 = 3,
6 if k1 = k2 = 4,
γ4(G) otherwise.

Proof. The proof is a direct consequence of Lemmas 10, 11, and 13. �

Once the (r + 1)-super-connectivity of a graph is determined for some r, the r-super-connectivity of the graph can
be obtained simply as suggested by the following lemma.

Lemma 14. Let G be a graph and r be a nonnegative integer. If κr+1
s (G) ≥ γr+1(G), then κr

s(G) ≥ γr+1(G).

Proof. Consider a vertex subset F of G such that |F| < γr+1(G). Let H be the largest connected component of G \ F
and let R = V(G) \ (F ∪ V(H)). Since κr+1

s (G) ≥ γr+1(G), it follows that |R| ≤ r + 1. Furthermore, |R| , r + 1. Suppose
|R| = r + 1, then γr+1(G) ≤ |NG(R)| ≤ |F| < γr+1(G) from the fact that NG(R) ⊆ F, which is a contradiction. Therefore,
it is concluded that |R| ≤ r, proving the lemma. �

Theorem 7. Let G be a two-dimensional torus T (k1, k2).

(a) κ2
s (G) =


8 if k1 = k2 = 3,
6 if k1 = k2 = 4,
γ3(G) otherwise.

(b) κ1
s (G) =


5 if k1 = k2 = 3,
6 if k1 = k2 = 4,
γ2(G) otherwise.

Proof. Suppose (k1, k2) < {(3, 3), (4, 4)}. From Lemmas 8 and 9 and Theorem 4 of Section 4.1, we can see that
γ4(G) ≥ γ3(G) ≥ γ2(G). Thus, by Theorem 6 and Lemma 14, it follows that κ2

s (G) ≥ γ3(G) and κ1
s (G) ≥ γ2(G). It

remains to show κ2
s (G) ≤ γ3(G) and κ1

s (G) ≤ γ2(G). For a minimum-neighborhood set of order three, S , of G where
|NG(S )| = γ3(G), we have |V(G)| − (|S |+ |NG(S )|) = k1k2 − (3 + γ3(G)) ≥ min{4 · 4− (3 + 7), 3 · 4− (3 + 6)} ≥ |S | = 3.
Thus, every connected component of G \NG(S ) is of a size at most |V(G)| −γ3(G)−3, proving κ2

s (G) ≤ γ3(G). Finally,
for a minimum-neighborhood set of order two, S , of G where |NG(S )| = γ2(G), we have |V(G)| − (|S | + |NG(S )|) =

k1k2 − (2 + γ2(G)) ≥ min{4 · 4 − (2 + 6), 3 · 4 − (2 + 5)} ≥ |S | = 2. Thus, the size of every connected component of
G \ NG(S ) is at most |V(G)| − γ2(G) − 2, proving κ1

s (G) ≤ γ2(G). �
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The remaining part of this subsection is devoted to the higher-dimensional torus networks. Let G be an n-
dimensional torus T (k1, k2, . . . , kn) where n ≥ 3. To conclude κ3

s (G) ≥ γ4(G), it will be shown as before that for
an arbitrary subset F of V(G) such that |F| < γ4(G), G \ F has a large connected component with size of at least
|V(G)| − |F| − 3. A two-dimensional skeleton of G will be defined and exploited, instead of the one-dimensional skele-
ton used for the two-dimensional torus problem. A similar approach, adjusted to the two-dimensional skeleton, will
be taken for the higher-dimensional torus problem.

T (k1, k2, . . . , kn) where n ≥ 3 can be viewed as T (k1, k2) × T (k3, . . . , kn). This recursive structure allows for the
definition of a two-dimensional skeleton isomorphic to T (k1, k2). We denote by Vp,q a subset of V(G) such that Vp,q ≡

{vi1,i2,...,in : i1 = p, i2 = q, 1 ≤ i j ≤ k j for 3 ≤ j ≤ n}, where 1 ≤ p ≤ k1 and 1 ≤ q ≤ k2. We redefine

V ≡ {Vp,q : 1 ≤ p ≤ k1, 1 ≤ q ≤ k2}.

V is still a partition of V(G). Let E represent an adjacency relation on V so that (Vp,q,Vp′,q′ ) ∈ E if there exists an edge
(x, y) ∈ E(G) for some x ∈ Vp,q and y ∈ Vp′,q′ . The graph G whose vertex set and edge set respectively are V and E is
said to be a two-dimensional skeleton of G. A vertex of G is referred to as a supernode.

Lemma 15. Let G be the two-dimensional skeleton of G, where G is an n-dimensional torus T (k1, k2, . . . , kn), n ≥ 3.
(a) G is isomorphic to a two-dimensional torus T (k1, k2).
(b) Every induced subgraph of G by a supernode Vp,q of G is isomorphic to an (n−2)-dimensional torus T (k3, . . . , kn).
(c) If (Vp,q,Vp′,q′ ) ∈ E, there are |Vp,q| edges of G joining Vp,q and Vp′,q′ , which form a perfect matching of the induced
subgraph of G, G〈Vp,q ∪ Vp′,q′〉.
(d) For every subset X of V such that |X|, |X̄| ≥ 4, there exists a matching of size four in G joining X and X̄, where
X̄ = V \ X.

Proof. The proofs of (a), (b), and (c) are trivial. To prove (d), suppose that the size of a maximum matching between
X and X̄, denoted by m∗, is less than four. Let G′ be the spanning subgraph of G obtained by removing all the edges
of G joining two supernodes both of which are contained in X or in X̄. Then, G′ is bipartite since every edge of G′
joins X and X̄. Furthermore, the size of its maximum matching is m∗. This implies that there exists a vertex cover C
of size m∗ in G′, where a vertex cover of a graph is defined to be a set of vertices such that each edge of the graph is
incident to at least one vertex of the set. This is because, by the König-Egerváry Theorem [2], the size of a maximum
matching in a bipartite graph is equal to the size of its minimum vertex cover. Since G′ \ C contains no edge at all,
G \ C contains no edge between X \ C and X̄ \ C. This means that C is a vertex cut of size m∗ < 4, separating X \ C
and X̄ \ C, which contradicts the fact that the connectivity of G is four. Note that X \ C and X̄ \ C are nonempty.
Therefore, G has a matching of size four between X and X̄. �

Let Z denote the subset of V such that

Z ≡ {Vp,q ∈ V : |Fp,q| ≥ κ(Gp,q)} and let Z̄ ≡ V \ Z,

where Fp,q ≡ F ∩ Vp,q and Gp,q is the subgraph of G induced by Vp,q. Then, for every Vp,q ∈ Z̄, Gp,q \ F is connected.
Note that κ(Gp,q) = 2n − 4. Hereafter, when referring to a supernode of V, its index will be dropped for notational
simplicity.

Lemma 16. Let G be an n-dimensional torus T (k1, k2, . . . , kn) where n ≥ 3. Let F be an arbitrary subset of V(G) such
that |F| < γ4(G).
(a) If |Z| ≤ 3, the subgraph of G induced by

⋃
X∈Z̄ X \ F is connected.

(b) If |Z| ≥ 4, there exists a supernode Y ∈ Z̄ such that Y ∩ F = ∅.

Proof. To prove (a), we claim that G〈X ∪ Y〉 \ F is connected for each pair X,Y ∈ Z̄ such that (X,Y) ∈ E where E
is the edge set of the two-dimensional skeleton of G. It suffices to show that there exists an edge (x, y) ∈ E(G) for
some x ∈ X \ F and y ∈ Y \ F. This is because G〈X \ F〉 and G〈Y \ F〉 are both connected graphs. Furthermore,
|X ∩ F| + |Y ∩ F| ≤ 2(2n − 5) = 4n − 10. Suppose that no such edge (x, y) exists, then |X ∩ F| + |Y ∩ F| ≥ |X| ≥ 3n−2.
It is impossible that 3n−2 ≤ 4n − 10 for every n ≥ 3, thus the claim is proved. In addition, G \ Z is connected since
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the connectivity of G is four. Recall that G is isomorphic to T (k1, k2). This implies that the subgraph induced by⋃
X∈Z̄ X \ F is connected, completing the proof of (a).

To prove (b), suppose to the contrary that X ∩ F , ∅ for every X ∈ Z̄. Then, |F| ≥ (2n − 4)|Z| + (k1k2 − |Z|) =

(2n − 5)|Z| + k1k2 ≥ 4(2n − 5) + k1k2. It follows that if k1 = k2 = 3, then |F| ≥ 4(2n − 5) + 9 = 8n − 11 > γ4(G); if
k1 = 3 & k2 ≥ 4, then |F| ≥ 4(2n − 5) + 12 = 8n − 8 > γ4(G); if k1 ≥ 4, then |F| ≥ 4(2n − 5) + 16 = 8n − 4 > γ4(G).
This contradicts the condition for |F|. �

For a subset F of V(G), let B ≡
⋃

X∈Z̄ X \ F, if |Z| ≤ 3; let B ≡ Y for an arbitrary supernode Y ∈ Z̄ such that
Y ∩ F = ∅, if |Z| ≥ 4. As before, it will be shown that the size of the connected component of G \ F that contains B,
called a big component, is at least |V(G)| − |F| − 3. For a four-vertex subset W of G \ F, RW is defined as the set of
vertices reachable, via a path of G \ F, from some vertex of W. It will be proved that RW ∩ B , ∅. To begin with, the
problem of how many supernodes of G intersect with RW is considered. Let W denote the subset of V such that

W ≡ {X ∈ V : X ∩ RW , ∅} and let W̄ ≡ V \W.

Lemma 17. Let G be an n-dimensional torus T (k1, k2, . . . , kn) where n ≥ 3, and let F be an arbitrary subset of V(G)
such that |F| < γ4(G). For every four-vertex subset W of G \ F, |W| ≥ 4.

Proof. Suppose to the contrary that |W| ≤ 3. Let W = {X1, . . . , Xq} for q = |W|. Assume w.l.o.g. |X j∩RW | ≥ |X j+1∩RW |

for all 1 ≤ j < q. Let X be a set of arbitrary 4−q supernodes in NG(X1)∩W̄. Let {(X j,Y j) : X j ∈W,Y j ∈ V\(W∪X), 1 ≤
j ≤ q} be a matching of size q between W and V \ (W ∪ X). Such a matching can be obtained from a matching M of
size four between W∪X and V\(W∪X). The existence of a matching M follows from Lemma 15(d) since |W∪X| = 4
and |V \ (W ∪ X)| = |V| − 4 ≥ 5. Let Y = NG(W) \ ({Y j : 1 ≤ j ≤ q} ∪ X). The vertices of

⋃
1≤ j≤q (X j ∪ Y j),

⋃
X∈X X,

and
⋃

Y∈Y Y which belong to F are to be counted.
We pick up a subset W j of X j ∩ RW for 1 ≤ j ≤ q such that (i) |W j| ≥ 1, (ii)

∑q
j=1 |W j| = 4, and (iii) |W j| ≥ |W j+1|

for all 1 ≤ j < q. This is always possible since q ≤ 3 and |RW | ≥ |W | = 4. For all j such that 1 ≤ j ≤ q, we claim that
(i) for every vertex x ∈ W j, we have y ∈ F where y ∈ Y j is the neighbor of x, and (ii) for every vertex x ∈ Γ j where
Γ j ≡ NG〈X j〉(W j), we have x ∈ F or y ∈ F, where y ∈ Y j is the neighbor of x. Suppose (i) or (ii) is violated, then Y j

would be a supernode of W, which is a contradiction. Thus, X j∪Y j contains at least |W j|+ |Γ j| vertices of F. It follows
that for 1 ≤ j ≤ q,

|F ∩ (X j ∪ Y j)| ≥ |W j| + |Γ j| ≥ p j + γp j (G〈X j〉), (1)

where p j = |W j|. For each X ∈ X, we have NG(W1)∩X ⊂ F; suppose otherwise, X would be a supernode of W, which
is a contradiction. So,

|F ∩
⋃
X∈X

X| ≥ |X| · |W1| = (4 − q)p1. (2)

For each Y ∈ Y, there exists X j such that (X j,Y) ∈ E, and moreover, we have NG(W j) ∩ Y ⊂ F. Thus,

|F ∩
⋃
Y∈Y

Y | ≥ |Y| · |Wq| = (|NG(W)| − q − |X|)pq ≥ (γq(G) − 4)pq. (3)

From the three inequalities, we obtain

|F| ≥
∑q

j=1{p j + γp j (G〈X j〉)} + {(4 − q)p1 + (γq(G) − 4)pq}. (4)

In the remaining part of this proof, it will be shown that |F| ≥ γ4(G) from inequality (4), which contradicts the
condition for |F|. In regards to the term γp j (G〈X j〉), recall that G〈X j〉 is isomorphic to an (n − 2)-dimensional torus
T (k3, . . . , kn). For simplicity, H will be used, instead of G〈X j〉, to denote the subgraph of G induced by a supernode of
G. From the results of Section 4.1, we can derive the following inequalities, which hold true for every n ≥ 3.

γ2(H) ≥
{

4(n − 2) − 2 = 4n − 10 if k3 ≥ 4,
4(n − 2) − 3 = 4n − 11 if k3 = 3.

γ3(H) ≥
{

6(n − 2) − 5 = 6n − 17 if k3 ≥ 4,
6(n − 2) − 7 = 6n − 19 if k3 = 3.
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γ4(H) ≥
{

8(n − 2) − 9 = 8n − 25 if k3 ≥ 4,
8(n − 2) − 12 = 8n − 28 if k3 = 3.

The right-hand sides of the inequalities are negative in some cases, but these cause no problem; γ4(H) is left undefined
and never used when |V(H)| = 3, i.e., n = 3 & k3 = 3. There are three cases depending on |W|. Remember that G is
isomorphic to T (k1, k2).

Case 1: |W| = 1 (q = 1).
In this case, p1 = 4 and the right-hand side of inequality (4) is equal to

(4 + γ4(H)) + (3 · 4 + 0) = γ4(H) + 16.

If k1 ≥ 4 or k1 = 3 & k2 ≥ 4, then k3 ≥ 4, and thus, |F| ≥ (8n−25)+16 = 8n−9 ≥ γ4(G) by Theorem 4. If k1 = k2 = 3,
then |F| ≥ (8n − 28) + 16 = 8n − 12 = γ4(G).

Case 2: |W| = 2 (q = 2).
If p1 = 3 & p2 = 1, the right-hand side of inequality (4) is equal to

(3 + γ3(H)) + (1 + γ1(H)) + (2 · 3 + (γ2(G) − 4) · 1) = γ3(H) + γ1(H) + γ2(G) + 6;

if p1 = p2 = 2, it is equal to

(2 + γ2(H)) + (2 + γ2(H)) + (2 · 2 + (γ2(G) − 4) · 2) = 2γ2(H) + 2γ2(G).

Here, γ2(G) = 6 if k1 ≥ 4; γ2(G) = 5 if k1 = 3 by Lemma 8. Thus, if k1 ≥ 4, then

|F| ≥ min{γ3(H) + γ1(H) + γ2(G) + 6, 2γ2(H) + 2γ2(G)}
≥ min{(6n − 17) + (2n − 4) + 6 + 6, 2(4n − 10) + 2 · 6} = 8n − 9 = γ4(G).

If k1 = 3 & k2 ≥ 4, then

|F| ≥ min{(6n − 17) + (2n − 4) + 5 + 6, 2(4n − 10) + 2 · 5} = 8n − 10 = γ4(G).

Finally, if k1 = k2 = 3, then

|F| ≥ min{(6n − 19) + (2n − 4) + 5 + 6, 2(4n − 11) + 2 · 5} = 8n − 12 = γ4(G).

Case 3: |W| = 3 (q = 3).
In this case, p1 = 2 and p2 = p3 = 1. The the right-hand side of inequality (4) is equal to

(2 + γ2(H)) + (1 + γ1(H)) + (1 + γ1(H)) + (1 · 2 + (γ3(G) − 4) · 1) = γ2(H) + 2γ1(H) + γ3(G) + 2,

where γ3(G) is, by Lemma 9, equal to 7, 6, and 5, respectively, if k1 ≥ 4, k1 = 3 & k2 ≥ 4, and k1 = k2 = 3. Thus, if
k1 ≥ 4, then |F| ≥ (4n−10)+2(2n−4)+7+2 = 8n−9 = γ4(G); if k1 = 3 & k2 ≥ 4, then |F| ≥ (4n−10)+2(2n−4)+6+2 =

8n− 10 = γ4(G); if k1 = k2 = 3, then |F| ≥ (4n− 11) + 2(2n− 4) + 5 + 2 = 8n− 12 = γ4(G). This completes the entire
proof of this lemma. �

Lemma 17 achieves the target of proving RW ∩ B , ∅ for the case when |Z| ≤ 3. In this case, there exists at least
one supernode X′ in W∩ Z̄. For every x ∈ X′ \ F, we have x ∈ RW and x ∈ B, since B is defined to be

⋃
X∈Z̄ X \ F and

the subgraph of G induced by B is connected by Lemma 16(a). This implies RW ∩ B , ∅. Lemma 18 below deals with
the remaining case when |Z| ≥ 4, where B is defined to be an arbitrary supernode Y ∈ V such that Y ∩ F = ∅. (In fact,
this lemma holds true if there exists a supernode Y ∈ V such that Y ∩ F = ∅, whether or not |Z| ≥ 4.)

Lemma 18. Let G be an n-dimensional torus T (k1, k2, . . . , kn) where n ≥ 3, and let F be an arbitrary subset of V(G)
such that |F| < γ4(G). Let |Z| ≥ 4.
(a) For every supernode X ∈ V \ B such that X ∩ F = ∅, there exists a path in G \ F joining a vertex of X and a vertex
of B.
(b) For every four-vertex subset W of G \ F, RW ∩ B , ∅.
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Proof. We prove (a). Since the connectivity of G is four, there exist four pairwise internally vertex-disjoint paths P j,
1 ≤ j ≤ 4, in G between X and B. From each P j, we can construct |B| vertex-disjoint paths of G between X and B.
Thus there are a total of 4|B| pairwise internally vertex-disjoint paths of G between X and B. Suppose that none of
them is a path of G \ F. Then, |F| ≥ 4|B|. If k1 ≥ 4 or k1 = 3 & k2 ≥ 4, then |F| ≥ 4 · 4n−2 = 4n−1 > 8n − 9 ≥ γ4(G),
which is a contradiction. If k1 = k2 = 3, then |F| ≥ 4 ·3n−2 ≥ 8n−12 = γ4(G), which is also a contradiction. The proof
of (a) is completed.

To prove (b), suppose RW ∩ B = ∅, i.e., B ∈ W̄, for some four-vertex subset W. Then, X ∈ W̄ for each neighboring
supernode, X, of B, because B ∩ F = ∅ and there is a perfect matching in G〈X ∪ B〉 between X and B. Thus, |W̄| ≥ 5.
Also, |W| ≥ 4 from Lemma 17. Then, by Lemma 15(d), there exists a matching of size four, {(X j,Y j) : 1 ≤ j ≤ 4},
between W and W̄, where X j ∈W and Y j ∈ W̄ for each j. For 1 ≤ j ≤ 4, we count the vertices of (X j ∪ Y j)∩ F in the
same way as we did to derive inequality (1). Let x be a vertex in X j ∩ RW . Because of Y j ∈ W̄, the neighbor in Y j of x
should be a vertex of F, and for each neighbor y in X j of x, we have y ∈ F or y′ ∈ F where y′ is the neighbor in Y j of
y. Therefore each X j ∪ Y j contains at least 1 + (2n − 4) vertices of F. Thus,

⋃
1≤ j≤4(X j ∪ Y j) contains at least 8n − 12

vertices of F in total.
We need to find a few more vertices of F outside

⋃
j(X j ∪ Y j). Consider a neighboring supernode Y of {X j : 1 ≤

j ≤ 4}, if any, such that Y , Y j for 1 ≤ j ≤ 4. We claim Y ∩ F , ∅. Suppose otherwise. Then, Y ∈ W since there
is an edge (y, x) of G where y ∈ Y and x ∈ X j ∩ RW for some j. However, Y ∈ W̄ by (a) of this lemma and the fact
of B ∈ W̄. This is a contradiction. The claim is thus proved. The number of such supernodes Y is at least γ4(G) − 4,
where γ4(G) depends on k1 and k2 as shown in Theorem 4. Therefore, |F| ≥ (8n − 12) + (γ4(G) − 4). If k1 ≥ 4, then
|F| ≥ (8n−12) + (7−4) = 8n−9 = γ4(G), which is a contradiction. If k1 = 3 & k2 ≥ 4, then |F| ≥ (8n−12) + (6−4) =

8n − 10 = γ4(G), which is a contradiction; if k1 = k2 = 3, then |F| ≥ (8n − 12) + (4 − 4) = 8n − 12 = γ4(G), which is
also a contradiction. Thus, the lemma is proved. �

The discussions so far about the 3-super-connectivity of a higher-dimensional torus network can be summarized
as follows.

Theorem 8. Let G be T (k1, k2, . . . , kn) where n ≥ 3. Then, κ3
s (G) = γ4(G).

Proof. In each of two cases, depending on whether |Z| ≤ 3 or |Z| ≥ 4, we have RW ∩ B , ∅ for every four-vertex
subset W of G \ F by Lemmas 16, 17, and 18. Thus, the theorem follows. �

From Lemma 14 and Theorem 8, the 2- and 1-super-connectivities of higher-dimensional torus networks can be
derived.

Theorem 9. Let G be T (k1, k2, . . . , kn) where n ≥ 3. Then, κ2
s (G) = γ3(G) and κ1

s (G) = γ2(G).

Proof. From Lemmas 8, 9 and Theorem 4, γ4(G) ≥ γ3(G) ≥ γ2(G). Thus, by Theorem 8 and Lemma 14, κ2
s (G) ≥

γ3(G) and κ1
s (G) ≥ γ2(G). To prove κ2

s (G) ≤ γ3(G) and κ1
s (G) ≤ γ2(G), the counting argument in the proof of

Lemma 11 will be employed. For a minimum-neighborhood set S of order three of G where |NG(S )| = γ3(G), we
have |V(G)| − (|S | + |NG(S )|) =

∏n
j=1 k j − (3 + γ3(G)) ≥ 3n − (3 + (6n − 5)) ≥ |S | = 3, proving κ2

s (G) ≤ γ3(G).
For a minimum-neighborhood set S of order two of G where |NG(S )| = γ2(G), we have |V(G)| − (|S | + |NG(S )|) =∏n

j=1 k j − (2 + γ2(G)) ≥ 3n − (2 + (4n − 2)) ≥ |S | = 2, proving κ1
s (G) ≤ γ2(G). �

4.3. Conditional Diagnosability under the PMC Model
Let G be a two or higher-dimensional torus network. In this subsection, it will be shown that the conditional

diagnosability, tc(G), of G is equal to γ′4(G) + 1, excluding the three small torus networks T (3, 3), T (3, 4), and T (4, 4).
For the exceptional torus networks, their conditional diagnosabilities turned out to be d|V(G)|/2e − 1. The general
approach proposed in Section 3 will be applied to the analysis of tc(G) where Theorems 2 and 3 for the upper and
lower bounds on tc(G) are used. All the graph invariants needed are ready from Sections 4.1 and 4.2: γp(G) for
1 ≤ p ≤ 3, γ′4(G), and κ3

s (G).

Theorem 10. Let G be an n-dimensional torus T (k1, k2, . . . , kn) where n ≥ 2. Then,

tc(G) =

{
d|V(G)|/2e − 1 if (n, k1, k2) ∈ {(2, 3, 3), (2, 3, 4), (2, 4, 4)},
γ′4(G) + 1 otherwise.
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Proof. We prove the theorem in two cases.
Case 1: G ∈ {T (3, 3),T (3, 4),T (4, 4)}.

To prove tc(G) ≤ d|V(G)|/2e − 1, it suffices to provide two conditional fault sets F1, F2 with size of at most d|V(G)|/2e,
which are indistinguishable, i.e., are consistent with some syndrome σ. Let F1 = V1 ∪ {v2,1, v2,2} and F2 = V(G) \ F1
if G ∈ {T (3, 3),T (3, 4)}; let F1 = V1 ∪V2 and F2 = V(G) \ F1 if G = T (4, 4). Then, |F1|, |F2| ≤ d|V(G)|/2e, and F1 and
F2 are conditional sets. Consider a syndrome σ such that for each test (u, v),

σ(u, v) =

{
0 if u, v ∈ F j for some j ∈ {1, 2},
1 otherwise.

Then, F1 and F2 are both consistent with σ. Therefore, tc(G) ≤ d|V(G)|/2e − 1.
To show tc(G) ≥ d|V(G)|/2e − 1, Theorem 3 will be applied for q = 1 and t = d|V(G)|/2e − 1. It holds true that

t ≤ γ′4(G) + 1 since by Theorem 5, γ′4(T (3, 3)) = 4, γ′4(T (3, 4)) = 6, and γ′4(T (4, 4)) = 8. It remains to confirm that
the three conditions of Theorem 3 are all satisfied. Condition (i) of d|V(G)|/2e ≥ t + 1 is obvious. Condition (ii) of
γp(G) ≥ p for every p ≤ 3 can be verified easily from Lemmas 8 and 9. The last condition (iii) of κ3

s (G) ≥ t − 2 is
valid, since κ3

s (T (3, 3)) = 8, κ3
s (T (3, 4)) = 6, and κ3

s (T (4, 4)) = 6 by Theorem 6. Therefore, tc(G) ≥ t = d|V(G)|/2e − 1.
Case 2: G < {T (3, 3),T (3, 4),T (4, 4)}.

Utilizing Theorem 2 and Remark 2, it will be proved that tc(G) ≤ γ′4(G) + 1 first. We recycle the minimum-
neighborhood cycle of order four, C = (x, y, z,w), of G defined in Section 4.1, where x = v1,1,1,...,1, y = v1,2,1,...,1,
z = v2,2,1,...,1, and w = v2,1,1,...,1. Let F1 = NG(V(C)) ∪ {x, y} and F2 = NG(V(C)) ∪ {z,w}. It remains to check that F1
and F2 are both conditional sets, i.e., NG(u) * F1 and NG(u) * F2 for every u ∈ V(G). Imagine the two-dimensional
skeleton G of G, where x ∈ V1,1, y ∈ V1,2, z ∈ V2,2, and w ∈ V2,1. Note that if n = 2, each supernode of G is a singleton,
i.e., V1,1 = {x}, V1,2 = {y}, etc. Firstly, suppose u ∈ V1,1 ∪ V1,2 ∪ V2,1 ∪ V2,2, say, u ∈ V1,1 without loss of generality.
If u = x, then y < F2, w < F1, and y,w ∈ NG(u). If u , x, the neighbor in V1,k2 of u is not included in F1 ∪ F2.
In either case, NG(u) * F1 and NG(u) * F2. Secondly, suppose u ∈ Vi, j for some (i, j) < {(1, 1), (1, 2), (2, 1), (2, 2)}.
If n ≥ 3, then there are at least two vertices in NGi, j (u). Moreover, at least one of them is not included in F1 ∪ F2
since |Vi, j ∩ (F1 ∪ F2)| ≤ 1. If n = 2, then k2 ≥ 5 by the assumption of Case 2. Therefore there exists a neighboring
supernode, Vi′, j′ , of Vi, j such that Vi′, j′ ∩ (F1 ∪ F2) = ∅, which implies u′ < F1 ∪ F2 for the neighbor u′ ∈ Vi′, j′ of u.
Thus, NG(u) * F1 and NG(u) * F2, proving that F1 and F2 are conditional sets.

To prove tc(G) ≥ γ′4(G) + 1, Theorem 3 will be applied for q = 1 and t = γ′4(G) + 1. It suffices to check that
the three conditions of Theorem 3 are all satisfied. For condition (i), it will be shown that d|V(G)|/2e ≥ γ′4(G) + 2
in four cases. If n = 2 & k1 ≥ 4 (k2 ≥ 5), then d|V(G)|/2e ≥ d(4 · 5)/2e = 10 = (8n − 8) + 2 = γ′4(G) + 2.
If n = 2 & k1 = 3 (k2 ≥ 5), then d|V(G)|/2e ≥ d(3 · 5)/2e = 8 = (8n − 10) + 2 = γ′4(G) + 2. If n ≥ 3 &
(k1, k2) , (3, 3), then d|V(G)|/2e ≥ d3 · 4n−1/2e ≥ (8n − 8) + 2 ≥ γ′4(G) + 2. If n ≥ 3 & (k1, k2) = (3, 3), then
d|V(G)|/2e ≥ d3n/2e ≥ (8n − 12) + 2 = γ′4(G) + 2. Thus, condition (i) is satisfied. Condition (ii) is obvious from
Lemmas 8 and 9. Finally, regarding condition (iii), it will be shown that κ3

s (G) ≥ t−2 = γ′4(G)−1. Since κ3
s (G) = γ4(G)

by Theorems 6 and 8, it suffices to show γ4(G) ≥ γ′4(G) − 1, which is a direct consequence of Theorems 4 and 5. This
completes the entire proof. �

Corollary 1. Let G be an n-dimensional torus T (k1, . . . , kn) where n ≥ 2. Then,

tc(G) =



4 if (n, k1, k2) = (2, 3, 3),
5 if (n, k1, k2) = (2, 3, 4),
7 if (n, k1, k2) = (2, 4, 4),
8n − 7 if k1 ≥ 4, (n, k1, k2) , (2, 4, 4),
8n − 9 if k1 = 3 & k2 ≥ 4, (n, k1, k2) , (2, 3, 4),
8n − 11 if k1 = k2 = 3, (n, k1, k2) , (2, 3, 3).

A k-ary n-cube is defined as a Cartesian product of n cycles of length k, Ck×Ck×· · ·×Ck. Directly from Corollary 1,
the conditional diagnosability of a k-ary n-cube for every possible n and k can be obtained, as shown below. This is
an extension of the work of Chang et al. [5], where the conditional diagnosability of a k-ary n-cube for n, k ≥ 4 was
determined.
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Corollary 2. Let G be a k-ary n-cube where n ≥ 2 and k ≥ 3. Then,

tc(G) =


4 if n = 2 & k = 3,
7 if n = 2 & k = 4,
9 if n = 2 & k ≥ 5,
8n − 7 if n ≥ 3 & k ≥ 4,
8n − 11 if n ≥ 3 & k = 3.

5. Conclusion

A general technique was suggested for finding the conditional diagnosability of interconnection networks under
the PMC model. This technique is based on several graph invariants, including the girth, the size of the minimum-
neighborhood set/cycle of order p for some p, and the r-super-connectivity for some r. More specifically, to determine
the conditional diagnosability of a graph G of girth g(G), where 4q − 4 < g(G) ≤ 4q for some integer q, we need to
analyze γp(G) for 1 ≤ p < 4q, γ′4q(G), and the (4q−1)-super-connectivity of G, κ4q−1

s (G). The proposed technique was
applied to two or higher-dimensional torus networks, and their conditional diagnosabilities as well as the aforemen-
tioned graph invariants were completely established without exception. This technique is expected to be applicable
to many interconnection graphs, especially those whose girths are not too big, so as to determine their conditional
diagnosabilities. Fortunately, the girth of an interconnection graph is usually small if it possesses a recursive structure
or it can be defined recursively.
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