Disjoint Path Covers in Cubes of Connected Graphs

Jung-Heum Park ${ }^{\text {a }}$, Insung Ihm ${ }^{\text {b,* }}$
${ }^{a}$ School of Computer Science and Information Engineering
The Catholic University of Korea, Bucheon, Korea
${ }^{b}$ Department of Computer Science and Engineering Sogang University, Seoul, Korea

Abstract

Given a graph G, and two vertex sets S and T of size k each, a many-tomany k-disjoint path cover of G joining S and T is a collection of k disjoint paths between S and T that cover every vertex of G. It is classified as paired if each vertex of S must be joined to a designated vertex of T, or unpaired if there is no such constraint. In this article, we first present a necessary and sufficient condition for the cube of a connected graph to have a paired 2 -disjoint path cover. Then, a corresponding condition for the unpaired type of 2-disjoint path cover problem is immediately derived. It is also shown that these results can easily be extended to determine if the cube of a connected graph has a hamiltonian path from a given vertex to another vertex that passes through a prescribed edge.

Keywords: Disjoint path cover, strong hamiltonicity, hamiltonian path, prescribed edge, cube of graph.

1. INTRODUCTION

1.1. Problem specification

Given an undirected graph G, a path cover is a set of paths in G where every vertex in $V(G)$ is covered by at least one path. Of special interest is the vertex-disjoint path cover, or simply called disjoint path cover, which is one with an additional constraint that every vertex, possibly except for

[^0]terminal vertices, must belong to one and only one path. The disjoint path cover made of k paths is called the k-disjoint path cover (k-DPC for short).

Given two disjoint terminal vertex sets $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and $T=$ $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ of G, each representing k sources and sinks, the many-tomany $k-D P C$ is a disjoint path cover each of whose paths joins a pair of source and sink. The disjoint path cover is regarded as paired if every source s_{i} must be matched with a specific sink t_{i}. On the other hand, it is called unpaired if any permutation of sinks may be mapped bijectively to sources. A graph G is called paired (resp. unpaired) k-coverable if $2 k \leq|V(G)|$ and there always exists a paired (resp. unpaired) k-DPC for any S and T. The k-DPC has two simpler variants. One is the one-to-many k - $D P C$, whose paths join a single source to k distinct sinks. The other is the one-to-one $k-D P C$, whose paths always start from a single source and end up in a single sink.

The existence of a disjoint path cover in a graph is closely related to the concept of vertex connectivity: Menger's theorem states the connectivity of a graph in terms of the number of disjoint paths joining two distinct vertices, whereas the Fan Lemma states the connectivity of a graph in terms of the number of disjoint paths joining a vertex to a set of vertices [2]. Moreover, it can be shown that a graph is k-connected if and only if it has k disjoint paths joining two arbitrary vertex sets of size k each, in which a vertex that belongs to both sets is counted as a valid path. When a graph does not have a disjoint path cover of desired kind, it is natural to consider an augmented graph with higher connectivity. A simple way of increasing the connectivity is to raise a graph to a power: Given a positive integer d, the d-th power G^{d} of G is defined as a graph with the same vertex set $V(G)$ and an edge set that is augmented in such a way that two vertices of G^{d} are adjacent if and only if there exists a path of length at most d in G joining them. In particular, the graph G^{2} is called the square of G, while G^{3} is said to be the cube of G.

This paper aims to investigate the structures of the cubes of connected graphs in the point of disjoint path covers. First, we show a necessary and sufficient condition for the cube G^{3} of a connected graph G with $|V(G)| \geq 4$ to have a paired 2-DPC joining two arbitrary disjoint vertex sets $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{t_{1}, t_{2}\right\}$. Then, the corresponding condition for the existence of an unpaired 2 -DPC is immediately derived. In addition, we establish a necessary and sufficient condition under which the cube of a connected graph has an s - t hamiltonian path passing through a prescribed edge e for an arbitrary triple of s, t, and e.

1.2. Disjoint path covers

The disjoint path cover problem has been studied for several classes of graphs: hypercubes [6, 9, 14, 16], recursive circulants [18, 19, 25, 26], and hypercube-like graphs [25,26]. The structure of the cubes of connected graphs was investigated with respect to single-source 3 -disjoint path covers [24]. The problem was also investigated in view of a full utilization of nodes in interconnection networks [25]. Its intractability was shown that deciding the existence of a one-to-one, one-to-many, or many-to-many k-DPC in a general graph, joining arbitrary sets of sources and sinks, is NP-complete for all $k \geq 1[25,26]$.

The method for finding a disjoint path cover can easily be used for finding a hamiltonian path (or cycle) due to its natural relation to the hamiltonicity of graph. For instance, a hamiltonian path between two distinct vertices in a graph G is in fact a 1-DPC of G joining the vertices. An s - t hamiltonian path in G that passes an arbitrary sequence of k pairwise nonadjacent edges $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right)$ in the specified order always exists for any distinct s and t with $s \neq x_{i}, y_{i}$ and $t \neq x_{i}, y_{i}(1 \leq i \leq k)$ if G is paired $(k+1)$ coverable [25]. A simpler, $s-t$ hamiltonian path that passes a prescribed edge (x, y) with $\{s, t\} \cap\{x, y\}=\emptyset$ can also be found by solving the corresponding unpaired or paired 2-DPC problem [26]. While the unpaired version would be easier to tackle than the paired one, the difference is that the direction between x and y in the path may not be enforced through the unpaired 2-DPC. For more discussion on the hamiltonian paths (or cycles) passing through prescribed edges, refer to, for example, $[3,8]$.

1.3. Strong hamiltonian properties

The cube of a connected graph with at least four vertices is 1-hamiltonian, i.e., it is hamiltonian and remains so after the removal of any one vertex, as Chartrand and Kapoor showed [5]. Sekanina [29] and Karaganis [17] independently proved that the cube of a connected graph is hamiltonianconnected. Whether the cube is 1-hamiltonian-connected, i.e., it still remains hamiltonian-connected after the removal of any one vertex, was characterized for trees by Lesniak [21] and for connected graphs by Schaar [28]. Characterizations of connected graphs whose cubes are p-hamiltonian for $p \leq 3$ were also made in [20,28], and strong hamiltonian properties of the cube of a 2-edge connected graph were studied in [23].

On the other hand, the hamiltonicity of the square of a graph was investigated by several researchers. Fleischner proved that the square of every 2 -connected graph is hamiltonian [11] (for an alternative proof, refer to [13]
or [22]). In fact, the square of a 2 -connected graph is both hamiltonianconnected and 1-hamiltonian provided that its order is at least four [4]. These works were followed by several results on the hamiltonicity of the square graphs, in particular, by Abderrezzak et al. [1], Chia et al. [7], and Ekstein [10]. Interesting results on pancyclicity and panconnectivity of the square of a connected graph were given in [12]. For the square of a tree T, Harary and Schwenk showed that T^{2} is hamiltonian if and only if T is a caterpillar [15]. Recently, Radoszewski and Rytter proved that T^{2} has a hamiltonian path if and only if T is a horsetail [27].

1.4. Fundamental concepts and notation

Before proceeding to the main results, we summarize some fundamental terminologies on the graph connectivity that are frequently used in this article (refer to Figure 1 for an illustration of them). An edge of a graph G is called a bridge, or cut-edge, if its removal increases the number of connected components. Trivially, an edge is a bridge if and only if it is not contained in a cycle. A bridge is said to be nontrivial if none of its two end-vertices is of degree one. A vertex of G is called a pure bridge vertex if each of its incident edges is a nontrivial bridge. Furthermore, a set of three pairwise adjacent vertices, each having a degree of at least three, is called a pure bridge triangle if every edge that is incident with exactly one of the triangular vertices is a nontrivial bridge. In addition to these terminologies, we introduce another one:

Definition 1. A set of two adjacent vertices is called a pure bridge pair if both vertices are pure bridge vertices.

Next, we present two fundamental theorems about the hamiltonian properties of the cubes of connected graphs that play important roles in deriving our results.

Theorem 1 (Sekanina [29] and Karaganis [17]). The cube of every connected graph is hamiltonian-connected.

Theorem 2 (Schaar [28]). Given three vertices s, t, and v_{f} of a connected graph G, there exists an s-t hamiltonian path in $G^{3} \backslash v_{f}$ if and only if

- $\left\{s, t, v_{f}\right\} \nsubseteq N[v]$ for any pure bridge vertex v of G, and
- $\left\{s, t, v_{f}\right\}$ does not form a pure bridge triangle of G.

Figure 1: In this connected graph, the seven nontrivial bridges are marked in dotted lines. There are three pure bridge vertices v_{7}, v_{8}, and v_{15}, one pure bridge triangle $\left\{v_{9}, v_{10}, v_{14}\right\}$, and one pure bridge pair $\left\{v_{7}, v_{8}\right\}$.

In this article, $N_{G}(v)$, or $N(v)$ if the graph G is clear in the context, represents the open neighborhood of a vertex $v \in V(G)$, i.e. $\quad N_{G}(v)=$ $\{u \in V(G):(u, v) \in E(G)\}$, whereas $N_{G}[v]$, or $N[v]$, denotes the closed neighborhood of v, i.e. $N_{G}[v]=N_{G}(v) \cup\{v\}$. These neighborhood definitions are naturally extended to vertex sets, and will be used frequently in this article: $N_{G}(X)=\bigcup_{v \in X} N_{G}(v) \backslash X$ and $N_{G}[X]=N_{G}(X) \cup X$ for $X \subseteq V(G)$. In addition, the usual notations, $\delta_{G}(v)$ and $d_{G}(u, v)$, are employed to indicate the degree of vertex v in G and the distance between vertices u and v in G, respectively. Finally, we will call a vertex free if it does not belong to any terminal vertex set.

2. MANY-TO-MANY TWO-DISJOINT PATH COVERS

In this section, we derive, in parallel, the exact conditions for the cube of a connected graph G with $|V(G)| \geq 4$ to have a paired and unpaired $2-\mathrm{DPC}$, respectively, joining two arbitrary disjoint vertex sets $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{t_{1}, t_{2}\right\}$. First, let us discuss the necessary conditions.

Lemma 1 (Necessity for unpaired 2-DPC). Let $S=\left\{s_{1}, s_{2}\right\}$ and $T=$ $\left\{t_{1}, t_{2}\right\}$ be terminal sets of a connected graph G. If G^{3} has an unpaired $2-D P C$ joining S and T, then $\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\} \nsubseteq N_{G}[v]$ for any pure bridge vertex v of G

Proof. Suppose to the contrary $\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\} \subseteq N_{G}[v]$ for some pure bridge vertex v. Let $N_{G}(v)=\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ with $d=\delta_{G}(v)$. Also let $W=\left\{w_{i}: 1 \leq i \leq d\right\}$, where w_{i} is a neighbor of v_{i} in G other than v, implying $\left(w_{i}, w_{i^{\prime}}\right) \notin E\left(G^{3}\right)$ for any pair of w_{i} and $w_{i^{\prime}}$ in W. Let P_{1}
and P_{2} be two paths of the unpaired 2-DPC of G^{3}, defined as sequences of vertices. We denote by P_{1}^{\prime} and P_{2}^{\prime} the longest subsequences of P_{1} and P_{2}, respectively, whose elements, not necessarily contiguous to each other, are contained in $N_{G}[v] \cup W$. Then, (i) P_{1}^{\prime} and P_{2}^{\prime} altogether have $d+1$ vertices in $N_{G}[v]$ and d vertices in W, and (ii) their first and last vertices are all terminals contained in $N_{G}[v]$. Thus, at least one of P_{1}^{\prime} and P_{2}^{\prime}, say P_{1}^{\prime}, should have two consecutive vertices, w_{i} and w_{j}, of W. This indicates that, for $P_{1}=\left(x_{1}, x_{2}, \ldots, x_{p}\left(=w_{i}\right), \ldots, x_{q}\left(=w_{j}\right), \ldots, x_{m}\right)$, every vertex x_{k} with $p \leq k \leq q$ is not contained in $N_{G}[v]$. Since w_{i} and w_{j} are respectively contained in different connected components of $G \backslash v$, there should be two consecutive vertices $x_{k^{*}}$ and $x_{k^{*}+1}$ of P_{1}, for $p \leq k^{*} \leq q-1$, that are contained in different connected components of $G \backslash v$. This is, however, impossible since $d_{G}\left(x_{k^{*}}, x_{k^{*}+1}\right) \geq 4$. This completes the proof.

Obviously, the condition above is also necessary for G^{3} to have a paired 2-DPC joining S and T.

Lemma 2 (Necessity for paired 2-DPC). Let $S=\left\{s_{1}, s_{2}\right\}$ and $T=$ $\left\{t_{1}, t_{2}\right\}$ be terminal sets of a connected graph G. If G^{3} has a paired 2DPC joining S and T, then $\left\{s_{i}, t_{i}\right\}$ is not a pure bridge pair of G such that $\left\{s_{3-i}, t_{3-i}\right\} \subseteq N_{G}\left(\left\{s_{i}, t_{i}\right\}\right)$ for each $i=1,2$.

Proof. Suppose for a contradiction that, for some i, say, $i=2,\left\{s_{2}, t_{2}\right\}$ is a pure bridge pair such that $\left\{s_{1}, t_{1}\right\} \subseteq N_{G}\left(\left\{s_{2}, t_{2}\right\}\right)$. Due to Lemma $1, s_{1}$ and t_{1} must reside in the different connected components of $G \backslash\left(s_{2}, t_{2}\right)$, allowing us to assume w.l.o.g. that there exists a path $\left(s_{1}, s_{2}, t_{2}, t_{1}\right)$ in G, as shown in Figure 2. Now, for each neighbor $x_{i}\left(\neq t_{2}\right)$ of s_{2} with $1 \leq i \leq p\left(=\delta_{G}\left(s_{2}\right)-1\right)$ and $x_{1}=s_{1}, x_{i}$ has another neighbor x_{i}^{\prime} in G other than s_{2}. Similarly, for each neighbor $y_{j}\left(\neq s_{2}\right)$ of t_{2} with $1 \leq j \leq q\left(=\delta_{G}\left(t_{2}\right)-1\right)$ and $y_{1}=t_{1}$, y_{j} has another neighbor y_{j}^{\prime} in G other than t_{2}. Let X, X^{\prime}, Y, and Y^{\prime} with $|X|=\left|X^{\prime}\right|=p$ and $|Y|=\left|Y^{\prime}\right|=q$ be the sets of vertices made of x_{i}, x_{i}^{\prime}, y_{j}, and y_{j}^{\prime}, respectively. For the vertex set X_{i} (resp. Y_{j}) of a connected component of $G \backslash\left\{s_{2}, t_{2}\right\}$ containing x_{i} (resp. y_{j}), $1 \leq i \leq p, 1 \leq j \leq q$, we can easily see that, letting $X_{i}^{\prime}=X_{i} \backslash x_{i}$ and $Y_{j}^{\prime}=Y_{j} \backslash y_{j}$, the distance in G between X_{i}^{\prime} and Y_{j}^{\prime}, the distance between X_{i}^{\prime} and $X_{i^{\prime}}^{\prime}$ for $i \neq i^{\prime}$, and the distance between Y_{j}^{\prime} and $Y_{j^{\prime}}^{\prime}$ for $j \neq j^{\prime}$ are all greater than three.

For the $s_{1}-t_{1}$ path P_{1} and the $s_{2}-t_{2}$ path P_{2} in the paired 2 -DPC, define further that P_{1}^{\prime} and P_{2}^{\prime} are the longest subsequences of P_{1} and P_{2}, respectively, whose elements, not necessarily contiguous to each other, are contained in $X \cup X^{\prime} \cup Y \cup Y^{\prime} \cup\left\{s_{2}, t_{2}\right\}$. Then, (i) P_{1}^{\prime} and P_{2}^{\prime} altogether pass

Figure 2: A contradictory situation in the proof of Lemma 2.
through the $p+q+2$ vertices in $B=X \cup Y \cup\left\{s_{2}, t_{2}\right\}$ and the $p+q$ vertices in $W=X^{\prime} \cup Y^{\prime}$, and (ii) their end-vertices, four in total, are contained in B. Similar to the proof of Lemma 1, we can reason that the two subsequences of vertices may not have two consecutive vertices from W, indicating that the vertices of P_{1}^{\prime} and P_{2}^{\prime} should alternate in B and W. Observe in particular that s_{1} and t_{1}, the two end-vertices of P_{1}, are contained in X and Y, respectively. The fact that the distance in G between X and $\bigcup_{j} Y_{j}^{\prime}$, and also between Y and $\bigcup_{i} X_{i}^{\prime}$, is four, however, means that s_{1} may not reach t_{1} in $G^{3} \backslash\left\{s_{2}, t_{2}\right\}$ without passing through the two consecutive vertices from B (one from X and the next from Y), implying the path P_{1} is impossible to have. This contradiction completes the proof.

Interestingly enough, these two necessary conditions together form the sufficient condition for the cube of a connected graph to have a paired 2-DPC as follows.

Theorem 3 (Paired 2-DPC). Let $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{t_{1}, t_{2}\right\}$ be terminal sets of a connected graph G. The cube G^{3} has a paired 2-DPC joining S and T if and only if

- C1: $\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\} \nsubseteq N_{G}[v]$ for any pure bridge vertex v of G, and
- C2: $\left\{s_{i}, t_{i}\right\}$ is not a pure bridge pair of G such that $\left\{s_{3-i}, t_{3-i}\right\} \subseteq$ $N_{G}\left(\left\{s_{i}, t_{i}\right\}\right)$ for each $i=1,2$.

Proof. The necessity part is due to Lemmas 1 and 2. The sufficiency part proceeds by induction on the number of vertices of $G,|V(G)|$, in which we assume $|V(G)| \geq 5$ as the case of $|V(G)|=4$ is trivial. Given the four terminals, we can always select a terminal z such that the remaining terminals $\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\} \backslash z$ reside in the same connected component of $G \backslash z$. (Suppose
that removing a terminal from G separates the other terminals into different connected components. Then, at least one of them must contain a single terminal, allowing us to choose that terminal.) If there are more than one such terminals, we select a terminal, named as s_{1} w.l.o.g., as follows: choose a terminal with a minimum number of neighbors that are both terminals and pure bridge vertices. Now, let us denote by H the connected component of $G \backslash s_{1}$ containing all s_{2}, t_{1}, and t_{2}, and by H^{\prime} the subgraph of G induced by $V(G) \backslash V(H)$, in which all the edges between the two disjoint subgraphs H and H^{\prime} are incident to s_{1}. In addition, define a vertex set W as follows:

$$
W= \begin{cases}\left\{w \in V(H): d_{G}\left(s_{1}, w\right) \leq 2\right\} & \text { if }\left|V\left(H^{\prime}\right)\right| \geq 2, \\ \left\{w \in V(H): d_{G}\left(s_{1}, w\right) \leq 3\right\} & \text { if }\left|V\left(H^{\prime}\right)\right|=1, \text { i.e. } V\left(H^{\prime}\right)=\left\{s_{1}\right\} .\end{cases}
$$

In this proof, we consider two major cases in which a free vertex in W is to be considered as a terminal instead of s_{1}. Suppose first that there exists a free vertex s_{1}^{\prime} in W such that $\left\{s_{1}^{\prime}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ satisfy the two conditions C 1 and C 2 with respect to H. Then, by the induction hypothesis, there exists a paired 2-DPC in H^{3}, composed of an $s_{1}^{\prime}-t_{1}$ path and an $s_{2}-t_{2}$ path. Consider an $s_{1}-v$ hamiltonian path in $H^{\prime 3}$ for some neighbor v of s_{1} in H^{\prime} if $\left|V\left(H^{\prime}\right)\right| \geq 2$, which is guaranteed to exist by Theorem 1 , or a one-vertex path s_{1} if $\left|V\left(H^{\prime}\right)\right|=1$. Notice that v and s_{1}^{\prime} are adjacent to each other in G^{3} due to the definition of W. Hence, by combining the $s_{1}-v$ and $s_{1}^{\prime}-t_{1}$ paths via the edge (v, s_{1}^{\prime}), we can build a paired 2-DPC joining S and T, completing the proof of the first major case.

Next, consider the second major case, where, for every free vertex s_{1}^{\prime} in W, if any, $\left\{s_{1}^{\prime}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ violate at least one of the two conditions with respect to H. There are three cases.

Case 1: For some free vertex $s_{1}^{\prime} \in W,\left\{s_{1}^{\prime}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ violate C2 but satisfy C1 with respect to H. In this case, there exists an induced path $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ in H, where $\left\{u_{2}, u_{3}\right\}$, either $\left\{s_{1}^{\prime}, t_{1}\right\}$ or $\left\{s_{2}, t_{2}\right\}$, is a pure bridge pair of H, and $\left\{u_{1}, u_{4}\right\}=\left\{s_{1}^{\prime}, s_{2}, t_{1}, t_{2}\right\} \backslash\left\{u_{2}, u_{3}\right\}$ (see Figure 3(a) for possible permutations). While each edge of G from s_{1} to H may have the other end-vertex in one of the three disjoint sets $V(H) \backslash N_{H}\left[\left\{u_{2}, u_{3}\right\}\right]$, $N_{H}\left(\left\{u_{2}, u_{3}\right\}\right)$, and $\left\{u_{2}, u_{3}\right\}$, we claim that $\left(s_{1}, v\right) \notin E(G)$ for every $v \in$ $V(H) \backslash\left\{u_{2}, u_{3}\right\}$. Due to the hypothesis of the second major case, it holds true that $\left(s_{1}, v\right) \notin E(G)$ for $v \in V(H) \backslash N_{H}\left[\left\{u_{2}, u_{3}\right\}\right]$ since $\left\{v, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ obviously satisfy both C 1 and C 2 with respect to H. Similarly, $\left(s_{1}, v\right) \notin E(G)$ for $v \in N_{H}\left(\left\{u_{2}, u_{3}\right\}\right)$ since for some $v^{\prime} \in V(H) \backslash N_{H}\left[\left\{u_{2}, u_{3}\right\}\right]$ adjacent to $v,\left\{v^{\prime}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ obviously satisfy both C 1 and C 2 with respect to H. Thus, the claim is proved.

Now, it remains that $\left(s_{1}, u_{2}\right) \in E(G),\left(s_{1}, u_{3}\right) \in E(G)$, or both. First, in the case where $\left\{u_{1}, u_{4}\right\}=\left\{s_{2}, t_{2}\right\}$, as illustrated in Figure 3(b), there exists an $s_{2}-t_{2}$ hamiltonian path P_{2} in $H^{3} \backslash t_{1}$ by Theorem 2 . There also exists an $s_{1}-t_{1}$ hamiltonian path P_{1} in $G_{1}^{3} \backslash s_{1}^{\prime}$ by Theorem 2 again, where G_{1} is the subgraph of G induced by $V\left(H^{\prime}\right) \cup\left\{u_{2}, u_{3}\right\}$. The two paths P_{1} and P_{2}, then, form a paired 2-DPC of G^{3}. Second, if $\left\{u_{2}, u_{3}\right\}=\left\{s_{2}, t_{2}\right\}$ and there are edges from s_{1} to both u_{2} and u_{3}, we consider the two connected components of $H \backslash\left(u_{2}, u_{3}\right)$, called H_{1} and H_{2}, where $u_{2} \in V\left(H_{1}\right)$ and $u_{3} \in V\left(H_{2}\right)$. If $u_{1}=s_{1}^{\prime}$ and $u_{4}=t_{1}$ (refer to Figure 3(c)), we can build a paired 2-DPC of G^{3} by finding an $s_{1}-t_{1}$ hamiltonian path P_{1} in $G_{1}^{3} \backslash u_{3}$ with G_{1}, the subgraph induced by $V\left(H_{2}\right) \cup\left\{s_{1}\right\}$, and an $s_{2}-t_{2}$ hamiltonian path P_{2} in $G_{2}^{3} \backslash s_{1}$ with G_{2}, the subgraph induced by $V\left(H_{1}\right) \cup V\left(H^{\prime}\right) \cup\left\{u_{3}\right\}$, whose existence is guaranteed by Theorem 2. In the other case of $u_{1}=t_{1}$ and $u_{4}=s_{1}^{\prime}$, a paired 2-DPC of G^{3} can be constructed symmetrically.

Third, suppose that $\left\{u_{2}, u_{3}\right\}=\left\{s_{2}, t_{2}\right\}$ and there is exactly one edge from s_{1} to either u_{2} or u_{3}. Consider the case of $\left(s_{1}, u_{2}\right) \in E(G)$ first. In this case, $\delta_{G}\left(s_{1}\right)=1$. Otherwise, that is, if $\delta_{G}\left(s_{1}\right) \geq 2,\left(s_{1}, u_{2}\right)$ should be a nontrivial bridge of G. Then, contrary to the hypothesis of the theorem, $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ would violate the condition C 2 with respect to G. Now, let G_{1} and G_{2} be the subgraphs of G induced by $V\left(H_{1}\right) \cup\left\{s_{1}\right\}$ and by $V\left(H_{2}\right) \cup\left\{u_{2}\right\}$, respectively, where, again, H_{1} and H_{2} are the two connected components of $H \backslash\left(u_{2}, u_{3}\right)$ such that $u_{2} \in V\left(H_{1}\right)$ and $u_{3} \in V\left(H_{2}\right)$. In the case where $u_{4}=t_{1}$ (refer to Figure 3(d)), there exists an $s_{2}-t_{2}$ hamiltonian path in $G_{2}^{3} \backslash t_{1}$. Also, by merging an $s_{1}-s_{1}^{\prime}$ hamiltonian path in $G_{1}^{3} \backslash u_{2}$ and a one-vertex path t_{1} via the edge $\left(s_{1}^{\prime}, t_{1}\right)$ in G^{3}, we can build an $s_{1}-t_{1}$ path P_{1} covering the remaining vertices, showing the existence of a paired 2-DPC of G^{3}. For the case of $u_{1}=t_{1}$, an $s_{1}-t_{1}$ hamiltonian path in $G_{1}^{3} \backslash u_{2}$ and an $s_{2}-t_{2}$ hamiltonian path in G_{2}^{3} together form a paired 2-DPC. Lastly, when $\left(s_{1}, u_{3}\right) \in E(G)$, a symmetric argument also leads to the existence of a paired 2-DPC of G^{3}.

Case 2: For some free vertex $s_{1}^{\prime} \in W,\left\{s_{1}^{\prime}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ violate C1 with respect to H. Here, we may assume that, for every free vertex $s_{1}^{\prime} \in W$, $\left\{s_{1}^{\prime}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ violate C 1 since the case of only C 2 being broken has been dealt with in Case 1. Since C1 is violated, $\left\{t_{1}, s_{2}, t_{2}\right\} \subseteq N_{H}[v]$ for some pure bridge vertex v of H. Such v should be unique since (i) at least two of t_{1}, s_{2}, and t_{2} are distance two apart, and (ii) an extra candidate for v would form a cycle. Thus, we can say that $\left\{s_{1}^{\prime}, t_{1}, s_{2}, t_{2}\right\} \subseteq N_{H}[v]$ for every free vertex s_{1}^{\prime} in W. Notice that there cannot be an edge from s_{1} to any vertex $u \neq v$ because the existence of such an edge implies that there is another

Figure 3: An illustration for the proof of Case 1 of Theorem 3.
free vertex in W that is not in $N_{H}[v]$, contradicting to our assumption.
Hence, v must be a unique neighbor of s_{1} in H, indicating that $\left(s_{1}, v\right)$ is a bridge of G. Now, if $\delta_{G}\left(s_{1}\right) \geq 2,\left(s_{1}, v\right)$ is nontrivial, and v becomes a pure bridge vertex of G such that $\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\} \subseteq N_{G}[v]$, contradicting the hypothesis of the theorem. If $\delta_{G}\left(s_{1}\right)=1$, then there must exist a free vertex in W, which is at distance three from s_{1}, but is not in $N_{H}[v]$, also contradicting to our assumption. Hence, Case 2 is impossible.

Case 3: There exists no free vertex in W. Suppose $t_{1} \in W$. Consider an $s_{1}-w$ hamiltonian path in $H^{\prime 3}$ for some neighbor w of s_{1} in H^{\prime} if $\left|V\left(H^{\prime}\right)\right| \geq$ 2 , which is guaranteed to exist by Theorem 1 , or a one-vertex path s_{1} if $\left|V\left(H^{\prime}\right)\right|=1$. Then, appending t_{1} to the path results in an $s_{1}-t_{1}$ path. If $H^{3} \backslash t_{1}$ has an $s_{2}-t_{2}$ hamiltonian path, these two paths form a paired 2-DPC of G^{3}, and we are done. Suppose otherwise. By Theorem 2, (i) there exists a pure bridge vertex v in H such that $\left\{t_{1}, s_{2}, t_{2}\right\} \subseteq N_{H}[v]$, or (ii) $\left\{t_{1}, s_{2}, t_{2}\right\}$ forms a pure bridge triangle in H. The case (ii) is impossible since any neighbor u of s_{1} in W would be free itself (if $u \notin\left\{t_{1}, s_{2}, t_{2}\right\}$), or would have a free neighbor in W (if $u \in\left\{t_{1}, s_{2}, t_{2}\right\}$), which, in both possibilities, contradicts the assumption of Case 3 . In the case (i), v is a terminal because, otherwise, every neighbor u of s_{1} in W would be free itself (if $u \notin\left\{t_{1}, s_{2}, t_{2}\right\}$), or would have a free neighbor v in W (if $u \in\left\{t_{1}, s_{2}, t_{2}\right\}$). Furthermore, v is the unique neighbor of s_{1} in H similarly because, otherwise, every neighbor u of s_{1} in W other than v would be free itself, or would have a free neighbor in W. Now, if $\delta_{G}\left(s_{1}\right) \geq 2,\left(s_{1}, v\right)$ is a nontrivial bridge of G and thus v is a pure bridge vertex of G such that $\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\} \subseteq N_{G}[v]$, which contradicts to the hypothesis of the theorem. If $\delta_{G}\left(s_{1}\right)=1$, there must exist a free vertex in W, which is at distance two from v in H, contradicting our assumption.

Finally, suppose $t_{1} \notin W$. By the definition of W, either (i) $\left|V\left(H^{\prime}\right)\right| \geq 2$ and $d_{G}\left(s_{1}, t_{1}\right) \geq 3$, or (ii) $\left|V\left(H^{\prime}\right)\right|=1$ and $d_{G}\left(s_{1}, t_{1}\right) \geq 4$. The case (ii) is simply impossible since there are at least three vertices in W, at most two of which may be terminals. This suggests the existence of a free vertex in W, leading to a contradiction. In the case (i), it is obvious that W is made of s_{2} and t_{2}, where one of them, x, is adjacent to both s_{1} and the other one y. Notice that x is a pure bridge vertex of G. Furthermore, $\left(t_{1}, y\right) \in E(G)$ and y is a pure bridge vertex of G because, otherwise, the vertex t_{1} would have been selected as s_{1} in the beginning. This implies that $\left(s_{1}, x, y, t_{1}\right)$ is an induced path of G such that $\{x, y\}$, i.e. $\left\{s_{2}, t_{2}\right\}$ is a pure bridge pair and $\left\{s_{1}, t_{1}\right\} \subseteq N_{G}\left(\left\{s_{2}, t_{2}\right\}\right)$, which contradicts to the hypothesis of the theorem. This completes the entire proof.

Corollary 1. For a connected graph G with four or more vertices, G^{3} is

Figure 4: An illustration of the proof of Theorem 4. Under the assumption $\left\{u_{2}, u_{3}\right\}=$ $\left\{s_{2}, t_{2}\right\}$, this figure represents the first case where the induced path ($u_{1}, u_{2}, u_{3}, u_{4}$) is either $\left(s_{1}, s_{2}, t_{2}, t_{1}\right)$ or ($\left.s_{1}, t_{2}, s_{2}, t_{1}\right)$. The other case of $\left(t_{1}, s_{2}, t_{2}, s_{1}\right)$ or $\left(t_{1}, t_{2}, s_{2}, s_{1}\right)$ can be handled symmetrically.
paired 2-coverable if and only if G has neither a pure bridge vertex of degree at least three nor a pure bridge pair.

Now, the necessary and sufficient condition for the existence of an unpaired 2-DPC of the cube of a connected graph is easily derived.

Theorem 4 (Unpaired 2-DPC). Let $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{t_{1}, t_{2}\right\}$ be terminal sets of a connected graph G. The cube G^{3} has an unpaired 2-DPC joining S and T if and only if $\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\} \nsubseteq N_{G}[v]$ for any pure bridge vertex v of G.

Proof. The necessity part is due to Lemma 1. For the proof of the sufficient condition, it suffices to handle the situation where the second condition of Theorem 3, C2, is broken and the first condition C 1 is satisfied. Suppose that the four terminals form an induced path $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ such that $\left\{u_{2}, u_{3}\right\}$, say, $\left\{s_{2}, t_{2}\right\}$ w.l.o.g. is a pure bridge pair. Let H_{1} and H_{2} be the two connected components of $G \backslash\left(u_{2}, u_{3}\right)$ such that $u_{2} \in V\left(H_{1}\right)$ and $u_{3} \in V\left(H_{2}\right)$. There are two cases to be considered: $u_{1}=s_{1} \& u_{4}=t_{1}$ as shown in Figure 4, and $u_{1}=t_{1} \& u_{4}=s_{1}$. In the first case, we can find an $s_{1}-t_{2}$ hamiltonian path in $G_{1}^{3} \backslash s_{2}$ by Theorem 2, where G_{1} is the subgraph of G induced by $V\left(H_{1}\right) \cup\left\{u_{3}\right\}$. Furthermore, an $s_{2}-t_{1}$ hamiltonian path in $G_{2}^{3} \backslash t_{2}$ also exists by the same reason, where G_{2} is the subgraph induced by $V\left(H_{2}\right) \cup\left\{u_{2}\right\}$, forming an unpaired 2-DPC of G^{3} along with the $s_{1}-t_{2}$ path. A symmetric argument shows the existence of an unpaired 2-DPC for the second case of $u_{1}=t_{1} \& u_{4}=s_{1}$, too. This completes the proof.

Corollary 2. For a connected graph G with four or more vertices, G^{3} is unpaired 2 -coverable if and only if G has no pure bridge vertex of degree at least three.

3. HAMILTONIAN PATH THROUGH A PRESCRIBED EDGE

In this section, we are concerned to know when the cube of a connected graph has a hamiltonian path between given source and sink that passes through a certain edge. First, given two distinct vertices s and t and a prescribed edge (x, y) of a connected graph H with three or more vertices, the following observations are easily made.

1. If $\{s, t\} \cap\{x, y\}=\emptyset$, it is straightforward that H has an s - t hamiltonian path that passes through (x, y) if and only if H has an unpaired 2-DPC joining $S=\{s, t\}$ and $T=\{x, y\}$. Note that the order of the vertices x and y on the s - t hamiltonian path may vary depending on the paths of the unpaired 2 -DPC.
2. If $\{s, t\}=\{x, y\}$, there exists no such hamiltonian path.
3. If $|\{s, t\} \cap\{x, y\}|=1$, say, $s=x$ and $t \neq y$ w.l.o.g., H has an s - t hamiltonian path passing through (x, y) if and only if $H \backslash s$ has a y - t hamiltonian path.

These facts naturally lead to the next theorem.
Theorem 5. Let G be a connected graph with three or more vertices. Given $s, t \in V(G)$ with $s \neq t$, and $(x, y) \in E\left(G^{3}\right)$ such that $\{s, t\} \neq\{x, y\}$, the cube G^{3} has an s-t hamiltonian path passing through the prescribed edge (x, y) if and only if

- if $\{s, t\} \cap\{x, y\}=\emptyset$, then $\{s, t, x, y\} \nsubseteq N_{G}[v]$ for any pure bridge vertex v of G, and
- if $\{s, t\} \cap\{x, y\} \neq \emptyset$, assuming $s=x$ and $t \neq y$, then $\{s, t, y\} \nsubseteq N_{G}[v]$ for any pure bridge vertex v of G and $\{s, t, y\}$ does not form a pure bridge triangle of G.

Proof. The proof is a direct consequence of Theorem 4 and Theorem 2.
Corollary 3. Let G be a connected graph with three or more vertices. The cube G^{3} has an s-t hamiltonian path passing through (x, y) for any distinct vertices s and t, and a prescribed edge (x, y) of G^{3} such that $\{s, t\} \neq\{x, y\}$ if and only if there exists neither a pure bridge vertex nor a pure bridge triangle in G.

Remark 1. From Theorem 2, we deduce that the condition given in Corollary 3 can be rephrased as " G^{3} is 1 -hamiltonian-connected, i.e. $G^{3} \backslash v_{f}$ has an s - t hamiltonian path for any three vertices s, t, and v_{f}."

Figure 5: An example graph H that reveals that Corollary 4 does not hold for an arbitrary connected graph. Here, the subgraph of H induced by $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is edgeless, whereas those induced by $\left\{v_{1}, v_{2}, v_{3}\right\}$, $\left\{v_{4}, v_{5}, v_{6}\right\}$, and $\left\{v_{7}, v_{8}, v_{9}\right\}$, respectively, are all complete graphs. Furthermore, $\left(u_{i}, v_{j}\right) \in E(H)$ for all $1 \leq i \leq 4$ and $1 \leq j \leq 9$.

The next corollary is derived directly from Theorems 4 and 5.
Corollary 4. Let G be a connected graph with four or more vertices. The cube G^{3} has an s-t hamiltonian path passing through (x, y) for any distinct vertices s and t, and a prescribed edge (x, y) of G^{3} such that $\{s, t\} \cap\{x, y\}=\emptyset$ if and only if G^{3} is unpaired 2-coverable.

Remark 2. If an arbitrary graph H with four or more vertices is unpaired 2-coverable, then H has an s - t hamiltonian path passing through a prescribed edge (x, y) for any $s, t \in V(H)$ with $s \neq t$, and $(x, y) \in E(H)$ such that $\{s, t\} \cap\{x, y\}=\emptyset$. However, unlike the cube of a connected graph, the converse is not always true. For instance, take a look at the graph illustrated in Figure 5. We can see by an immediate inspection that the graph has no unpaired 2-DPC joining $\left\{u_{1}, u_{2}\right\}$ and $\left\{u_{3}, u_{4}\right\}$, while it always has an s - t hamiltonian path that passes through (x, y) for any s, t, and (x, y) such that $\{s, t\} \cap\{x, y\}=\emptyset$.

So far, the order in which the two end-vertices of prescribed edge (x, y) are encountered during traversal of an s - t hamiltonian path starting from s has not been important. We may further require that x is visited before y, where such a path is now described as an s - t hamiltonian path passing through an arc $\langle x, y\rangle$ (note that we still consider an undirected graph).

Given a connected graph H with three or more vertices, we can make the following observations similarly as before:

1. If $\{s, t\} \cap\{x, y\}=\emptyset, H$ has an $s-t$ hamiltonian path passing through $\langle x, y\rangle$ if and only if H has a paired $2-D P C$ joining the (s, x) and (y, t)
pairs. Here, the paired 2-DPC is composed of an $s-x$ path and a $y-t$ path.
2. If either $\{s, t\}=\{x, y\}, s=y$, or $t=x$, there exists no such hamiltonian path.
3. If $s=x$ and $t \neq y, H$ has an s - t hamiltonian path passing through $\langle x, y\rangle$ if and only if $H \backslash s$ has a y - t hamiltonian path. Similarly, if $t=y$ and $s \neq x$, such a hamiltonian path exists if and only if $H \backslash t$ has an $s-x$ hamiltonian path.

From these observations, a counterpart to Theorem 5 follows immediately.

Theorem 6. Let G be a connected graph with three or more vertices. Given $s, t \in V(G)$, and a prescribed arc $\langle x, y\rangle$ from $(x, y) \in E\left(G^{3}\right)$ such that $\{s, t\} \neq\{x, y\}, s \neq y$, and $t \neq x, G^{3}$ has an s-t hamiltonian path passing through $\langle x, y\rangle$ if and only if

- if $\{s, t\} \cap\{x, y\}=\emptyset$, then $\{s, t, x, y\} \nsubseteq N_{G}[v]$ for any pure bridge vertex v of G, and $\{s, x\}$ and $\{y, t\}$, respectively, are not a pure bridge pair of G such that $\{y, t\} \subseteq N_{G}(\{s, x\})$ and $\{s, x\} \subseteq N_{G}(\{y, t\})$,
- if $s=x$ and $t \neq y$, then $\{s, t, y\} \nsubseteq N_{G}[v]$ for any pure bridge vertex v of G and $\{s, t, y\}$ does not form a pure bridge triangle of G, and
- if $t=y$ and $s \neq x$, then $\{s, t, x\} \nsubseteq N_{G}[v]$ for any pure bridge vertex v of G and $\{s, t, x\}$ does not form a pure bridge triangle of G.

Proof. The proof is a direct consequence of Theorem 3 and Theorem 2.
We also have counterpart corollaries for this stronger problem. The first one is as follows:

Corollary 5. Let G be a connected graph with three or more vertices. The cube G^{3} has an s-t hamiltonian path passing through $\langle x, y\rangle$ for any distinct vertices s and t, and a prescribed arc $\langle x, y\rangle$ from an edge (x, y) of G^{3} such that $\{s, t\} \neq\{x, y\}, s \neq y$, and $t \neq x$ if and only if there exists neither a pure bridge vertex nor a pure bridge triangle in G.

Note that the condition of this corollary is the same as that of Corollary 3 , indicating that, whether the prescribed edge is directed or not, the absence of a pure bridge vertex and a pure bridge triangle in G is the exact condition for a wanted hamiltonian path to exist in G^{3}. Next, the following corollary can be deduced directly from Theorems 3 and 6 .

Corollary 6. Let G be a connected graph with four or more vertices. The cube G^{3} has an s-t hamiltonian path passing through $\langle x, y\rangle$ for any distinct vertices s and t, and a prescribed arc $\langle x, y\rangle$ from an edge (x, y) of G^{3} such that $\{s, t\} \cap\{x, y\}=\emptyset$ if and only if G^{3} is paired 2 -coverable.

Remark 3. If an arbitrary graph H with four or more vertices is paired 2coverable, then H has an s - t hamiltonian path passing through a prescribed $\operatorname{arc}\langle x, y\rangle$ for any $s, t \in V(H)$ with $s \neq t$, and $(x, y) \in E(H)$ such that $\{s, t\} \cap\{x, y\}=\emptyset$. Again, the converse is not always true for H as can also be seen from the graph in Figure 5.

4. CONCLUDING REMARKS

Deciding if the cube of a connected graph contains a paired or unpaired 2-disjoint path cover for arbitrarily given sources and sinks is an interesting problem in graph theory. In this paper, we have presented the necessary and sufficient conditions for the two 2-disjoint path cover problems. We have also characterized exactly when the cube of a connected graph has a hamiltonian path from a given vertex to another vertex passing through a prescribed edge. All the proofs given for the four main theorems in this paper are constructive themselves, hence, can be used effectively to design an algorithm to find the respective 2-disjoint path covers or hamiltonian paths. Recall that the pure bridge vertices, pure bridge triangles, and pure bridge pairs can all be computed in linear time with respect to the size of the graph, based on the well-known biconnected component algorithm. Therefore, all the exact conditions for the four theorems can be checked efficiently in linear time.

Unlike the cube of a connected graph that allows easy recursive construction, generating a paired or unpaired 2-disjoint path cover in the square of a 2 -connected graph remains a challenging problem. We hope that the following two conjectures could initiate future research.

Conjecture 1. The square of every 2 -connected graph with four or more vertices is unpaired 2-coverable.

Conjecture 2. Let $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{t_{1}, t_{2}\right\}$ be terminal sets of a 2connected graph G with four or more vertices. The square G^{2} has no paired 2-DPC joining S and T if and only if

- G is isomorphic to an even cycle $\left(v_{0}, v_{1}, \ldots, v_{|V(G)|-1}\right)$, and
- S and T are such that $\left\{s_{1}, t_{1}\right\}=\left\{v_{0}, v_{q}\right\}$ and $\left\{s_{2}, t_{2}\right\}=\left\{v_{p}, v_{r}\right\}$ for some even integers p, q, and r with $0<p<q<r$.

ACKNOWLEDGEMENT

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant no. 2012R1A1A2005511 and 2012R1A1A2008958).

References

[1] M.E.K. Abderrezzak, E. Flandrin, and Z. Ryjáček, "Induced $S\left(K_{1,3}\right)$ and hamiltonian cycles in the square of a graph," Discrete Mathematics 207(1), pp. 263-269, 1999.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory, 2nd printing, Springer, 2008.
[3] R. Caha and V. Koubek, "Hamiltonian cycles and paths with a prescribed set of edges in hypercubes and dense sets," Journal of Graph Theory 51(2), pp. 137-169, 2006.
[4] G. Chartrand, A.M. Hobbs, H.A. Jung, S.F. Kapoor, and C.St.J.A. Nash-Williams, "The square of a block is hamiltonian connected," Journal of Combinatorial Theory Series B 16, pp. 290-292, 1974.
[5] G. Chartrand and S.F. Kapoor, "The cube of every connected graph is 1-hamiltonian," Journal of Research of the National Bureau of Standards 73B, pp. 47-48, 1969.
[6] X.-B. Chen, "Many-to-many disjoint paths in faulty hypercubes," Information Sciences 179(18), pp. 3110-3115, 2009.
[7] G.L. Chia, S.-H. Ong, and L.Y. Tan, "On graphs whose square have strong hamiltonian properties," Discrete Mathematics 309(13), pp. 4608-4613, 2009.
[8] T. Dvořák and P. Gregor, "Hamiltonian paths with prescribed edges in hypercubes," Discrete Mathematics 307, pp. 1982-1998, 2007.
[9] T. Dvořák and P. Gregor, "Partitions of faulty hypercubes into paths with prescribed endvertices," SIAM Journal on Discrete Mathematics 22(4), pp. 1448-1461, 2008.
[10] J. Ekstein "Hamiltonian cycles in the square of a graph," The Electronic Journal of Combinatorics 18(1), 2011.
[11] H. Fleischner, "The square of every two-connected graph is hamiltonian," Journal of Combinatorial Theory Series B 16, pp. 29-34, 1974.
[12] H. Fleischner, "In the square of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivalent concepts," Monatshefte für Mathematik 82, pp. 125-149, 1976.
[13] A. Georgakopoulos, "A short proof of Fleischner's theorem," Discrete Mathematics 309, pp. 6632-6634, 2009.
[14] P. Gregor and T. Dvořák, "Path partitions of hypercubes," Information Processing Letters 108(6), pp. 402-406, 2008.
[15] F. Harary and A. Schwenk, "Trees with hamiltonian square," Mathematika 18, pp. 138-140, 1971.
[16] S. Jo, J.-H. Park, and K.Y. Chwa, "Paired many-to-many disjoint path covers in faulty hypercubes," Theoretical Computer Science 513, pp. 1-24, Nov. 2013.
[17] J.J. Karaganis, "On the cube of a graph," Canadian Mathematical Bulletin 11, pp. 295-296, 1968.
[18] S.-Y. Kim, J.-H. Lee, and J.-H. Park, "Disjoint path covers in recursive circulants $G\left(2^{m}, 4\right)$ with faulty elements," Theoretical Computer Science 412(35), pp. 4636-4649, 2011.
[19] S.-Y. Kim and J.-H. Park, "Paired many-to-many disjoint path covers in recursive circulants $G\left(2^{m}, 4\right)$," IEEE Transactions on Computers 62(12), pp. 2468-2475, Dec. 2013.
[20] K.M. Koh and K.L. Teo, "The 2-hamiltonian cubes of graphs," Journal of Graph Theory 13(6), pp. 737-747, 1989.
[21] L. Lesniak, "Graphs with 1-hamiltonian-connected cubes," Journal of Combinatorial Theory Series B 14(2), pp. 148-152, 1973.
[22] J. Müttel and D. Rautenbach, "A short proof of the versatile version of Fleischner's theorem," Discrete Mathematics 313(19), pp. 1929-1933, 2013.
[23] M. Paoli, "Hamiltonian properties of the cube of a 2-edge connected graph," Journal of Graph Theory 12(1), pp. 85-94, 1988.
[24] J.-H. Park and I. Ihm, "Single-source three-disjoint path covers in cubes of connected graphs," Information Processing Letters 113(14-16), pp. 527-532, 2013.
[25] J.-H. Park, H.-C. Kim, and H.-S. Lim, "Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements," IEEE Transactions on Parallel and Distributed Systems 17(3), pp. 227-240, 2006.
[26] J.-H. Park, H.-C. Kim, and H.-S. Lim, "Many-to-many disjoint path covers in the presence of faulty elements," IEEE Transactions on Computers 58(4), pp. 528-540, 2009.
[27] J. Radoszewski and W. Rytter "Hamiltonian paths in the square of a tree," in Proceedings of International Symposium on Algorithms and Computation (ISAAC'11), pp. 90-99, 2011.
[28] G. Schaar, "On 3-hamiltonian cubes of connected graphs," Colloquia Mathematica Societatis János Bolyai 18, pp. 959-971, 1978.
[29] M. Sekanina, "On an ordering of the set of vertices of a connected graph," Publication of the Faculty of Sciences of the University of Brno 412, pp. 137-142, 1960.

[^0]: *Corresponding author
 Email addresses: j.h.park@catholic.ac.kr (Jung-Heum Park), ihm@sogang.ac.kr (Insung Ihm)

