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shown to be optimal.
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1. Introduction

An interconnection network is frequently modeled as a graph, where
vertices and edges respectively represent nodes and communication links in
the network. One of the several key problems in the study of interconnec-
tion networks is to detect (vertex-)disjoint paths that abstract the routing
between nodes and the embedding of linear arrays. Such vertex-disjoint
paths can be viewed as parallel routes that indicate data communication
between nodes. A k-disjoint path cover (k-DPC for short) of a graph is a
set of k internally disjoint paths that altogether cover every vertex of the
graph. The k-disjoint path cover problem, originated from the community
of interconnection networks, is intended to search for a way of fully utilizing
nodes for efficient communications [25]. When a graph contains faulty ele-
ments, whether vertices or edges, its k-disjoint path cover naturally means
a k-disjoint path cover of the graph with the faulty elements deleted.

The problem of finding such k-disjoint path covers can be classified into
three kinds according to the source and sink configuration: one-to-one, one-
to-many, and many-to-many. The one-to-one class considers disjoint path
covers joining a single pair of source s and sink t, while the one-to-many
class deals with disjoint path covers joining a single source s and a set of k
distinct sinks t1, t2, . . ., tk. Obviously, the paths of one-to-one k-DPC, also
known as k∗-container [5, 28], have common vertices only at their source
and sink, while those of one-to-many k-DPC overlap only at their source.

The many-to-many class, on the other hand, considers disjoint path cov-
ers between a set of k sources s1, s2, . . ., sk and another set of k sinks t1,
t2, . . ., tk, where any many-to-many k-DPC of graph partitions its vertex
set into k paths. The problems in this class are further subdivided into two
subclasses: paired and unpaired. In the paired type problem, each source
si is required to be paired to a designated sink ti. In the unpaired type
problem, on the other hand, the sources and sinks are allowed to be freely
mapped. In other words, source si can be freely matched to sink tσi under
an arbitrary permutation σ on {1, 2, · · · , k}.

Several types of graphs have already been studied on their disjoint path
covers. One-to-one covers were analyzed for recursive circulants [19, 28]
and hypercubes with faulty edges [5]. In [20], one-to-many covers were con-
structed for hypercube-like interconnection networks with faulty elements.
Furthermore, for a class of nonbipartite hypercube-like interconnection net-
works, called restricted HL-graphs, having faulty elements, paired disjoint
path covers [25, 26] and unpaired disjoint path covers [21] were built. In
[13], all m-dimensional crossed cubes, twisted cubes, and Möbius cubes with
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m ≥ 5 were shown to have a paired 2-DPC whose paths are of equal length.
The disjoint path cover problem has also been studied for some bipartite

graphs. Paired disjoint path covers were investigated for hypercubes [11]
and hypercubes with faulty vertices [8]. Unpaired disjoint path covers were
considered for hypercubes with faulty edges [6] and bipartite graphs obtained
by adding edges to hypercubes [7]. Interestingly, it was proven to be all NP-
complete to determine if, for any fixed k ≥ 1, there exists either a one-to-one
k-DPC, a one-to-many k-DPC, or a many-to-many k-DPC, whether paired
or unpaired, in general graphs [25, 26].

Before turning to the next section, we briefly go over the definitions of
key notions. First of all, throughout this paper, we assume that the source
and sink sets S and T of graph G are disjoint to each other and both belong
to V (G)\F , where V (G) and F represent the vertex set and a fault set of G,
respectively. Sometimes, the sources and sinks, generally called terminals,
are assumed to be fixed, but in our work, we deal with a stronger case where
k-disjoint path covers are sought for graphs with arbitrary faulty elements
and source/sink sets.

Definition 1. (a) A graph G is called f -fault one-to-one k-disjoint path
coverable if f + 2 ≤ |V (G)| and for any fault set F with |F | ≤ f , G has a
one-to-one k-DPC joining an arbitrary pair of source s and sink t in G \ F
subject to s 6= t.
(b) A graph G is called f -fault one-to-many k-disjoint path coverable if
f + k + 1 ≤ |V (G)| and for any fault set F with |F | ≤ f , G has a one-to-
many k-DPC joining an arbitrary source s and an arbitrary set T of k sinks
in G \ F subject to s 6∈ T .
(c) A graph G is called f -fault unpaired (resp. paired) many-to-many k-
disjoint path coverable if f + 2k ≤ |V (G)| and for any fault set F with
|F | ≤ f , G has an unpaired (resp. paired) k-DPC joining an arbitrary set
S of k sources and another arbitrary set T of k sinks in G \ F subject to
S ∩ T = ∅.

This paper’s interest is to investigate the construction of the disjoint
path covers in recursive circulants. The recursive circulant G(N, d), d ≥ 2,
proposed in [23], is a graph with a vertex set V = {v0, v1, v2, · · · ,vN−1}
and an edge set E = {(vi, vj) : i + dk ≡ j (mod N) for some k, 0 ≤
k ≤ dlogdNe − 1}. In other words, G(N, d) is a circulant graph with N
vertices and jumps of powers of d, d0, d1, · · · , ddlogdNe−1, which can also be
defined as a Cayley graph of the cyclic group ZN with the generating set
{d0, d1, · · · , ddlogdNe−1}. Examples of G(N, d) are shown in Figure 1.
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Figure 1: Recursive circulants.

In this article, we focus on the recursive circulant G(N, d) with N = 2m

and d = 4. Such recursive circulant G(2m, 4) of degree m compares favorably
to hypercube Qm. While retaining attractive properties of the hypercube
such as node-symmetry, recursive structure, maximum connectivity, etc.,
it achieves a noticeable improvement in diameter [23] as well as includes
a complete binary tree with 2m − 1 vertices as a subgraph [15]. Many
results on recursive circulants are found in the literature, regarding, say
hamiltonian decomposition [3, 10, 16, 18], panconnectivity and pancyclicity
[1, 2, 22], independent spanning trees [29], maximum induced subgraph [30],
chromatic number [17], parallel routing [12], recognition problem [9], edge
forwarding index and bisection width [10], etc.

In the previous works, it has been shown that G(2m, 4), m ≥ 3, is (0-
fault) one-to-one k-disjoint path coverable for any 1 ≤ k ≤ m [19], is f -fault
one-to-many k-disjoint path coverable for any f and k ≥ 2 with f+k ≤ m−1
[20], and is f -fault paired many-to-many k-disjoint path coverable for any f
and k ≥ 2 with f + 2k ≤ m [26]. In addition to these results, we will show
that G(2m, 4), m ≥ 3, is f -fault one-to-one k-disjoint path coverable for any
f and k ≥ 2 with f+k ≤ m, and G(2m, 4), m ≥ 5, is f -fault unpaired many-
to-many k-disjoint path coverable for any f and k ≥ 2 with f + k ≤ m− 1.
The bound f + k ≤ m achieved for a one-to-one k-DPC problem is proven
optimal based upon the necessary condition shown in Lemma 7. The bound
f + k ≤ m − 1 established for an unpaired k-DPC problem is also found
optimal due to the necessary condition derived in [26].

This paper is organized as follows. In the next section, we discuss the

4



recursive structure and fault-hamiltonicity of recursive circulant and recur-
sive circulant-like graphs. By utilizing the recursive structure, one-to-many
DPC’s, one-to-one DPC’s, and unpaired many-to-many DPC’s of recursive
circulant and recursive circulant-like graphs are constructed in Sections 3,
4, and 5, respectively. Finally, concluding remarks of the paper are given in
Section 6.

2. Recursive Structures

Before discussing the recursive structure of recursive circulants, we define
a simple graph construction operation. For two graphs H0 and H1 with the
same number of vertices, consider a bijection f between the vertex sets
V (H0) and V (H1). We denote by H0 ⊕ H1 the graph obtained by joining
the vertices of H0 and H1 using edges (v, f(v)) for all v ∈ V (H0). Given
H0 ⊕ H1, H0 and H1 are called components, and f(v) for v ∈ V (H0) and
f−1(v) for v ∈ V (H1) are both represented by v̄ for short.

The recursive circulant G(N, d) has a recursive structure when N = cdm,
1 ≤ c < d [23], based upon the following property.

Property 1. [23] Given G(cdm, d) with m ≥ 1, consider a vertex subset Vi
such that Vi = {vj : j ≡ i (mod d )}. Then the subgraph Gi induced by Vi
is isomorphic to G(cdm−1, d) for all i = 0, 1, · · · , d− 1.

When m ≥ 1, G(cdm, d) can be recursively constructed using d copies
of G(cdm−1, d), which we denote by Gi(Vi, Ei), 0 ≤ i < d, with Vi =
{vi0, vi1, · · · , vicdm−1−1}. Here, Gi is isomorphic to G(cdm−1, d) with regard to

a bijection mapping vij to vj . Let vij be relabeled by vjd+i for convenience.
Then G(cdm, d) can be built by defining the vertex set V as

⋃
0≤i<d Vi,

and the edge set E as
⋃

0≤i<dEi ∪ X, where X = {(vj , vj′) : j + 1 ≡
j′ (mod cdm)}.

Recursive circulant G(2m, 4), a special case of G(cdm, d), consists of four
components G0, G1, G2, and G3 each of which is isomorphic to G(2m−2, 4)
when m ≥ 2 (see Figure 2 to understand how G(32, 4) is built from the
four copies of G(8, 4)). It is notable that the subgraph induced by vertices
in Gi and G(i+1) mod 4 for any i = 0, 1, 2, 3, is isomorphic to the product
G(2m−2, 4)×K2 of G(2m−2, 4) and K2, where K2 is a complete graph with
two vertices. Let H0 and H1 be the subgraphs induced by V (G0) ∪ V (G1)
and by V (G2) ∪ V (G3), respectively. Then, the graph can be expressed as
H0 ⊕H1, where H0 and H1 are isomorphic to G(2m−2, 4)×K2.
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Figure 2: Recursive structure of G(32, 4).

Now, consider d copies G0, G1, . . . , Gd−1 of a graph G having n ver-
tices. If we apply the graph constructor ⊕ to each pair Gi and G(i+1) mod d,
0 ≤ i < d, we obtain a graph with nd vertices. This graph, which is said
to be obtained through the cycle-based recursive construction, will be de-
noted as G⊗ Cd. Here, Cd represents a cycle graph with d vertices. In the
following discussion, we respectively denote by v+ and v− the vertices of
G(i+1) mod d and G(i−1) mod d that are adjacent to v in Gi. Then, recursive
circulant G(2m, 4) can also be expressed in terms of G(2m−2, 4)⊗C4 as well
as [G(2m−2, 4)×K2]⊕ [G(2m−2, 4)×K2]. It can be observed that any graph
representable as G ⊗ C4 is also representable as [G0 ⊕ G1] ⊕ [G2 ⊕ G3] for
some Gi’s isomorphic to G, although the converse does not always hold.

In general, G(2m, 4) cannot be obtained from a single operation ⊕ on
two recursive circulants. In other words, an arbitrary G(2m, 4) is not always
representable as H0 ⊕H1 of two graphs H0 and H1 that are isomorphic to
G(2m−1, 4). This implies that, when we want to recursively construct a dis-
joint path cover in G(2m, 4), we cannot utilize the disjoint path coverability
of G(2m−1, 4). On the other hand, we can still utilize the disjoint path cov-
erability of G(2m−2, 4), which undesirably provokes a large number of cases.
Thus, we introduce a class of nonbipartite graphs containing G(2m, 4) in
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order to take advantage of simple recursive structure. An arbitrary higher
dimensional graph (with a unique exception) may be represented as H0⊕H1

for two lower dimensional graphs H0 and H1 in the class.

Definition 2. A class of graphs, called RC-like graphs or RCL-graphs for
short, is defined as follows:

• RCL3 = {G(8, 4)};

• RCL4 = {G(16, 4), G(8, 4)×K2};

• RCLm = {G(2m, 4), G(2m−1, 4)×K2, G(2m−2, 4)× C4} for m ≥ 5.

Here, a graph that belongs to RCLm for some m ≥ 3 is called an m-
dimensional RC-like graph.

For convenience, we define a superclass of RC-like graphs, called the ex-
panded RC-like graphs, asRCLem = {G(2m, 4), G(2m−1, 4)×K2, G(2m−2, 4)×
C4} for m ≥ 3. Notice that the graph G(4, 4)×C4 in RCLe4 dose not belong
to RCL4. Also, G(4, 4) × K2 and G(2, 4) × C4 in RCLe3 do not exist in
RCL3. These three graphs are bipartite, while all the graphs in the class
of RC-like graphs are nonbipartite since each of them contains a subgraph
isomorphic to G(8, 4) or G(16, 4). Now, we have a small lemma:

Lemma 1. (a) Every RC-like graph is nonbipartite.
(b) Every m-dimensional RC-like graph Gm is made of 2m vertices of degree
m.

Since each of the two graphs G(2m, 4) and G(2m−2, 4)×C4 in RCLem has
four components G0, G1, G2, and G3, which are respectively isomorphic to
G(2m−2, 4), they can be represented in the form of G(2m−2, 4)⊗C4. Let H0

and H1 be the subgraphs induced by V (G0)∪V (G1) and by V (G2)∪V (G3),
respectively. Then, the two graphs can also be expressed as H0⊕H1, where
H0 and H1 are isomorphic to G(2m−2, 4)×K2.

Let’s take a look at the third graph G(2m−1, 4) × K2 in RCLem more
carefully. It also has a recursive structure, which is derived from the recur-
sive structure of G(2m−1, 4). Again, it has four components G0, G1, G2, and
G3, isomorphic to G(2m−3, 4) × K2. Thus, the graph can be expressed as
[G(2m−3, 4)×K2]⊗C4. If we define H0 and H1 as in the above paragraph,
H0 and H1 are isomorphic to [G(2m−3, 4)×K2]×K2, which is, in fact, iso-
morphic to G(2m−3, 4) × C4. Therefore, the graph can also be represented
as H0 ⊕ H1, where H0 and H1 are isomorphic to G(2m−3, 4) × C4. This
observation leads to the next lemma.
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Lemma 2. (a) For m ≥ 5, every m-dimensional RC-like graph Gm except
for G(16, 4)×K2 can be expressed as G⊗C4, where the four components G0,
G1, G2, and G3 are isomorphic to a graph G in RCLm−2. Furthermore, the
graph can also be expressed as H0⊕H1, where H0 and H1 are the subgraphs
induced by V (G0) ∪ V (G1) and by V (G2) ∪ V (G3), respectively, and both of
them are isomorphic to a graph in RCLm−1.
(b) For m ≥ 4, every m-dimensional RC-like graph Gm except for G(16, 4)
can be expressed as H0 ⊕ H1, where the two components H0 and H1 are
isomorphic to a graph in RCLm−1.

The last but not the least property of RC-like graphs we discuss in this
preliminary section is the fault-hamiltonicity. A graph G is called f -fault
hamiltonian (resp. f -fault hamiltonian-connected) if there exists a hamilto-
nian cycle (resp. if each pair of vertices are joined by a hamiltonian path) in
G \ F for any set F of faulty elements with |F | ≤ f . It is worth mentioning
that a graph G is f -fault (either one-to-one, one-to-many, or many-to-many)
1-disjoint path coverable if and only if G is f -fault hamiltonian-connected.
In the following, let δ(G) denote the minimum degree of a graph G.

Lemma 3. For m ≥ 3, every m-dimensional RC-like graph is (m−3)-fault
hamiltonian-connected and (m− 2)-fault hamiltonian.

Proof. It has been proven that (i) the graph G(2m, 4) with m ≥ 3 is
(m− 3)-fault hamiltonian-connected and (m− 2)-fault hamiltonian [24, 27],
and that (ii) if a graph G is (δ(G) − 3)-fault hamiltonian-connected and
(δ(G)− 2)-fault hamiltonian, then G×K2 is (δ(G)− 2)-fault hamiltonian-
connected and (δ(G) − 1)-fault hamiltonian [24]. Clearly, the proof of this
lemma is a direct consequence of these two facts. Recall that G × C4 is
isomorphic to [G×K2]×K2. �

3. One-to-Many Disjoint Path Covers

In this section, we will consider the problem of constructing one-to-many
DPC’s in RC-like graphs with faulty elements. The construction will be
utilized when we build one-to-one DPC’s in the graphs. The problem on
recursive circulant G(2m, 4) was studied in [20] as follows.

Lemma 4. [20] G(2m, 4), m ≥ 3, is f -fault one-to-many k-disjoint path
coverable for any f and k ≥ 2 subject to f + k ≤ m− 1.
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It is worthy of remark that the bound f+k ≤ m−1 achieved in Lemma 4
is optimal due to the following necessary condition given in [14]. We denote
by κ(G) the connectivity of a graph G.

Lemma 5. [14] If a graph G is f -fault one-to-many k-disjoint path cover-
able, then κ(G) ≥ f + k. Furthermore, if G has f + k + 2 or more vertices,
then κ(G) ≥ f + k + 1.

To construct one-to-many DPC’s in RC-like graphs, we begin by pointing
out the fact in [20] that a graph G is f -fault one-to-many 2-disjoint path
coverable if and only if G is f -fault one-to-many 1-disjoint path coverable,
which is equivalent to that G is f -fault hamiltonian-connected. By utilizing
fault-hamiltonicity of RC-like graphs given in Lemma 3, an f -fault one-to-
many k-DPC for k = 1, 2 can be constructed when f ≤ m − 3. It has
been shown in [20] that an f -fault one-to-many k-DPC in H0 ⊕H1 can be
recursively constructed from f -fault one-to-many (k − 1)-DPC and fault-
hamiltonicity of Hi, i = 0, 1, as follows.

Lemma 6. [20] For f ≥ 0 and k ≥ 3, let Hi be a graph with n vertices
satisfying the following three conditions, i = 0, 1.
(a) Hi is f -fault one-to-many (k − 1)-disjoint path coverable.
(b) Hi is (f +k−3)-fault hamiltonian-connected (2-disjoint path coverable).
(c) Hi is (f + k − 2)-fault hamiltonian.
Then, H0 ⊕H1 is f -fault one-to-many k-disjoint path coverable.

Lemmas 3 and 6 lead to one-to-many disjoint path coverability of RC-like
graphs as follows.

Theorem 1. Every m-dimensional RC-like graph Gm, m ≥ 3, is f -fault
one-to-many k-disjoint path coverable for any f and k ≥ 2 subject to f+k ≤
m− 1.

Proof. The proof is by induction on m. Due to Lemma 4, it suffices to
consider G(2m−1, 4) × K2 with m ≥ 4 and G(2m−2, 4) × C4 with m ≥ 5.
Let H0 ⊕H1 be one of these two graphs, where H0 and H1 are isomorphic
to either G(2m−1, 4) or G(2m−2, 4) × K2. If k = 2, then f ≤ m − 3 and
by Lemma 3, H0 ⊕ H1 is f -fault one-to-many 2-disjoint path coverable.
Assume k ≥ 3. Since f + k ≤ m − 1, each Hi is (i) f -fault one-to-many
(k−1)-disjoint path coverable by induction hypothesis, (ii) (f +k−3)-fault
hamiltonian-connected by Lemma 3, and (iii) (f + k − 2)-fault hamiltonian
by Lemma 3. Thus, by Lemma 6, H0⊕H1 is f -fault one-to-many k-disjoint
path coverable. This completes the proof. �
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Of course, the bound f + k ≤ m − 1 achieved in Theorem 1 is optimal
due to Lemma 5.

4. One-to-One Disjoint Path Covers

We begin with a necessary condition for a graph to be f -fault one-to-one
k-disjoint path coverable.

Lemma 7. If a graph G is f -fault one-to-one k-disjoint path coverable, then
κ(G) ≥ f + k.

Proof. According to Menger’s theorem (see ref. [4]), a graph G is k-
connected if and only if for every pair of source s and sink t, G has k
internally disjoint paths of type one-to-one joining them. A one-to-one k-
disjoint path coverable graph should be k-connected, and thus the lemma
follows. �

We are going to construct f -fault one-to-one k-disjoint path covers in
m-dimensional RC-like graphs for any f and k ≥ 2 satisfying the optimal
bound f + k ≤ m of Lemma 7. That is, we will establish the following
theorem.

Theorem 2. Every m-dimensional RC-like graph Gm, m ≥ 3, is f -fault
one-to-one k-disjoint path coverable for any f and k ≥ 2 subject to f+k ≤ m.

A graph G is f -fault one-to-one 2-disjoint path coverable if and only if
G is f -fault hamiltonian. Thus, to prove Theorem 2, we can assume that

k ≥ 3

due to Lemma 3. A path in a graph is represented as a sequence of vertices.
An s-t path refers to a path from vertex s to t, and an s-path refers to a
path whose starting vertex is s.

4.1. Proof of Theorem 2 when f = 0

The one-to-one DPC problem in fault-free G(2m, 4) was studied in [19] as
follows. We denote by P (l) a graph isomorphic to a path having l vertices.
In G(2m−2, 4)×P (l) with l ≥ 2, each component is isomorphic to G(2m−2, 4)
and referred to G0, G1, . . . , Gl−1.
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Lemma 8. [19] (a) G(2m, 4) with m ≥ 3 is one-to-one k-disjoint path cov-
erable for any 1 ≤ k ≤ m.
(b) G(2m−1, 4)×P (l) with m ≥ 4 and l ≥ 2 has a one-to-one k-DPC joining
any source s in G0 and sink t in Gl−1 for any 1 ≤ k ≤ m.

Now, let us consider one-to-one disjoint path coverability of G(2m−1, 4)×
K2 and G(2m−2, 4)× C4.

Lemma 9. G(2m−1, 4)×K2 with m ≥ 4 is one-to-one k-disjoint path cov-
erable for any 3 ≤ k ≤ m.

Proof. Let G0 and G1 be components isomorphic to G(2m−1, 4). If s ∈
V (G0) and t ∈ V (G1), then by Lemma 8(b), there exists a one-to-one k-
DPC joining s and t. Now let s, t ∈ V (G0). We first construct a one-to-one
(k − 1)-DPC in G0 by Lemma 8(a), and then path Pk = (s, s̄, Ph, t̄, t) is
added to the DPC, where Ph is an s̄-t̄ hamiltonian path in G1. Thus, we
have the lemma. �

Lemma 10. G(2m−2, 4)×C4 with m ≥ 5 is one-to-one k-disjoint path cov-
erable for any 3 ≤ k ≤ m.

Proof. Let G0, G1, G2, and G3 be the four components isomorphic to
G(2m−2, 4). We assume s ∈ V (G0) and let t ∈ V (Gi). We assume w.l.o.g.
i = 0, 1, or 2. If i = 0, we first find a one-to-one (k − 2)-DPC in G0, and
then add two paths Pk−1 = (s, s+, P 1

h , t
+, t) and Pk = (s, s−, P 2

h , t
−, t) to the

DPC, where P 1
h is a hamiltonian path in G1 joining s+ and t+, and P 2

h is a
hamiltonian path in the subgraph H1 induced by V (G2)∪V (G3) joining s−

and t−. It can be easily seen that H1 is hamiltonian-connected since both
G2 and G3 are hamiltonian-connected. If i = 1, 2, we first find a one-to-one
(k− 1)-DPC in the subgraph induced by V (G0)∪ · · · ∪ V (Gi) joining s and
t by Lemma 8(b). For the subcase of either i = 1 or i = 2 and s− 6= t+, we
add path Pk = (s, s−, Ph, t

+, t) to the DPC, where Ph is a hamiltonian path
in the subgraph induced V (Gi+1) ∪ · · · ∪ V (G3) joining s− and t+.

Finally, let i = 2 and s− = t+. In this subcase, let the last path Pk =
(s, s−, t). To cover the vertices in G3 other than s−, we are going to pick up
an edge (x, y) ∈ E(G2)∪E(G0) on some path Pj in the DPC such thatG3\s−
has a hamiltonian path Ph joining x+ and y+ when x, y ∈ V (G2) or joining
x− and y− when x, y ∈ V (G0). And then, the edge (x, y) on Pj is replaced
with (x, x+, Ph, y

+, y) or (x, x−, Ph, y
−, y), resulting in a new path P ′j . If

m ≥ 6, an arbitrarily edge (x, y) in G2 or in G0 such that {x, y}∩ {s, t} = ∅
is acceptable since G3 is (m − 5)-fault hamiltonian-connected. Let m = 5.
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Figure 3: Illustration of the proof of Lemma 10

G3 is 1-fault hamiltonian and thus G3 \ s− has a hamiltonian cycle, say
Ch = (v1, v2, v6, v7, v3, v4, v5) assuming s− = v0. It suffices to show that
for some edge (a, b) on Ch, at least one of (a−, b−) and (a+, b+) is passed
through by some path in the (k − 1)-DPC. Suppose, for a contradiction,
that no such edge exists. See Figure 3. None of the edges (v−1 , v

−
2 ), (v−2 , v

−
6 ),

(v−3 , v
−
4 ), and (v−3 , v

−
7 ) is passed through by any path, and thus path segment

R1 = ((v−2 )−, v−2 , v
−
3 , (v

−
3 )−) must be passed through by some path in the

DPC. Similarly, we observe that path segment R2 = ((v+2 )+, v+2 , v
+
3 , (v

+
3 )+)

must be passed through by some path. The two path segments R1 and R2

form a cycle of length six, which is a contradiction to the fact that the path
segments must be passed through by some paths in the DPC. This completes
the proof. �

4.2. Proof of Theorem 2 when f ≥ 1

It has been known in [25] that an f -fault one-to-many k-disjoint path
coverable graph is always f -fault one-to-one k-disjoint path coverable. To
prove Theorem 2, due to Theorem 1, it can be assumed that

f + k = m.

Since k ≥ 3 and f ≥ 1, we have m ≥ 4. Furthermore, we assume

(s, t) 6∈ E(Gm) \ F.
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Suppose otherwise. Then, regarding (s, t) as a virtual fault allows us to
find (f + 1)-fault one-to-one (k − 1)-DPC and to add the path (s, t) to the
DPC, resulting in an f -fault k-DPC. We also assume that when f = 1 and
k = m− 1,

F 6= {(s, t)} and F 6= {vf} for any vf with (s, vf ), (t, vf ) ∈ E(Gm).

Suppose otherwise. Then, regarding the faulty element as a virtual fault-
free element allows us to find a 0-fault one-to-one m-DPC (by the algorithm
in Subsection 4.1) and to remove the path either (s, t) or (s, vf , t) passing
through the faulty element from the DPC, resulting in a 1-fault (m−1)-DPC.

The proof will proceed by induction onm. Recall that everym-dimensional
RC-like graph Gm, m ≥ 4, except for G(16, 4) can be expressed as H0⊕H1,
where H0, H1 ∈ RCLm−1 by Lemma 2(b). To construct an f -fault one-to-
one k-DPC in Gm, the recursive structure of H0 ⊕H1 will be utilized. For
the exception G(16, 4), a computer program for finding 1-fault 3-DPC for
given a fault and a pair of s and t was written in C language. The validity
of the following lemma was checked by the program.

Lemma 11. G(16, 4) is 1-fault one-to-one 3-disjoint path coverable.

From now on, let Gm be expressed as H0⊕H1. F0 and F1 denote the sets
of faulty elements in H0 and H1, respectively, and F2 denotes the set of faulty
edges joining vertices in H0 and vertices in H1, so that F = F0∪F1∪F2. Let
f0 = |F0|, f1 = |F1|, and f2 = |F2|. Since a one-to-one k-DPC in H0 ⊕H1

with a virtual fault set F ∪ F ′, where F ′ is a set of arbitrary f − |F | fault-
free edges, is also a one-to-one k-DPC in H0 ⊕H1 with the fault set F , we
assume |F | = f.

Remember that each Hi is (m−4)-fault hamiltonian-connected and (m−
3)-fault hamiltonian by Lemma 3. A vertex v is called free if v is fault-free
and not a terminal. An edge (v, w) is called free if v and w are free and
(v, w) 6∈ F . There are three cases.

Case 1: s, t ∈ V (H0) and f1 + f2 = 0 (f0 = f).

We first present a procedure for constructing a one-to-one DPC for this
case, and then show that the procedure is correct.

Procedure DPC-A(H0 ⊕H1, s, t, F )
/* s, t ∈ V (H0) and f1 + f2 = 0 (f0 = f). */

1. Regarding a faulty element α as a virtual fault-free element, find an
(f0 − 1)-fault k-DPC in H0.
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2. When some path Pi in the DPC passes through α, let Pi = (s, Ps, x, α, y, Pt, t)
if α is a vertex; let Pi = (s, Ps, x, y, Pt, t) if α is an edge (x, y). Here,
Ps and Pt are path segments of Pi. When no path in the DPC passes
through α, pick up an arbitrarily path Pi = (s, Ps, x, y, Pt, t) in the
DPC.

3. Replace Pi with P ′i = (s, Ps, x, x̄, Ph, ȳ, y, Pt, t), where Ph is a hamilto-
nian path in H1 between x̄ and ȳ.

Lemma 12. When s, t ∈ V (H0) and f1 + f2 = 0 (f0 = f), Procedure DPC-
A constructs an f -fault one-to-one k-DPC for any m ≥ 4.

Proof. The (f0 − 1)-fault k-DPC in Step 1 exists since (f0 − 1) + k =
f + k − 1 = m − 1. The x̄-ȳ hamiltonian-path in Step 3 exists due to
Lemma 3. Thus, Procedure DPC-A can always be applied. �

Case 2: s ∈ V (H0) and t ∈ V (H1).

In this case, it is assumed that f0 ≥ f1.

Procedure DPC-B(H0 ⊕H1, s, t, F )
/* s ∈ V (H0), t ∈ V (H1), and f0 ≥ f1. */

1. Let z = t̄ if (t, t̄), t̄ 6∈ F ; otherwise, let z be a free vertex in H0 such
that (z, z̄), z̄ 6∈ F . Find an f0-fault s-z hamiltonian path in H0.

2. Pick up k−1 distinct vertices z1, z2, . . ., zk−1 on the hamiltonian path
such that for each i, (s, zi) ∈ E(Gm) \F and x̄i, (xi, x̄i) 6∈ F , where xi
is the vertex on the hamiltonian path that precedes zi.

3. If z = t̄, find f1-fault one-to-many (k−1)-DPC inH1 joining {x̄1, x̄2, . . . , ¯xk−1}
and t; if z 6= t̄, find f1-fault one-to-many k-DPC inH1 joining {x̄1, x̄2, . . . , ¯xk−1, z̄}
and t;

4. Merge the hamiltonian path and the one-to-many DPC with edges
(z, z̄) and (xi, x̄i), 1 ≤ i ≤ k − 1. Discard edges (xi, zi) for all i with
xi 6= s.

Lemma 13. When s ∈ V (H0) and t ∈ V (H1), Procedure DPC-B constructs
an f -fault one-to-one k-DPC for any m ≥ 4 unless (a) k = 3 and f0 = m−3
or (b) f0 + f2 = 1 and one of t̄ or (t, t̄) is faulty.

Proof. The hamiltonian path in Step 1 exists if f0 ≤ m−4. Thus, it exists
unless k = 3 and f1 +f2 = 0 (f0 = m−3) since f0 = f − (f1 +f2) = m−k−
(f1 + f2). Notice k ≥ 3. All the vertices adjacent to s are candidates for zi’s
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of Step 2. Each faulty element may block at most one candidate. There are
m− 1 candidates and at most f blocking elements, and thus the number of
nonblocked candidates is at least m − 1 − f = k − 1. Thus, we can always
pick up k−1 vertices z1, z2, . . ., zk−1 on the hamiltonian path. When z = t̄,
the f1-fault one-to-many (k−1)-DPC in Step 3 exists if f1 +(k−1) ≤ m−2
by Theorem 1. By the assumption of f ≥ 1, we have f0 + f2 ≥ 1. Recall
f0 ≥ f1. Then, f1+(k−1) = f−(f0+f2)+(k−1) = m−(f0+f2)−1 ≤ m−2.
Similarly, we can see that when z 6= t̄ (t̄ or (t, t̄) is faulty), the f1-fault one-
to-many k-DPC in Step 3 exists unless f0 + f2 = 1. This completes the
proof. �

The two exceptional cases (a) and (b) of Lemma 13 are considered in
the following two lemmas.

Lemma 14. When s ∈ V (H0), t ∈ V (H1), k = 3, and f0 = m − 3, there
exists an f -fault one-to-one k-DPC in H0 ⊕H1 for any m ≥ 4.

Proof. There exists a hamiltonian cycle Ch in H0 \ F0. When m ≥ 5, let
(x, y) be an edge on Ch such that x, y 6= s and x̄, ȳ 6= t. A one-to-many 3-
DPC in H1 joining {s̄, x̄, ȳ} and t is merged with Ch to obtain a one-to-one
3-DPC in H0⊕H1. Let m = 4 and H0⊕H1 be isomorphic to G(8, 4)×K2.
If t̄ 6∈ F , we pick up an edge (x, y) on Ch such that x = t̄ and y 6= s. A
one-to-many 2-DPC in H1 between {s̄, ȳ} and t is merged with Ch for our
purpose. The last subcase of t̄ ∈ F is deferred to Lemma 33 in Appendix.
�

Lemma 15. When s ∈ V (H0), t ∈ V (H1), f0 + f2 = 1, and one of t̄ or
(t, t̄) is faulty, there exists an f -fault one-to-one k-DPC in H0⊕H1 for any
m ≥ 4.

Proof. If (t, t̄) is faulty, then f0 = 0 and thus F = {(t, t̄)}. By the as-
sumption of F 6= {(s, t)}, we have t̄ 6= s and (s, s̄) 6∈ F . It suffices to switch
H0 and H1 and apply Procedure DPC-B(H1 ⊕H0, t, s, F ). Let t̄ be faulty.
If f1 = 1 and s̄ 6∈ F , similar to the previous case, it suffices to switch H0

and H1 and apply Procedure DPC-B(H1 ⊕ H0, t, s, F ). Hereafter in this
proof, we assume F = {t̄} or F = {t̄, s̄}. When (i) m ≥ 6 or (ii) m = 5 and
H0 ⊕H1 is isomorphic to G(32, 4) or G(8, 4) × C4, we let G0, G1, G2, and
G3 be the four components of the graph such that H0 and H1 are the sub-
graphs induced by V (G0)∪V (G1) and by V (G2)∪V (G3), respectively. Note
that all Gi’s are isomorphic to a graph in RCLm−2, and that the subgraph
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induced by V (Gi) ∪ V (G(i+1) mod 4) for each i = 0, 1, 2, 3, is isomorphic to a
graph in RCLm−1. Assume w.l.o.g. t ∈ V (G2). Then, t̄ ∈ V (G1).

If s ∈ V (G1), it suffices to apply Procedure DPC-A(H ′0 ⊕H ′1, s, t, F ),
where H ′0 and H ′1 are the subgraphs induced by V (G1) ∪ V (G2) and by
V (G3) ∪ V (G0), respectively. Let s ∈ V (G0). If (s, t̄) 6∈ E(Gm), then it
suffices to apply Procedure DPC-B(H ′0 ⊕ H ′1, t, s, F ). When F = {t̄},
by the assumption of F 6= {vf} for any vf with (s, vf ), (t, vf ) ∈ E(Gm),
we always have (s, t̄) 6∈ E(Gm) and thus we are done. If F = {t̄, s̄} and
(t, s̄) 6∈ E(Gm), it suffices to apply Procedure DPC-B(H ′1 ⊕ H ′0, s, t, F ).
Finally, if F = {t̄, s̄} and (s, t̄), (t, s̄) ∈ E(Gm), then regarding s̄ and t̄ as
virtual fault-free vertices, it suffices to find 0-fault one-to-one m-DPC and
remove the two paths (s, s̄, t) and (s, t̄, t) from the DPC.

The case when m = 5 and H0 ⊕ H1 is isomorphic to G(16, 4) × K2 is
deferred to Lemma 34 in Appendix. The case when m = 4 and H0 ⊕H1 is
isomorphic to G(8, 4) × K2 is also deferred to Lemma 33. This completes
the proof. �

Case 3: s, t ∈ V (H0) and f1 + f2 ≥ 1.

Procedure DPC-C(H0 ⊕H1, s, t, F )
/* s, t ∈ V (H0) and f1 + f2 ≥ 1. */

1. Find an f0-fault one-to-one k-DPC in H0.

2. For some edge (x, y) on a path Pi in the DPC such that x, (x, x̄), y,
and (y, ȳ) are all fault-free, (x, y) is replaced with (x, x̄, Ph, ȳ, y), where
Ph is a hamiltonian path in G1 \ F1 between x̄ and ȳ.

Lemma 16. When s, t ∈ V (H0) and f1 + f2 ≥ 1, Procedure DPC-C con-
structs an f -fault one-to-one k-DPC for any m ≥ 4 unless k = 3 and
f1 = m− 3.

Proof. The f0-fault one-to-one k-DPC in Step 1 exists since f0 + k =
f − (f1 + f2) + k = m − (f1 + f2) ≤ m − 1. The x̄-ȳ hamiltonian path in
Step 2 exists if f1 = f − (f0 + f2) = m − k − (f0 + f2) ≤ m − 4. That is,
it exists unless k = 3 and f0 = f2 = 0 (f1 = m − 3). Thus, we have the
lemma. �

Lemma 17. When s, t ∈ V (H0), k = 3, and f1 = m − 3, there exists an
f -fault one-to-one k-DPC in H0 ⊕H1 for any m ≥ 4.
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Proof. Let us consider the case m ≥ 6 first. There exists a free vertex x
in H0 adjacent to s such that x̄ 6∈ F . Since H1 is (m− 3)-fault hamiltonian,
there exists a fault-free vertex y in H1 such that ȳ 6= s and x̄ and y are
joined by a hamiltonian path in H1 \ F1. Let z be a free vertex in H0

adjacent to s such that z 6= x, ȳ. Regarding x as a virtual fault, we find
a one-to-many 3-DPC joining {s, z, ȳ} and t if ȳ 6= t; otherwise, we find a
one-to-many 2-DPC joining {s, z} and t. The one-to-many DPC in H0 and
the hamiltonian path in H1 \ F1 are merged with edges (s, z), (s, x), (x, x̄),
and (y, ȳ), resulting in a desired one-to-one 3-DPC joining s and t.

Second, let m = 5 and F 6= {s̄, t̄}. Assume s̄ 6∈ F . Similar to the case
m ≥ 6, a one-to-one 3-DPC can be obtained by merging a hamiltonian path
in H1 \F1 between s̄ and a fault-free vertex y such that ȳ 6= t and a one-to-
many 3-DPC in H0 between {s, z, ȳ} and t, where z is a free vertex adjacent
to s in H0 such that z 6= ȳ. Now, let m = 5, F = {s̄, t̄}, and H0 ⊕ H1

be isomorphic to G(32, 4) or G(8, 4) × C4. As in the proof of Lemma 15,
this graph has four components G0, G1, G2, and G3 such that H0 and
H1 are the subgraphs induced by V (G0) ∪ V (G1) and by V (G2) ∪ V (G3),
respectively. If both s and t are contained in the same component, say
G1, it suffices to apply Procedure DPC-A(H ′0 ⊕H ′1, s, t ,F ), where H ′0 and
H ′1 are the subgraphs induced by V (G1) ∪ V (G2) and by V (G3) ∪ V (G0),
respectively. If s and t are contained in different components, say s ∈ V (G1)
and t ∈ V (G0), it suffices to apply Procedure DPC-B(H ′0⊕H ′1, s, t ,F ). The
case when m = 5, F = {s̄, t̄}, and H0⊕H1 is isomorphic to G(16, 4)×K2 is
deferred to Lemma 32 in Appendix. The last case of m = 4 is also deferred
to Lemma 31. �

5. Unpaired Many-to-Many Disjoint Path Covers

In terms of connectivity and the minimum degree, necessary conditions
for a graph to be f -fault unpaired many-to-many k-disjoint path coverable
were derived in [26] as follows.

Lemma 18. [26] Let G be an f -fault unpaired many-to-many k(≥ 2)-disjoint
path coverable graph. Then, κ(G) ≥ f +k. Furthermore, if G has f +2k+1
or more vertices, then δ(G) ≥ f + k + 1.

In this section, we will construct f -fault unpaired k-disjoint path covers
in m-dimensional RC-like graphs with m ≥ 5 for any f and k ≥ 2 satisfying
the optimal bound f + k ≤ m − 1 given in Lemma 18. That is, we will
establish the following theorem.
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Theorem 3. Every m-dimensional RC-like graph Gm, m ≥ 5, is f -fault
unpaired many-to-many k-disjoint path coverable for any f ≥ 0 and k ≥ 2
subject to f + k ≤ m− 1.

The 4-dimensional RC-like graphs are not 0-fault unpaired 3-disjoint
path coverable. However, they are 0-fault unpaired 2-disjoint path coverable,
which is a direct consequence of a result in [26] that everym-dimensional RC-
like graph, m ≥ 4, is f -fault paired many-to-many k-disjoint path coverable
for any f and k ≥ 2 with f + 2k ≤ m. Notice that a paired many-to-many
k-disjoint path coverable graph is always unpaired k-disjoint path coverable.

Lemma 19. Every G4 is 0-fault unpaired 2-disjoint path coverable.

The proof of Theorem 3 will proceed by induction onm. For the base case
of m = 5, we obtained the following Lemma 20 from a computer program
that exhaustively searched out f -fault unpaired k-DPC’s for any f ≥ 0 and
k ≥ 2 satisfying f + k ≤ 4.

Lemma 20. Every G5 is f -fault unpaired k-disjoint path coverable for any
f ≥ 0 and k ≥ 2 with f + k ≤ 4.

Let m ≥ 6, and recall that Gm is isomorphic to H0 ⊕ H1 for some
H0, H1 ∈ RCLm−1. We will construct an f -fault unpaired k-DPC for any
given set S of k sources and set T of k sinks in Gm having at most f faulty
elements such that f + k ≤ m − 1. An unpaired k-DPC with a fault set F
is also an unpaired k-DPC with a virtual fault set F ∪ F ′, where F ′ is a set
of arbitrary m− 1− k− |F | fault-free edges. As a result, it can be assumed
that

f = |F | and f + k = m− 1.

We denote by Si and Ti the sets of sources and sinks in Hi, i = 0, 1, re-
spectively. We assume w.l.o.g. that |S0| ≥ |T0| and |S1| ≤ |T1|. We let
k0 = |T0|, k1 = |S1|, and k2 = k − (k0 + k1). Then, H0 has k0 + k2
sources and k0 sinks, and H1 has k1 sources and k1 + k2 sinks. We as-
sume that S0 = {si : 1 ≤ i ≤ k0 + k2}, S1 = {si : k0 + k2 < i ≤ k},
T0 = {tj : 1 ≤ j ≤ k0}, and T1 = {tj : k0 < j ≤ k}. Furthermore, we also
assume w.l.o.g. that

k0 ≥ k1, and if k0 = k1, f0 ≥ f1.

Hereafter in this section, an unpaired k-DPC in a graph G with fault set
F joining S and T is denoted by k-DPC[S, T |G,F ]. We have three cases.
Remember k ≥ 2.
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Case 1: k1 ≥ 1 or f0 ≤ f − 1.

We first present a basic procedure for constructing an unpaired DPC in
this case.

Procedure DPC-D(H0 ⊕H1, S, T , F )
/* k1 ≥ 1 or f0 ≤ f − 1. */

1. Pick up k2 free edges joining vertices in H0 and vertices in H1. Let
X0 be the set of endvertices of the free edges in H0 and X1 be in H1.

2. Find a (k0 + k2)-DPC[S0, T0 ∪X0|H0, F0].
3. Case k1 + k2 ≥ 1:

(a) Find a (k1 + k2)-DPC[S1 ∪X1, T1|H1, F1].
(b) Merge the two DPC’s with the k2 free edges.

4. Case k1 + k2 = 0:
(a) Let (x, y) be an edge on some path in the (k0 + k2)-DPC such

that all the x̄, (x, x̄), ȳ, and (y, ȳ) are fault-free.
(b) Find a hamiltonian path joining x̄ and ȳ in H1 \ F1.
(c) Merge the (k0+k2)-DPC and the hamiltonian path with the edges

(x, x̄) and (y, ȳ). Discard the edge (x, y).

Lemma 21. When k1 ≥ 1 or f0 ≤ f − 1, Procedure DPC-D constructs an
f -fault unpaired k-DPC for any m ≥ 6 unless (a) k0 = 1, k1 = 1, and
f0 = m − 3, (b) k0 = 1, k2 = 1, and f1 = m − 3, or (c) k0 = 2 and
f1 = m− 3.

Proof. For Step 1, we have 2m−1 candidate edges and f + 2k blocking
elements (f faults and 2k terminals). The number of nonblocked candidates
is at least 2m−1−(f+2k) ≥ 2m−1−2(m−1) > m > k2 for any m ≥ 6. Thus,
it is possible to pick up k2 free edges. Since f0 + (k0 + k2) = f0 + (k− k1) ≤
f + k − 1 = m − 2, by induction hypothesis, the (k0 + k2)-DPC in Step 2
exists when k0 + k2 ≥ 2. If k0 + k2 = 1, the (k0 + k2)-DPC is indeed a
hamiltonian path, and it exists, by Lemma 3, when f0 ≤ m− 4. Thus, the
(k0 + k2)-DPC in Step 2 exists unless f0 = m − 3 (k = 2) and k0 + k2 = 1
(k1 = 1), or equivalently, unless the exceptional case (a). For Step 3, note
that f1+(k1+k2) = f1+(k−k0) ≤ f+k−1 = m−2. Recall the assumption
that k0 ≥ k1, and that if k0 = k1, f0 ≥ f1. If k1 + k2 ≥ 2, the (k1 + k2)-DPC
exists. If k1 +k2 = 1, the (k1 +k2)-DPC exists unless f1 = m−3. Thus, the
(k1 + k2)-DPC in Step 3 exists unless f1 = m − 3 (k = 2) and k1 + k2 = 1
(k0 = 1), i.e., unless the exceptional case (b). Finally, the hamiltonian path
in Step 4(b) exists unless f1 = m − 3. That is, it exists unless f1 = m − 3
(k = 2) and k1 + k2 = 0 (k0 = 2), i.e., unless the exceptional case (c). This
completes the proof. �

19



The three exceptional cases (a), (b), and (c) of Lemma 21 are considered
in the following three lemmas.

Lemma 22. When k0 = 1, k1 = 1, and f0 = m− 3, there exists an f -fault
unpaired k-DPC in H0 ⊕H1 for any m ≥ 6.

Proof. There exists a hamiltonian cycle Ch in H0 \ F0 by Lemma 3. Let
Ch = (s1, Pa, t1, Pb) for some subpaths Pa and Pb. We assume w.l.o.g. the
length of Pa is at least that of Pb. Let Pa = (x, P ′a, y). Then, x 6= y. If
{x̄, ȳ}∩{s2, t2} = ∅, it suffices to find 2-DPC[{s2, t2}, {x̄, ȳ}|H1, ∅] and merge
Ch and the 2-DPC with edges (x, x̄) and (y, ȳ). Of course, we discard the
edges (s1, x) and (t1, y). If |{x̄, ȳ}∩{s2, t2}| = 1, say x̄ = s2, it suffices to find
a ȳ-t2 hamiltonian path Ph in H1 \ s2 and then merge Ch and Ph with (x, x̄)
and (y, ȳ). Finally in case {x̄, ȳ} = {s2, t2}, let subpath (t1, Pb) = (P ′b, z). It
suffices to find a s̄1-z̄ hamiltonian path P ′h in H1 \{s2, t2} and merge Ch and
P ′h with edges (s1, s̄1) and (z, z̄). The existence of P ′h is due to Lemma 3.
The proof is completed. �

Lemma 23. When k0 = 1, k2 = 1, and f1 = m− 3, there exists an f -fault
unpaired k-DPC in H0 ⊕H1 for any m ≥ 6.

Proof. There exists a hamiltonian cycle Ch in H1 \ F1, and let Ch =
(t2, x, Pa, y) for some subpath Pa. Then, x̄ 6= t1 or ȳ 6= t1. Assume ȳ 6= t1.
If ȳ 6∈ {s1, s2}, it suffices to find 2-DPC[{s1, s2}, {t1, ȳ}|H0, ∅] and merge the
2-DPC and Ch with edge (ȳ, y). If ȳ ∈ {s1, s2}, say ȳ = s2, it suffices to find
an s1-t1 hamiltonian path Ph in H0 \ s2 and merge Ph and Ch with (ȳ, y).
Thus, we have the lemma. �

Lemma 24. When k0 = 2 and f1 = m− 3, there exists an f -fault unpaired
k-DPC in H0 ⊕H1 for any m ≥ 6.

Proof. We consider the first case that for some terminal, say s1, s̄1 is
fault-free. There exists a hamiltonian cycle Ch in H1 \ F1, and let Ch =
(s̄1, x, Pa, y) for some subpath Pa. Assume w.l.o.g. ȳ 6= s2. If ȳ 6∈ {t1, t2}, it
suffices find 2-DPC[{ȳ, s2}, {t1, t2}|H0, {s1}] and merge the 2-DPC and Ch
with edge (s1, s̄1) and (ȳ, y). If ȳ ∈ {t1, t2}, say ȳ = t1, we find an s2-t2
hamiltonian path in H0 \ {s1, t1} and let s1-t1 path be (s1, Ch \ (s̄1, y), t1).
For the second case, we assume that s̄1, t̄1, s̄2, and t̄2 are all faulty. This
implies f1 ≥ 4 and thus m ≥ 7. We claim that there exists a free edge (x, x̄)
with x ∈ V (H0) such that x is adjacent to s1. There are m − 1 candidate
edges. The number of blocking elements is at most m − 3 since s̄2, t̄1, and
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t̄2 are all faulty. Thus, the claim is proved. Let a hamiltonian cycle Ch
in H1 \ F1 be (x̄, w, Pb, z). Since z̄ 6∈ {s1, s2, t1, t2}, it suffices to find 2-
DPC[{z̄, s2}, {t1, t2}|H0, {s1, x}] and merge the 2-DPC and Ch with edges
(s1, x), (x, x̄), and (z̄, z). This completes the proof. �

Case 2: k1 = 0, f0 = f , and k0 ≥ 1 or f0 ≥ 1.

We present two basic Procedures DPC-E and DPC-F depending on
whether k0 = k or not.

Procedure DPC-E(H0 ⊕H1, S, T , F )
/* k1 = 0, f0 = f , and k0 = k. */

1. Regarding s1 and t1 as virtual free vertices, find a (k0 − 1)-DPC[S0 \
s1, T0 \ t1|H0, F0].

2. If there exists a path Pi in the DPC which passes through both s1 and
t1, let Pi = (si, Px, x, P1, y, Py, tσi), where P1 is an s1-t1 path. If Pi and
Pj pass through s1 and t1, respectively, let Pi = (si, Px, x, s1, Pa, tσi)
and Pj = (sj , Pb, t1, y, Py, tσj ).

3. Find an x̄-ȳ hamiltonian path in H1.

4. Merge the DPC and the hamiltonian path with edges (x, x̄) and (y, ȳ).

Lemma 25. When k1 = 0, f0 = f , and k0 = k, Procedure DPC-E con-
structs an f -fault unpaired k-DPC for any m ≥ 6 unless k0 = 2 and
f0 = m− 3.

Proof. It holds that f0 + (k0 − 1) = f + k − 1 = m− 2. If k0 − 1 ≥ 2, the
(k0 − 1)-DPC in Step 1 exists. If k0 − 1 = 1, the (k0 − 1)-DPC exists when
f0 ≤ m − 4. Thus, the (k0 − 1)-DPC exists unless k0 = 2 and f0 = m − 3.
The existence of the x̄-ȳ hamiltonian path in Step 3 is straightforward. �

Lemma 26. When k0 = 2 and f0 = m− 3, there exists an f -fault unpaired
k-DPC in H0 ⊕H1 for any m ≥ 6.

Proof. There exists a hamiltonian cycle Ch in H0 \ F0. From Ch, we
can construct four disjoint paths starting from the four terminals. If Ch =
(s1, Px, x, s2, Py, y, t1, Pz, z, t2, Pw, w), then it suffices to remove edges (x, s2),
(y, t1), (z, t2), and (w, s1). The order of terminals in Ch does not matter.
The four disjoint paths and 2-DPC[{x̄, ȳ}, {z̄, w̄}|H1, ∅] are merged to obtain
a desired 2-DPC. �
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In the remaining part of Case 2, we assume k0 < k. It implies k2 ≥ 1.

Procedure DPC-F(H0 ⊕H1, S, T , F )
/* k1 = 0, f0 = f , k0 < k, and k0 ≥ 1 or f0 ≥ 1. */

1. Pick up k2−1 free edges joining vertices in H0 and vertices in H1. Let
X0 be the set of endvertices of the free edges in H0 and X1 be in H1.

2. Regarding s1 as a virtual free vertex, find a (k0 + k2 − 1)-DPC[S0 \
s1, T0 ∪ X0|H0, F0]. Assume path Pi in the DPC passes through s1,
and let Pi = (si, Pa, x, s1, Pb, tσi).

3. Case x̄ is not a sink:

(a) Find a k2-DPC[X1 ∪ {x̄}, T1|H1, ∅].
(b) Merge the two DPC’s with the free edges and edge (x, x̄).

4. Case x̄ is a sink and k2 ≥ 2:

(a) Find a (k2 − 1)-DPC[X1, T1 \ x̄|H1, {x̄}].
(b) Merge the two DPC’s with the free edges and edge (x, x̄).

5. Case x̄ is a sink and k2 = 1:

(a) Pick up an edge (y, z) on a path in the DPC such that y, z 6= x.
(b) Find a ȳ-z̄ hamiltonian path in H1 \ x̄.
(c) Merge the DPC and the hamiltonian path with edges (x, x̄),

(y, ȳ), and (z, z̄).

Lemma 27. When k1 = 0, f0 = f , k0 < k, and k0 ≥ 1 or f0 ≥ 1, Procedure
DPC-F constructs an f -fault unpaired k-DPC for any m ≥ 6 unless (a)
k0 = k2 = 1 and f0 = m− 3, or (b) k2 = 2 and f0 = m− 3.

Proof. The existence of k2− 1 free edges in Step 1 is straightforward. For
Step 2, note that f0+(k0+k2−1) = f+k−1 = m−2. If k0+k2−1 ≥ 2, the
(k0 + k2 − 1)-DPC exists. Otherwise, it exists when f0 ≤ m− 4. Thus, the
(k0 +k2−1)-DPC in Step 2 exists unless the exceptional cases (a) or (b). It
holds that k2 < f0 + k0 + k2 = f + k = m− 1. Thus, the k2-DPC in Step 3
exists if k2 ≥ 2. It also exists if k2 = 1, due to Lemma 3. Similarly, we can
see that the 1-fault (k2 − 1)-DPC in Step 4 exists whether k2 − 1 ≥ 2 or
not. The existence of the ȳ-z̄ hamiltonian path in Step 5 is straightforward.
Thus, we have the lemma. �

Lemma 28. When k0 = k2 = 1 and f0 = m − 3, there exists an f -fault
unpaired k-DPC in H0 ⊕H1 for any m ≥ 6.
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Proof. There exists a hamiltonian cycle Ch = (s1, Px, x, s2, Py, y, t1, Pz, z)
in H0 \ F0. We decompose Ch into three disjoint paths starting from the
three terminals in H0: (s1, Px, x), (s2, Py, y), and (t1, Pz, z). Let z̄ 6= t2 first.
If x̄, ȳ 6= t2, it suffices to find 2-DPC[{x̄, ȳ}, {z̄, t2}|H1, ∅] and merge Ch
and the 2-DPC. Otherwise, say x̄ = t2, it suffices to find a ȳ-z̄ hamiltonian
path in H1 \ t2 and merge Ch and the hamiltonian path. Suppose z̄ = t2.
We use another representation of Ch, which is obtained by traversing Ch
in reverse order. Let Ch = (s1, Pu, u, t1, Pv, v, s2, Pw, w). If v̄ 6= t2, we can
construct a desired DPC in the same way as before. Now, let z̄ = v̄ = t2,
which means z = v = t1 and both (Py, y) and (Pz, z) are empty. Then,
Ch = (s1, Px, x, s2, t1). It suffices to find an x̄-t2 hamiltonian path in H1

and merge Ch and the hamiltonian path with edge (x, x̄). The proof is
completed. �

Lemma 29. When k2 = 2 and f0 = m− 3, there exists an f -fault unpaired
k-DPC in H0 ⊕H1 for any m ≥ 6.

Proof. There exists a hamiltonian cycle Ch = (s1, Px, x, s2, Py, y) in H0 \
F0. We assume w.l.o.g. {x̄, ȳ} 6= {t1, t2}. (Suppose otherwise, then we use
another representation of Ch obtained by traversing Ch in reverse order.)
If {x̄, ȳ} ∩ {t1, t2} = ∅, it suffices to find 2-DPC[{x̄, ȳ}, {t1, t2}|H1, ∅] and
merge Ch and the 2-DPC. If |{x̄, ȳ} ∩ {t1, t2}| = 1, say x̄ = t1, it suffices to
find a ȳ-t2 hamiltonian path in H1 \ t1 and merge Ch and the hamiltonian
path. This completes the proof. �

Case 3: k2 = k and f = 0.

In this case, all the sources are contained in H0 and all the sinks are
contained in H1. There are no faults. By the assumption of f+k = m−1, we
have k2 = m−1. In the recursive structure of Gm, there are four components
G0, G1, G2, and G3, which are (m− 2)-dimensional RC-like graphs. Unless
all the m− 1 sources are contained in Gi and all the sinks are contained in
G(i+2) mod 4 for some i, letting H ′0 (resp. H ′1) be the subgraph induced by
the vertices in G1 and G2 (resp. in G3 and G0), our problem is reduced to
one of the two cases considered before. Thus, we assume w.l.o.g. that all
the sources are contained in G0 and all the sinks are contained in G2.

The following procedure will construct an unpaired (m−1)-DPC in which
m − 3 paths pass through G1 and do not pass through G3. The remaining
two paths in the DPC will pass through G3. They may or may not pass
through G1.
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Figure 4: Illustration of Procedure DPC-G.

Procedure DPC-G([G0 ⊕G1]⊕ [G2 ⊕G3], S, T , F )
/* k = m− 1, f = 0, S ⊂ V (G0), and T ⊂ V (G2). See Fig. 4. */

1. Let x be the vertex in G0 such that x+ = t1
−.

2. Let Z = {t+1 } ∪ {u+ : u ∈ V (G2), (u, t1) ∈ E(G2)}. Pick up a vertex y
in G0 such that y− 6∈ Z.

3. Pick up two sources, say si1 and siq such that {si1 , siq} ∩ {x, y} = ∅.
Regarding sources other than si1 and siq as virtual free vertices, find
a 2-DPC[{si1 , siq}, {x, y}|G0, ∅].

4. Let si1-path in the DPC be (si1 , Pi1 , zi1 , si2 , Pi2 , zi2 , . . . , siq−1 , Piq−1 , ziq−1),
and let siq -path be (siq , Piq , ziq , . . . , sik , Pik , zik), where {ziq−1 , zik} =
{x, y}. Then, we have k disjoint sj-zj paths, 1 ≤ j ≤ k, that cover
V (G0).

5. Let r be an arbitrary index such that r 6= iq−1, ik. Let Y = {y−, z−r }
and X = {z+j : zj 6= y, zr}. Then, Y ⊂ V (G3) and X ⊂ V (G1).

6. Regarding t1 as a virtual source, find an (m − 2)-DPC[X ∪ {t1}, T \
t1|G1 ⊕G2, ∅]. Let the t1-path in the DPC be (t1, w, Pw, tp) for some
p.

7. Let W = {t1+, w+}. If z−r 6∈W , find a 2-DPC[Y,W |G3, ∅]. If z−r ∈W ,
find a 1-DPC[{y−},W \ z−r |G3, {z−r }].

8. Merge the three DPC’s, the 2-DPC in G0, the (m−2)-DPC in G1⊕G2,
and the 2-DPC or 1-fault 1-DPC in G3, with edges {(u−, u) : u ∈ X},
{(u+, u) : u ∈ Y }, and {(w,w+), (t1, t

+
1 )}.
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Lemma 30. When k = m − 1, f = 0, S ⊂ V (G0), and T ⊂ V (G2),
Procedure DPC-G constructs an f -fault unpaired k-DPC for any m ≥ 6.

Proof. The vertex y of Step 2 exists since |Z| = m − 1 < 2m−2 for any
m ≥ 6. The degree m−2 of G0 is at least 4, thus the 2-DPC in G0 exists by
Lemma 19 and induction hypothesis. The sj-zj path in G0 will be extended
to pass through vertices in G1 if z+j ∈ X; otherwise, z−j ∈ Y and the path
will be extended to pass through vertices in G3. Note that |X| = m − 3
and |Y | = 2. The existence of (m − 2)-DPC in Step 6 is due to induction
hypothesis. Recall that G1⊕G2 is an (m−1)-dimensional RC-like graph. By
the choice of x in Step 1, t−1 is a source of the (m−2)-DPC in Step 6. Thus,
w is certainly a vertex in G2. Now, we have constructed m−3 disjoint paths
terminating at T \ {t1, tp}. To construct two paths terminating at {t1, tp},
Step 7 of the procedure works. Observe that W ⊂ Z and y− 6∈ W by the
choice of y. The 2-DPC in G3 exists by Lemma 19 and induction hypothesis.
The 1-fault 1-DPC in G3 also exists by Lemma 3. This completes the proof.

�

6. Concluding Remarks

In this paper, it was shown that recursive circulant G(2m, 4) is f -fault
one-to-one k-disjoint path coverable for any f and k ≥ 2 with f + k ≤ m
whenm ≥ 3, and is f -fault unpaired many-to-many k-disjoint path coverable
for any f and k ≥ 2 with f + k ≤ m − 1 when m ≥ 5. The constructions
presented in this paper are recursive and not so complicated. According to
them, we can design efficient algorithms for finding the two types of disjoint
path covers. Furthermore, the bound f + k ≤ m for a one-to-one DPC
problem and the bound f + k ≤ m − 1 for an unpaired DPC problem are
both optimal.

It has been proven in [26] that G(2m, 4), m ≥ 4, is f -fault paired many-
to-many k-disjoint path coverable for any f and k ≥ 2 with f + 2k ≤ m.
For a graph G to be f -fault paired many-to-many k-disjoint path coverable,
it is necessary that κ(G) ≥ f + 2k − 1 [25]. The gap between the bound
f + 2k ≤ m for a paired DPC problem addressed in [26] and the bound
f + 2k ≤ m + 1 of necessity is one. Recently, it was found that G(32, 4)
is 0-fault paired many-to-many 3-disjoint path coverable. It sheds light on
the optimal construction of paired many-to-many disjoint path covers in
G(2m, 4).
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Appendix

Lemma 31. G(8, 4) × K2 has a one-to-one 3-DPC for any s, t ∈ V (H0)
when f1 = 1 (f0 = f2 = 0).

Proof. There exists a one-to-one 3-DPC in H0 joining s and t, and there
exists a hamiltonian cycle Ch in H1 \ F1. If there exists an edge (x, y) on
some path in the DPC such that (x̄, ȳ) is an edge of Ch, a desired one-to-
one 3-DPC can be obtained by replacing (x, y) with (x, x̄, Ph, ȳ, y), where
Ph = Ch \ (x̄, ȳ). The number of edges in G(8, 4) is 12. The 3-DPC passes
through 9 edges and the hamiltonian cycle passes through at least 7 edges.
Thus, at least four satisfy the required condition. �

Lemma 32. G(16, 4) × K2 has a one-to-one 3-DPC for any s, t ∈ V (H0)
when F = {s̄, t̄}.

Proof. The proof is similar to that of Lemma 31. Recall the assumption
of (s, t) 6∈ E(Gm) \ F . H0 has a one-to-one 3-DPC, and H1 \ F1 has a
hamiltonian cycle Ch. It suffices to show that there exists an edge (x, y) on
some path in the DPC such that (x̄, ȳ) is an edge of Ch. The number of
edges in G(16, 4) incident to neither s nor t is 24(= 32− 4 · 2). The 3-DPC
passes through 17 edges, among them 11 edges are incident to neither s nor
t. The hamiltonian cycle passes through 14 edges, which are incident to
neither s̄ nor t̄. Thus, there exists at least one edge satisfying the required
condition. �

Lemma 33. G(8, 4)×K2 has a one-to-one 3-DPC for any s ∈ V (H0) and
t ∈ V (H1) when F = {t̄}.

Proof. By the assumption of F 6= {vf} for any vf with (s, vf ), (t, vf ) ∈
E(Gm), we have (s, t̄) 6∈ E(Gm). Let V (H0) = {v0, v1, . . . , v7} and (vi, vj) ∈
E(H0) if and only if j ≡ i+ 1 or i+ 4 (mod 8). Assume w.l.o.g. t̄ = v0 and
s ∈ {v2, v3}. Since H0 \ F0 has a hamiltonian cycle (v1, v2, v6, v7, v3, v4, v5),
we have a one-to-many 2-DPC in H0 \ F0 joining s and {v1, v5}. Fur-
thermore, H1 has a one-to-many 3-DPC P joining {s̄, v̄1, v̄5} and t as fol-
lows: for s = v2, P = {(s̄, v̄3, v̄4, t), (v̄1, t), (v̄5, v̄6, v̄7, t)}; for s = v3, P =
{(s̄, v̄2, v̄6, v̄7, t), (v̄1, t), (v̄5, v̄4, t)}. A one-to-one 3-DPC in H0⊕H1\F is ob-
tained from the one-to-many 2-DPC in H0 \F0 and the one-to-many 3-DPC
in H1. �

Lemma 34. For any s ∈ V (H0) and t ∈ V (H1), G(16, 4)×K2 has a one-
to-one 4-DPC when F = {t̄} and has a one-to-one 3-DPC when F = {t̄, s̄}.
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Proof. The proof is similar to that of Lemma 33. When F = {t̄}, by
the assumption of F 6= {vf} for any vf with (s, vf ), (t, vf ) ∈ E(Gm), we
let (s, t̄) 6∈ E(Gm). When F = {t̄, s̄}, we also assume (s, t̄) 6∈ E(Gm);
suppose otherwise, we can obtain a one-to-one 3-DPC from a 0-fault one-
to-one 5-DPC in G(16, 4) × K2 without faulty elements by removing the
two paths (s, s̄, t) and (s, t̄, t) from the 5-DPC. Notice that (s, t̄) is an edge
of G(16, 4) × K2 iff (t, s̄) is an edge. Let V (H0) = {v0, v1, . . . , v15} and
(vi, vj) ∈ E(H0) if and only if j ≡ i+ 1 or i+ 4 (mod 16). Assume w.l.o.g.
t̄ = v0 and s ∈ {v2, v3, v5, v6, v7, v8}. H0\F0 has a one-to-one 3-DPC between
s and v15. The vertices precede v15 on the three paths in the DPC are v3,
v11, and v14, which are the fault-free vertices adjacent to v15. Therefore,
there exists a one-to-many 3-DPC in H0 \ F0 joining s and {v11, v14, v15}.

When F = {t̄}, it suffices to construct a one-to-many 4-DPC P in H1

joining {s̄, v̄11, v̄14, v̄15} and t as follows. Let P3 = (v̄14, v̄13, v̄12, t) and P4 =
(v̄15, t).
For s = v2, P = {(s̄, v̄3, v̄4, t), (v̄11, v̄10, v̄9, v̄8, v̄7, v̄6, v̄5, v̄1, t), P3, P4};
for s = v3, P = {(s̄, v̄2, v̄1, t), (v̄11, v̄10, v̄9, v̄8, v̄7, v̄6, v̄5, v̄4, t), P3, P4};
for s = v5, P = {(s̄, v̄1, t), (v̄11, v̄10, v̄9, v̄8, v̄7, v̄6, v̄2, v̄3, v̄4, t), P3, P4};
for s = v6, P = {(s̄, v̄2, v̄3, v̄7, v̄8, v̄4, t), (v̄11, v̄10, v̄9, v̄5, v̄1, t), P3, P4};
for s = v7, P = {(s̄, v̄3, v̄2, v̄6, v̄5, v̄1, t), (v̄11, v̄10, v̄9, v̄8, v̄4, t), P3, P4};
for s = v8, P = {(s̄, v̄7, v̄3, v̄4, t), (v̄11, v̄10, v̄9, v̄5, v̄6, v̄2, v̄1, t), P3, P4}.

When F = {t̄, s̄}, it suffices to construct a one-to-many 3-DPC P ′ in
H1 \ s̄ joining {v̄11, v̄14, v̄15} and t as follows.
For s = v2, P ′ = {(v̄11, v̄10, v̄9, v̄8, v̄4, v̄3, v̄7, v̄6, v̄5, v̄1, t), P3, P4};
for s = v3, P ′ = {(v̄11, v̄10, v̄9, v̄8, v̄7, v̄6, v̄2, v̄1, v̄5, v̄4, t), P3, P4};
for s = v5, P ′ = {(v̄11, v̄10, v̄9, v̄8, v̄4, v̄3, v̄7, v̄6, v̄2, v̄1, t), P3, P4};
for s = v6, P ′ = {(v̄11, v̄10, v̄9, v̄5, v̄4, v̄8, v̄7, v̄3, v̄2, v̄1, t), P3, P4};
for s = v7, P ′ = {(v̄11, v̄10, v̄6, v̄5, v̄9, v̄8, v̄4, v̄3, v̄2, v̄1, t), P3, P4};
for s = v8, P ′ = {(v̄11, v̄7, v̄6, v̄10, v̄9, v̄5, v̄4, v̄3, v̄2, v̄1, t), P3, P4}. �
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