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Abstract

A many-to-many k-disjoint path cover of a graph joining two disjoint vertex
subsets S and T of equal size k is a set of k vertex-disjoint paths between
S and T that altogether cover every vertex of the graph. It is classified as
paired if each source in S is required to be paired with a specific sink in T , or
unpaired otherwise. In this paper, we develop Ore-type sufficient conditions
for the existence of many-to-many k-disjoint path covers joining arbitrary
vertex subsets S and T . Also, an Ore-type degree condition is established
for the one-to-many k-disjoint path cover, a variant derived by allowing to
share a single source. The bounds on the degree sum are all best possible.

Keywords: Ore’s theorem, degree condition, disjoint path cover, path
partition, Hamiltonian-connected.

1. Introduction

Let G be a simple undirected graph, whose vertex and edge sets are
denoted by V (G) and E(G), respectively. The order of G is the number of
vertices in G. If (u, v) ∈ E(G), u is adjacent to v or u is a neighbor of v. A
path from v1 to vm is a sequence of vertices, (v1, v2, . . . , vm), such that vj is
adjacent to vj−1 for every j ∈ {2, . . . ,m}. A disjoint path cover (DPC for
short) of G is a set of paths in G such that every vertex of G belongs to one
and only one path.
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Figure 1: Examples of disjoint path covers.

Definition 1 (Many-to-many k-disjoint path cover). Given two dis-
joint vertex subsets S = {s1, . . . , sk} and T = {t1, . . . , tk}, each representing
k sources and sinks, the many-to-many k-disjoint path cover of G is a dis-
joint path cover of size k, each of whose paths joins a pair of a source and
a sink.

The disjoint path cover is paired if every source si must be joined with a
specific sink ti. On the other hand, it is unpaired if, for some permutation σ
on {1, . . . , k}, Pi is a path from si to tσ(i) for all i ∈ {1, . . . , k}. The sources
and sinks are referred to as terminals. By these definitions, a paired k-
disjoint path cover is always an unpaired k-disjoint path cover. An example
of the paired many-to-many DPC is shown in Figure 1(a).

Definition 2. A graph G is paired (resp. unpaired) many-to-many k-
coverable if |V (G)| ≥ 2k and there exists a paired (resp. unpaired) many-to-
many k-DPC for any disjoint source set S and sink set T of size k each.

Two simpler variants of the many-to-many k-disjoint path cover can be
derived by allowing to share a single source and/or a single sink. The first
one is of one-to-many type with S = {s} and T = {t1, . . . , tk}, in which
all paths start from the unique source s. The second one is of one-to-one
type with S = {s} and T = {t}, where all internally disjoint paths connect
the unique source and sink. Refer to Figure 1(b) for an example of the
one-to-many DPC.

Definition 3. A graph G is one-to-many (resp. one-to-one) k-coverable if
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|V (G)| ≥ k+ 1 and G has a one-to-many (resp. one-to-one) k-DPC for any
disjoint source set S = {s} and sink set T = {t1, . . . , tk} (resp. T = {t}).

The disjoint path cover problem is strongly related to the well-known
Hamiltonian problem, which is a fundamental one in graph theory. Ac-
tually, a Hamiltonian path joining a pair of vertices in a graph forms a
many-to-many, one-to-many, and one-to-one 1-disjoint path covers of the
graph. A graph of order n ≥ 3 is one-to-many 2-coverable if and only if it
is Hamiltonian-connected. Moreover, a graph of order n ≥ 3 is one-to-one
2-coverable if and only if it is Hamiltonian.

One of the core subjects in Hamiltonian graph theory is to develop suffi-
cient conditions for a graph to have a Hamiltonian path/cycle (refer to [10]
for a survey). The approaches taken to develop sufficient conditions usually
involve degree conditions for providing enough edges to overcome any ob-
stacle to the existence of a Hamiltonian path/cycle. Dirac [4] proved that a
graph G of order n ≥ 3 is Hamiltonian if dG(v) ≥ n/2 for every vertex v of
G, where dG(v) denotes the degree of a vertex v in G. Ore [14, 15] improved
Dirac’s condition as follows:

Theorem 1 (Ore [14, 15]). (a) A graph G of order n ≥ 3 is Hamiltonian
if dG(u) + dG(v) ≥ n for all distinct nonadjacent vertices u and v.
(b) A graph G of order n ≥ 2 is Hamiltonian-connected if dG(u) + dG(v) ≥
n+ 1 for all distinct nonadjacent vertices u and v.

The close relationship between the disjoint path cover problem and the
Hamiltonian problem motivates the study of developing degree conditions
for a graph to have disjoint path covers. In this paper, we establish Ore-type
conditions for the existence of k-disjoint path covers in a simple graph as
follows:

1. A graph G of order n ≥ 2k, where k ≥ 1, is unpaired many-to-many
k-coverable if dG(u) + dG(v) ≥ n + k for every pair of nonadjacent
vertices u and v.

2. A graph G of order n ≥ 2k, where k ≥ 2, is paired many-to-many
k-coverable if dG(u)+dG(v) ≥ n+3k−4 for every pair of nonadjacent
vertices u and v.

3. A graph G of order n ≥ k+1, where k ≥ 2, is one-to-many k-coverable
if dG(u) + dG(v) ≥ n + k − 1 for every pair of nonadjacent vertices u
and v.
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Also, we show that all the above three bounds on the degree sum dG(u) +
dG(v) are the minimum possible. Note that the results for unpaired many-
to-many and one-to-many disjoint path covers are generalizations of Ore’s
theorem, Theorem 1(b). For the one-to-one disjoint path cover problem,
an Ore-type condition was derived by Lin et al. [12]: A graph G of order
n ≥ k+1, where k ≥ 2, is one-to-one k-coverable if dG(u)+dG(v) ≥ n+k−2
for every pair of nonadjacent vertices u and v. Moreover, the bound on the
degree sum is tight. A one-to-one k-coverable graph is also known as a
k∗-connected graph.

2. Related Works and Definitions

The disjoint path cover problem finds applications in many areas such as
software testing, database design, and code optimization [1, 13]. In addition,
the problem is concerned with applications where full utilization of network
nodes is important [18]. It has been studied with respect to various graphs
such as hypercubes [3, 5, 7], recursive circulants [8, 9, 18, 19], hypercube-
like graphs [6, 11, 18, 19], cubes of connected graphs [16, 17], k-ary n-cubes
[20, 21], and connected graphs [12]. Unfortunately, it is NP-complete to
determine whether or not there exists a many-to-many, one-to-many, or
one-to-one k-DPC for a given pair of terminal sets in a general graph for
any fixed k ≥ 1 [18, 19].

A Hamiltonian path of a graph G is a path that contains all the vertices
of G. A graph is said to be Hamiltonian-connected if every pair of distinct
vertices are joined by a Hamiltonian path. A cycle is a closed path of three
or more vertices. A Hamiltonian cycle of G is a closed Hamiltonian path,
i.e., a cycle that contains all the vertices of G. A graph is called Hamiltonian
if it has a Hamiltonian cycle. An s–t path refers to a path from s to t; An
s-path refers to a path starting at vertex s. For a path P = (v1, v2, . . . , vm),
the reverse of P is the path (vm, vm−1, . . . , v1). The vertex and edge sets of
path P are denoted by V (P ) and E(P ), respectively.

The neighborhood of a vertex v of G, denoted by NG(v), is the set of
neighbors of v in G, i.e., NG(v) = {u ∈ V (G) : (v, u) ∈ E(G)}. The degree
of vertex v in G is the number of its neighbors, i.e., dG(v) = |NG(v)|. For a
vertex subset W ⊆ V (G), the subgraph of G induced by W is a graph whose
vertex set is W and for every pair of vertices u, v ∈ W , (u, v) is an edge of
the graph if and only if (u, v) ∈ E(G). For a vertex subset W ⊆ V (G), we
denote by G\W the resultant subgraph obtained from G by deleting all the
vertices in W (including the edges incident to them). Note that G \W is
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the subgraph of G induced by V (G)\W . Graph theoretic terms not defined
here can be found in [2].

We will often abbreviate the terms paired many-to-many k-DPC and
unpaired many-to-many k-DPC as paired k-DPC and unpaired k-DPC, re-
spectively.

3. Unpaired Many-to-Many Disjoint Path Covers

An unpaired many-to-many k-DPC of a graph G, in which a source set
S = {s1, . . . , sk} and a sink set T = {t1, . . . , tk} such that S∩T = ∅ are given,
is a set of k pairwise disjoint paths, {P1, . . . , Pk}, such that each Pj joins

sj and tσ(j) for some permutation σ on {1, . . . , k} and
⋃k
j=1 V (Pj) = V (G).

The first main result of this paper is the following.

Theorem 2. Let G be a graph of order n ≥ 2k, where k ≥ 1. If dG(u) +
dG(v) ≥ n + k for all distinct nonadjacent vertices u and v, then G is
unpaired many-to-many k-coverable.

Proof. The proof is by induction on k. For the base step of k = 1, the
theorem holds by Ore’s theorem, Theorem 1(b). Note that G is unpaired
many-to-many 1-coverable if and only if G is Hamiltonian-connected. Sup-
pose k ≥ 2 for the inductive step. Given a source set S = {s1, . . . , sk} and
a sink set T = {t1, . . . , tk} in G such that S ∩ T = ∅, we will show that
there always exists an unpaired k-DPC joining S and T in G. Let G′ de-
note the subgraph of G induced by V (G) \ {tk}, i.e., G′ = G \ {tk}. For
any pair of nonadjacent vertices u and v of G′, we have dG′(u) + dG′(v) ≥
(dG(u) − 1) + (dG(v) − 1) ≥ n + k − 2 = |V (G′)| + (k − 1). Thus, by
the induction hypothesis, G′ is unpaired many-to-many (k − 1)-coverable.
We are going to construct an unpaired k-DPC of G using some unpaired
(k − 1)-DPC of G′.

Let {P1, . . . , Pk−1} be an unpaired (k − 1)-DPC of G′ joining S \ {sk}
and T \ {tk}, in which each path Pj joins sj and tij where {i1, . . . , ik−1} =
{1, . . . , k − 1}. The path Pj for 1 ≤ j ≤ k − 1 may be represented as

(vj0, . . . , v
j
lj

), where sj = vj0 and tij = vjlj . There is a path, say P1, in the

unpaired (k− 1)-DPC that passes through the source sk as an intermediate
vertex. Then, sk = v1p for some 1 ≤ p < l1, and let x = v1p−1, possibly
x = s1. If we delete the edge (x, sk) from P1, then P1 is divided into two
paths: the s1–x path and sk–ti1 path. It follows that G′ has a partition
made of k pairwise disjoint sj-paths for 1 ≤ j ≤ k, where each sj-path for
j ≥ 2 runs to a sink whereas the s1-path runs to x /∈ T . Also, the partition
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of G′ along with an additional one-vertex path (tk) forms a partition of G.
We rename v1j as vkj−p for every p ≤ j ≤ l1, so that like the other paths, the

sk-path is represented as (vk0 , . . . , v
k
lk

) where lk = l1 − p.
In the remaining part of this proof, we will show that the s1–x path and

the path (tk) can be combined into an s1–tk path; Or the s1–x path, the
path (tk), and one sq-path for some 2 ≤ q ≤ k can be modified into two
paths, an s1–v

q
lq

path and sq–tk path, each of which joins a source and a sink.

If (x, tk) ∈ E(G), then it suffices to concatenate the s1–x path and the path
(tk) into an s1–tk path, (v10, . . . , v

1
p−1, tk). So, we assume (x, tk) /∈ E(G)

hereafter. If there exists a vertex-pair (v1r , v
1
r+1) such that v1r ∈ NG(x)

and v1r+1 ∈ NG(tk) for some 0 ≤ r ≤ p − 3, it suffices to divide the s1–x
path into two paths, (v10, . . . , v

1
r ) and (v1r+1, . . . , v

1
p−1), and then concatenate

the three paths, (v10, . . . , v
1
r ), the reverse of (v1r+1, . . . , v

1
p−1), and the path

(tk) into an s1–tk path, as illustrated in Figure 2(a). Similarly, if there is
a vertex-pair (vqr′ , v

q
r′−1) for some 2 ≤ q ≤ k such that vqr′ ∈ NG(x) and

vqr′−1 ∈ NG(tk) for some 1 ≤ r′ ≤ lq, it suffices to concatenate (v10, . . . , v
1
p−1)

and (vqr′ , . . . , v
q
lq

) into an s1–v
q
lq

path, and then concatenate (vq0, . . . , v
q
r′−1)

and the path (tk) into an sq–tk path, as shown in Figure 2(b). We claim that
there always exists such vertex-pair, (v1r , v

1
r+1) or (vqr′ , v

q
r′−1), that satisfies

the aforementioned conditions.
It remains to prove the claim. We let U = U1 ∪ U2, where U1 :=

{v10, . . . , v1p−3} and U2 :=
⋃k
i=2{vi1, . . . , vili} =

⋃k
i=2(V (Pi) \ {si}). Define

X = NG(x) ∩ U and Y = Y1 ∪ Y2, where

Y1 := {v1j−1 : v1j ∈ NG(tk), 1 ≤ j ≤ p− 2} ⊆ U1, and

Y2 := {vij+1 : vij ∈ NG(tk), 2 ≤ i ≤ k, 0 ≤ j ≤ li − 1} ⊆ U2.

Then, the claim holds if and only if X ∩ Y 6= ∅. Keeping the relationship of
X ∪Y ⊆ U in mind, we will derive an upper bound on |U | and lower bounds
on |X| and |Y |. Consider |U | first. We have |U1| = p− 2 if p ≥ 2; |U1| = 0
otherwise. Also, we have |U2| = n− (p+ 1)− (k− 1) = n− p− k. It follows
that

|U | = |U1|+ |U2| ≤ max{(p− 2) + (n− p− k), n− p− k} ≤ n− k − 1

because p ≥ 1. Consider |X| and |Y | now. Recall (x, tk) /∈ E(G). Observe
that among the vertices of NG(x), there are at most k neighbors (of x) that
are not included in X; The possible neighbors are v1p−2 and {s2, . . . , sk}.
Also, there are at most k neighbors of tk, {s1} ∪ {t1, . . . , tk−1}, that con-
tribute no element to Y . Note that {vili : 2 ≤ i ≤ k} = {t1, . . . , tk−1}. Thus,
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(b) vqr′ ∈ NG(x) and vqr′−1 ∈ NG(tk) for some 2 ≤ q ≤ k
and 1 ≤ r′ ≤ lq.

Figure 2: Construction of an unpaired k-DPC of G from an unpaired (k − 1)-DPC of G′.

we have
|X| ≥ dG(x)− k and |Y | ≥ dG(tk)− k.

Therefore,

|X ∩ Y | = |X|+ |Y | − |X ∪ Y | ≥ |X|+ |Y | − |U |
≥ (dG(x)− k) + (dG(tk)− k)− (n− k − 1)

= dG(x) + dG(tk)− n− k + 1

≥ (n+ k)− n− k + 1 = 1,

proving the claim. This completes the entire proof. �

Remark 1. The bound, n+ k, on the degree sum dG(u) + dG(v) in Theo-
rem 2 is the minimum possible, in a sense that not every graph G of order
n ≥ 2k such that dG(u) + dG(v) ≥ n+ k− 1 for all distinct nonadjacent ver-
tices u and v, is unpaired many-to-many k-coverable. Consider a graph G of
order n = 3k+1 defined as the join G1+G2 of a complete graph G1 of order
2k and a null graph G2 of order k+ 1. That is, V (G) = V (G1)∪V (G2) and
E(G) = E(G1)∪E(G2)∪{(x, y) : x ∈ V (G1), y ∈ V (G2)}. Then, for all dis-
tinct nonadjacent vertices u and v of G, we have dG(u) +dG(v) = 2k+ 2k =
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(3k + 1) + (k − 1) = n + k − 1. The graph G, however, does not admit an
unpaired k-DPC joining S and T if S, T ⊆ V (G1), i.e., S∪T = V (G1). This
is because no path in the unpaired k-DPC may pass through two or more
vertices of G2 as intermediate vertices.

4. Paired Many-to-Many Disjoint Path Covers

In this section, we prove that a graph G of order n ≥ 2k, where k ≥ 2,
is paired many-to-many k-coverable if dG(u) + dG(v) ≥ n + 3k − 4 for all
distinct nonadjacent vertices u and v of G. On the contrary to the unpaired
k-DPC problem, it is not possible to rely on Ore’s theorem, Theorem 1(b).
So, we begin with the paired 2-DPC problem, as a base step of our inductive
proof, in the following two lemmas. Note that if the degree sum condition
for k = 2 is satisfied, then the graph G of order n ∈ {4, 5} is a complete
graph, and thus is paired 2-coverable. (Suppose for a contradiction G is not
a complete graph. For some nonadjacent vertices x and y of G, we have
dG(x) + dG(y) ≤ (n− 2) + (n− 2) = 2n− 4, which contradicts the fact that
dG(x) + dG(y) ≥ n+ 3 · 2− 4 = n+ 2.)

Lemma 1. Let G be a graph of order n ≥ 6 in which four distinct terminals
s1, t1, s2, and t2 are given. If dG(u) + dG(v) ≥ n + 2 for all distinct
nonadjacent vertices u and v and moreover, there exists a Hamiltonian s1–t1
path in G\{s2, t2}, then there exists a paired many-to-many 2-DPC {P1, P2}
in G, where P1 is an s1–t1 path and P2 is an s2–t2 path.

Proof. Let Ph = (v1, v2, . . . , vn−2) denote a Hamiltonian s1–t1 path of G \
{s2, t2}, where s1 = v1 and t1 = vn−2. If (s2, t2) is an edge of G, then Ph and
the two-vertex path (s2, t2) form a desired 2-DPC and we are done. So, we
assume (s2, t2) /∈ E(G) hereafter. Then, there exists a common neighbor of
s2 and t2 in P ′h := Ph\{s1, t1} = (v2, . . . , vn−3); Suppose otherwise, dG(s2)+
dG(t2) ≤ (n−4)+2+2 = n, which contradicts the hypothesis of this lemma
that dG(s2)+dG(t2) ≥ n+2. We let (vp, . . . , vq), where p ≤ q, be a maximal
contiguous subsequence of P ′h whose members are all common neighbors of
s2 and t2, in a sense that there exists no proper contiguous supersequence of
(vp, . . . , vq) whose members are all contained in NG(s2)∩NG(t2). That is, we
have (i) vj ∈ NG(s2)∩NG(t2) for every p ≤ j ≤ q, (ii) vp−1 /∈ NG(s2)∩NG(t2)
or p = 2, and (iii) vq+1 /∈ NG(s2)∩NG(t2) or q = n−3. Also, let x = vp−1 and
y = vq+1. If (x, vi) ∈ E(G) for some p+ 1 ≤ i ≤ q + 1, there exists a paired
2-DPC in which P1 is the concatenation of (v1, . . . , vp−1) and (vi, . . . , vn−2),
and P2 is (s2, vp, . . . , vi−1, t2). Symmetrically, if (y, vj) ∈ E(G) for some p−
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Figure 3: Hamiltonian s1–t1 paths in the subgraph induced by {v1, . . . , vp−1} ∪
{vq+1, . . . , vn−2}.

1 ≤ j ≤ q−1, there also exists a paired 2-DPC, where P1 is the concatenation
of (v1, . . . , vj) and (vq+1, . . . , vn−2), and P2 is (s2, vj+1, . . . , vq, t2). So, we
assume (x, vi) /∈ E(G) for every p + 1 ≤ i ≤ q + 1 and (y, vj) /∈ E(G) for
every p− 1 ≤ j ≤ q − 1. Note that (x, y) /∈ E(G).

In the remainder of this proof, we will show that there exists a
Hamiltonian s1–t1 path P1 in the subgraph induced by {v1, . . . , vp−1} ∪
{vq+1, . . . , vn−2}, which implies that P1 and P2 := (s2, vp, . . . , vq, t2) form a
desired 2-DPC. If there is a vertex-pair (vr, vr+1) such that vr ∈ NG(x) and
vr+1 ∈ NG(y) for some 1 ≤ r ≤ p− 3, it suffices to let P1 be the concatena-
tion of (v1, . . . , vr), the reverse of (vr+1, . . . , vp−1), and (vq+1, . . . , vn−2), as
illustrated in Figure 3(a). Similarly, if there is a vertex-pair (vr, vr+1) such
that vr ∈ NG(x) and vr+1 ∈ NG(y) for some q+ 2 ≤ r ≤ n− 3, it suffices to
let P1 be the concatenation of (v1, . . . , vp−1), the reverse of (vq+1, . . . , vr),
and (vr+1, . . . , vn−2), as shown in Figure 3(b). We claim that there always
exists such vertex-pair (vr, vr+1), where vr ∈ NG(x), vr+1 ∈ NG(y), and
either 1 ≤ r ≤ p− 3 or q + 2 ≤ r ≤ n− 3.

It remains to prove the claim. We let U = U1 ∪ U2, where U1 :=
{v1, . . . , vp−3} and U2 := {vq+2, . . . , vn−3}. Define X = NG(x) ∩ U and
Y = Y1 ∪ Y2, where

Y1 := {vj−1 : vj ∈ NG(y), 2 ≤ j ≤ p− 2} ⊆ U1, and

Y2 := {vj−1 : vj ∈ NG(y), q + 3 ≤ j ≤ n− 2} ⊆ U2.

Then, the claim holds if and only if X ∩ Y 6= ∅. To show |X ∩ Y | ≥ 1 as
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in the proof of Theorem 2, we will derive an upper bound on |U | and lower
bounds on |X| and |Y |. Consider |U | first. We have |U1| = p − 3 if p ≥ 3;
|U1| = 0 otherwise. Also, we have |U2| = n − q − 4 if q ≤ n − 4; |U2| = 0
otherwise. It follows that

|U | = |U1|+ |U2|

=


(p− 3) + (n− q − 4) if p ≥ 3 and q ≤ n− 4,
(p− 3) + 0 if p ≥ 3 and q = n− 3,
0 + (n− q − 4) if p = 2 and q ≤ n− 4,

≤
{
n− 6 if p = q = n− 3 or p = q = 2,
n− 7 elsewhere,

because 2 ≤ p ≤ q ≤ n − 3. Note that the case where p = 2 and q = n − 3
never occurs. (Suppose p = 2 and q = n − 3. Then, we have x = s1 and
y = t1, so that dG(x) + dG(y) ≤ |{v2, s2, t2}| + |{vn−3, s2, t2}| = 6, which
contradicts the hypothesis that dG(x)+dG(y) ≥ n+2 ≥ 8.) Consider |X| and
|Y | now. Recall the assumption that (x, vi) /∈ E(G) for every p+1 ≤ i ≤ q+1
and (y, vj) /∈ E(G) for every p − 1 ≤ j ≤ q − 1. Observe that among the
vertices of NG(x), there are at most four that are not included in X. The
four are vp−2, vp, t1, and one of {s2, t2} if p ≥ 3 (i.e., x 6= s1); They are
vp, t1, s2 and t2 otherwise (i.e., x = s1). Furthermore, if p = q = n − 3
(where y = t1 and x 6= s1), there are at most three vertices, vp−2, vp, and
one of {s2, t2}, in NG(x) \ X. Note that x /∈ NG(s2) ∩ NG(t2) if x 6= s1;
y /∈ NG(s2) ∩ NG(t2) if y 6= t1. Also, there are at most four vertices of
NG(y) that contribute no element to Y . The four are s1, vq, vq+2, and one
of {s2, t2} if q ≤ n − 4 (i.e., y 6= t1); They are s1, vq, s2, and t2 otherwise
(i.e., y = t1). Furthermore, if p = q = 2 (where x = s1 and y 6= t1), there are
at most three vertices, vq, vq+2, and one of {s2, t2}, of NG(y) that contribute
no element to Y . Thus, we have

|X| ≥
{
dG(x)− 3 if p = q = n− 3,
dG(x)− 4 elsewhere;

|Y | ≥
{
dG(y)− 3 if p = q = 2,
dG(y)− 4 elsewhere.

Therefore,

|X ∩ Y | = |X|+ |Y | − |X ∪ Y | ≥ |X|+ |Y | − |U |

≥


(dG(x)− 3) + (dG(y)− 4)− (n− 6) if p = q = n− 3,
(dG(x)− 4) + (dG(y)− 3)− (n− 6) if p = q = 2,
(dG(x)− 4) + (dG(y)− 4)− (n− 7) elsewhere,

= dG(x) + dG(y)− n− 1

≥ (n+ 2)− n− 1 = 1,
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𝑣3 

𝑣2 

𝑣6 

𝑣5 

𝑣4 

Figure 4: The octahedral graph.

proving the claim. This completes the proof. �

One might expect that if dG(u) + dG(v) ≥ n + 2 for all distinct nonad-
jacent vertices u and v in a graph G of order n ≥ 6, then G is 2-vertex-
fault Hamiltonian-connected, i.e., for any four distinct vertices s, t, vf , and
wf , there exists a Hamiltonian s–t path in G \ {vf , wf}. Unfortunately,
this is not always true. The octahedral graph, shown in Figure 4, is not
2-vertex-fault Hamiltonian-connected (for example, {s, t} = {v1, v4} and
{vf , wf} = {v2, v5}), while the degree sum condition is satisfied. The graph
is, in fact, paired many-to-many 2-coverable, which will become clear soon.
Instead, we will provide a direct construction of a paired 2-DPC of G sat-
isfying the degree condition in case when G \ {s2, t2} has no Hamiltonian
s1–t1 path, in the following lemma.

Lemma 2. Let G be a graph of order n ≥ 6 in which four distinct terminals
s1, t1, s2, and t2 are given. If dG(u) + dG(v) ≥ n + 2 for all distinct
nonadjacent vertices u and v and moreover, there exists no Hamiltonian
s1–t1 path in G \ {s2, t2}, then there exists a paired many-to-many 2-DPC
{P1, P2} in G, where P1 is an s1–t1 path and P2 is an s2–t2 path.

Proof. Let G′ = G \ {s2, t2}, the subgraph induced by V (G) \ {s2, t2}.
Then, there exists a Hamiltonian cycle in G′ by Theorem 1(a). This is
because for all distinct nonadjacent vertices u and v, dG′(u) + dG′(v) ≥
(dG(u) − 2) + (dG(v) − 2) = dG(u) + dG(v) − 4 ≥ (n + 2) − 4 = |V (G′)|.
From the Hamiltonian cycle of G′, we can extract a Hamiltonian path, Ph,
one of whose end-vertices is t1. Let Ph be represented as (v1, v2, . . . , vn−2),
where t1 = vn−2 and s1 = vp for some 1 ≤ p ≤ n − 3. If p = 1, then the
path Ph joins s1 and t1, which contradicts the hypothesis of this lemma.
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𝑊𝑗  
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Figure 5: The graph Hj , where 1 ≤ j ≤ p.

So, we assume p ≥ 2. It will be shown that there exists a paired 2-DPC
{P1, P2}, where for some q ∈ {2, . . . , p}, P1 is a Hamiltonian s1–t1 path of
the subgraph induced by {vq, . . . , vn−2} and P2 is a Hamiltonian s2–t2 path
of the subgraph induced by {v1, . . . , vq−1} ∪ {s2, t2}.

We denote by H1 the spanning subgraph of G composed of the Hamil-
tonian path Ph and two isolated vertices s2 and t2. Expanding the graph
H1, we define Hj , 1 ≤ j ≤ p, to be a graph whose vertex and edge sets,
respectively, are

V (Hj) = {v1, . . . , vn−2} ∪ {s2, t2} and

E(Hj) = {(vi, vi+1) : 1 ≤ i < n− 2} ∪ {(s2, vi), (t2, vi) : 1 ≤ i ≤ j − 1},

as shown in Figure 5. Let x = vp+1 and Wj = {v1, . . . , vj−1} where W1 = ∅.

Claim 1. If Hj, j ∈ {1, . . . , p − 1}, is a spanning subgraph of G such that
NG(x) ∩Wj = ∅, then

• the graph Gj, defined as the subgraph of G induced by {vj , . . . , vn−2},
has a Hamiltonian s1–t1 path, or
• Hj+1 is a spanning subgraph of G such that NG(x) ∩Wj+1 = ∅.

Provided the claim is proved, we may conclude that for some q ∈
{1, . . . , p}, the induced subgraph Gq has a Hamiltonian s1–t1 path, P1. Note
that H1 is a spanning subgraph of G such that NG(x) ∩W1 = ∅, and Gp
has a Hamiltonian s1–t1 path, (vp, . . . , vn−2). It follows that if q = 1, then
G \ {s2, t2} has a Hamiltonian s1–t1 path, which contradicts the hypothesis
of this lemma; If q ≥ 2, G has a paired 2-DPC made of P1 and an s2–t2
path, P2 = (s2, v1, . . . , vq−1, t2). It remains to prove the claim.

Proof of Claim 1. If (x, vj) ∈ E(G), then there exists a Hamilto-
nian s1–t1 path, obtained by concatenating the reverse of (vj , . . . , vp) and

12



𝑣𝑗  𝑣𝑟 

𝑣𝑝+1 

𝑣𝑝 

𝑣𝑛−2 

𝑠1 

𝑡1 𝑥 

𝑣𝑟+1 

(a) vr ∈ NG(x) and vr+1 ∈ NG(vj) for
some j + 1 ≤ r ≤ p− 1.

𝑣𝑗  
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𝑠1 
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(b) vr′ ∈ NG(x) and vr′−1 ∈ NG(vj) for some
p+ 3 ≤ r′ ≤ n− 2.

Figure 6: Hamiltonian s1–t1 paths in the induced subgraph Gj .

(vp+1, . . . , vn−2), proving the claim. So, we assume (x, vj) /∈ E(G). If there
exists a vertex-pair (vr, vr+1) such that vr ∈ NG(x) and vr+1 ∈ NG(vj) for
some j + 1 ≤ r ≤ p − 1, then we have a Hamiltonian s1–t1 path of Gj
by concatenating the three paths, the reverse of (vr+1, . . . , vp), (vj , . . . , vr),
and (vp+1, . . . , vn−2), as shown in Figure 6(a). Similarly, if there exists a
vertex-pair (vr′ , vr′−1) such that vr′ ∈ NG(x) and vr′−1 ∈ NG(vj) for some
p + 3 ≤ r′ ≤ n − 2, then concatenating the three paths, the reverse of
(vj , . . . , vp), the reverse of (vp+1, . . . , vr′−1), and (vr′ , . . . , vn−2), results in
a Hamiltonian s1–t1 path of Gj , as shown in Figure 6(b). Similar to the
proof of Lemma 1, we consider the existence of such vertex-pair (vr, vr+1)
or (vr′ , vr′−1). We let U = U1 ∪ U2, where U1 := {vj+1, . . . , vp−1} and
U2 := {vp+3, . . . , vn−2}. Define X = NG(x) ∩ U and Yj = Y 1

j ∪ Y 2
j , where

Y 1
j := {vi−1 : vi ∈ NG(vj), j + 2 ≤ i ≤ p} ⊆ U1, and

Y 2
j := {vi+1 : vi ∈ NG(vj), p+ 2 ≤ i ≤ n− 3} ⊆ U2.

Then, there exists a pair (vr, vr+1) or (vr′ , vr′−1) satisfying the aforemen-
tioned conditions if and only if X ∩ Yj 6= ∅. To establish a lower bound
on |X ∩ Yj |, we will derive inequalities on |U |, |X| and |Yj |. We have
|U1| = p − j − 1. (Note that j < p ≤ n − 3.) Also, |U2| = n − p − 4 if
p ≤ n− 4; |U2| = 0 otherwise. It follows that

|U | = |U1|+ |U2| ≤ max{(p− j − 1) + (n− p− 4), (p− j − 1) + 0}

≤
{
n− j − 5 if p ≤ n− 4 (i.e., x 6= t1),
n− j − 4 if p = n− 3 (i.e., x = t1).

At most four vertices, {s1, vp+2, s2, t2}, among the neighbors of x may not
be contained in X if p ≤ n − 4; Otherwise, there are at most three such
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vertices, {s1, s2, t2}. Note that (x, vj) /∈ E(G) and NG(x) ∩Wj = ∅, i.e.,
NG(x) ∩Wj+1 = ∅. Also, at most j + 3 vertices, {vj+1, t1, s2, t2} ∪Wj , of
NG(vj) may contribute no element to Yj if p ≤ n− 4; Otherwise, there are
at most j + 2 such vertices, {vj+1, s2, t2} ∪Wj . Thus, we have

|X| ≥
{
dG(x)− 4 if p ≤ n− 4,
dG(x)− 3 if p = n− 3;

|Yj | ≥
{
dG(vj)− j − 3 if p ≤ n− 4,
dG(vj)− j − 2 if p = n− 3.

Therefore,

|X ∩ Yj | = |X|+ |Yj | − |X ∪ Yj | ≥ |X|+ |Yj | − |U |

≥
{

(dG(x)− 4) + (dG(vj)− j − 3)− (n− j − 5) if p ≤ n− 4,
(dG(x)− 3) + (dG(vj)− j − 2)− (n− j − 4) if p = n− 3,

=

{
dG(x) + dG(vj)− n− 2 ≥ (n+ 2)− n− 2 = 0 if p ≤ n− 4,
dG(x) + dG(vj)− n− 1 ≥ (n+ 2)− n− 1 ≥ 1 if p = n− 3.

If |X ∩ Yj | ≥ 1, then there exists a desired pair (vr, vr+1) or (vr′ , vr′−1)
and the graph Gj has a Hamiltonian s1–t1 path, proving the claim. So,
we assume |X ∩ Yj | = 0. It follows that p ≤ n − 4, |Yj | = dG(y) − j − 3
and moreover, {vj+1, t1, s2, t2} ∪Wj ⊆ NG(vj). This implies that Hj+1 is
a spanning subgraph of G such that NG(x) ∩Wj+1 = ∅, also proving the
claim. � �

Theorem 3. Let G be a graph of order n ≥ 4. If dG(u) +dG(v) ≥ n+ 2 for
all distinct nonadjacent vertices u and v, then G is paired many-to-many
2-coverable.

Proof. If n ∈ {4, 5}, then G is a complete graph and thus is paired many-
to-many 2-coverable. For n ≥ 6, the proof is a direct consequence of Lem-
mas 1 and 2. �

Now, we are ready to consider the paired k-DPC problem for general
k ≥ 2.

Theorem 4. Let G be a graph of order n ≥ 2k, where k ≥ 2. If dG(u) +
dG(v) ≥ n+ 3k − 4 for all distinct nonadjacent vertices u and v, then G is
paired many-to-many k-coverable.

Proof. The proof proceeds by induction on k. The base case of k = 2 holds
due to Theorem 3. Let k ≥ 3 for the inductive step. We first claim that
(sk, tk) ∈ E(G), or there exists a nonterminal vertex w ∈ NG(sk) ∩NG(tk).
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To prove the claim, suppose (sk, tk) /∈ E(G). Then, we have dG(sk) +
dG(tk) ≥ n + 3k − 4 by the hypothesis of the theorem. This implies that
there are at least (n+ 3k−4)− (n−2) = 3k−2 vertices in NG(sk)∩NG(tk)
and among them, there are at least (3k− 2)− 2(k− 1) = k ≥ 3 nonterminal
vertices. Note that sk, tk /∈ NG(sk) ∪NG(tk). Thus, the claim is proved.

We let an sk–tk path, Pk, be the two-vertex path (sk, tk) if (sk, tk) ∈
E(G); let Pk = (sk, w, tk) otherwise. It suffices to prove that G \V (Pk), the
subgraph of G induced by V (G) \ V (Pk), is paired many-to-many (k − 1)-
coverable. Let G′ be the induced subgraph, and let nk = |V (Pk)| where
nk = 2 or 3. For any two nonadjacent vertices u and v of G′,

dG′(u) + dG′(v) ≥ (dG(u)− nk) + (dG(v)− nk) = dG(u) + dG(v)− 2nk

≥ (n+ 3k − 4)− 2nk = (n− nk) + (3k − nk)− 4

≥ |V (G′)|+ 3(k − 1)− 4.

Therefore, G′ is paired (k − 1)-coverable by the induction hypothesis, com-
pleting the proof. �

Remark 2. The bound, n + 3k − 4, on the degree sum dG(u) + dG(v) in
Theorem 4 is the best possible. Consider a graph G of order n = 3k − 1,
obtained from a complete graph, Kn, of order n by deleting k pairwise
nonadjacent edges (ui, vi) for 1 ≤ i ≤ k. That is, V (G) = V (Kn) and
E(G) = E(Kn) \M , where M is a matching of Kn of size k. Then, for
any two nonadjacent vertices, ui and vi for some i, of G, we have dG(ui) +
dG(vi) = (n − 2) + (n − 2) = n + (n − 4) = n + 3k − 5. The graph G,
however, does not admit a paired k-DPC joining S = {s1, . . . , sk} and T =
{t1, . . . , tk} if si = ui and ti = vi for all i, because every si–ti path should
pass through at least one nonterminal vertex as an intermediate vertex,
which is impossible. Therefore, not every graph G of order n ≥ 2k such that
dG(u) + dG(v) ≥ n+ 3k − 5 for all distinct nonadjacent vertices u and v, is
paired many-to-many k-coverable.

5. One-to-Many Disjoint Path Covers

In this section, an Ore-type degree condition will be established for the
one-to-many k-disjoint path covers. Given a single source s and a set of k
distinct sinks T = {t1, . . . , tk} in a graph G such that s /∈ T , a one-to-many
k-DPC joining s and T refers to a set of k paths, {P1, . . . , Pk}, where each
path Pi runs from the source s to sink ti such that

⋃k
i=1 V (Pi) = V (G) and

V (Pi) ∩ V (Pj) = {s} for all i 6= j.
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Theorem 5. Let G be a graph of order n ≥ k+ 1, where k ≥ 2. If dG(u) +
dG(v) ≥ n + k − 1 for all distinct nonadjacent vertices u and v, then G is
one-to-many k-coverable.

Proof. The proof is by induction on k. The base case of k = 2 holds due
to Ore’s theorem, Theorem 1(b). Note that a graph of order at least three is
one-to-many 2-coverable if and only if it is Hamiltonian-connected. Suppose
k ≥ 3 for the inductive step. Given a source s and a sink set T = {t1, . . . , tk}
in G such that s /∈ T , we will show that G has a one-to-many k-DPC joining
s and T . By the induction hypothesis, G has a one-to-many (k − 1)-DPC
joining s and T \ {tk}. Let {P1, . . . , Pk−1} denote the one-to-many (k − 1)-
DPC, in which each path Pi joins s and ti. The path Pi for 1 ≤ i ≤ k − 1
may be represented as (vi0, . . . , v

i
li

), where s = vi0 and ti = vili . There exists
a path, say P1, in the (k − 1)-DPC that passes through the sink tk as an
intermediate vertex. Then, tk = v1p for some 1 ≤ p ≤ l1−1, and let x = v1p+1,

possibly x = t1. If (s, x) ∈ E(G), then it suffices to let Pk = (v10, . . . , v
1
p) and

redefine P1 = (s, v1p+1, . . . , v
1
l1

), so that {P1, . . . , Pk} is a desired k-DPC of
G. Hereafter, we assume (s, x) /∈ E(G), and thus dG(s) +dG(x) ≥ n+k−1.

If there exists a vertex-pair (v1r , v
1
r+1) such that v1r ∈ NG(x) and v1r+1 ∈

NG(s) for some 1 ≤ r ≤ p − 1, it suffices to let Pk = (s, v1r+1, . . . , v
1
p)

and redefine P1 as the concatenation of (v10, . . . , v
1
r ) and (v1p+1, . . . , v

1
l1

), as

illustrated in Figure 7(a). Similarly, if there is a vertex-pair (v1r′ , v
1
r′−1) such

that v1r′ ∈ NG(x) and v1r′−1 ∈ NG(s) for some p + 3 ≤ r′ ≤ l1, then it
suffices to let Pk = (v10, . . . , v

1
p) and redefine P1 as the concatenation of

three path segments, one-vertex path (s), the reverse of (v1p+1, . . . , v
1
r′−1),

and (v1r′ , . . . , v
1
l1

), as shown in Figure 7(b). In addition, if there exists a

vertex-pair (viq, v
i
q+1) for some 2 ≤ i ≤ k − 1 such that viq ∈ NG(x) and

viq+1 ∈ NG(s) for some 1 ≤ q ≤ li − 1, it suffices to let Pk = (v10, . . . , v
1
p)

and redefine P1 and Pi as follows (see Figure 7(c)): P1 is the concatenation
of (vi0, . . . , v

i
q) and (v1p+1, . . . , v

1
l1

), and Pi is the concatenation of the path

(s) and (viq+1, . . . , v
i
li

). It remains to prove that there always exists at least

one such vertex-pair, (v1r , v
1
r+1), (v1r′ , v

1
r′−1), or (viq, v

i
q+1), that satisfies the

aforementioned conditions.
As in the proof of Theorem 2, we let U = U1 ∪ U2 ∪ U3, where U1 :=

{v11, . . . , v1p−1}, U2 := {v1p+3, . . . , v
1
l1
}, and U3 :=

⋃k−1
i=2 {vi1, . . . , vili−1} =⋃k−1

i=2 V (Pi) \ ({s} ∪ {t2, . . . , tk−1}). Define X = NG(x) ∩ U and Y =
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(b) v1r′ ∈ NG(x) and v1r′−1 ∈ NG(s) for some p+ 3 ≤ r′ ≤ l1.

𝑠 𝑥 
𝑡1 

𝑣0
1 𝑣1

1 𝑣𝑙1
1  𝑣𝑝

1 𝑣𝑝+1
1  

𝑡𝑘 

𝑡𝑖 

𝑣𝑙𝑖
𝑖  

𝑣1
𝑖  

𝑣𝑞+1
𝑖  𝑣𝑞

𝑖  

𝑣0
𝑖  

(c) viq ∈ NG(x) and viq+1 ∈ NG(s) for some 2 ≤ i ≤ k − 1 and
1 ≤ q ≤ li − 1.

Figure 7: Construction of a one-to-many k-DPC from a one-to-many (k − 1)-DPC of G.
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Y1 ∪ Y2 ∪ Y3, where

Y1 := {v1j−1 : v1j ∈ NG(s), 2 ≤ j ≤ p} ⊆ U1,

Y2 := {v1j+1 : v1j ∈ NG(s), p+ 2 ≤ j ≤ l1 − 1} ⊆ U2, and

Y3 := {vij−1 : vij ∈ NG(s), 2 ≤ i ≤ k − 1, 2 ≤ j ≤ li} ⊆ U3.

It suffices to show that |X ∩ Y | ≥ 1. An upper bound on |U | and lower
bounds on |X| and |Y | will be derived first. We have |U1| = p − 1. Also,
we have |U2| = l1 − p − 2 if p ≤ l1 − 2; |U2| = 0 otherwise. In addition,
|U3| = (n− l1)− (1 + (k − 2)) = n− l1 − k + 1. It follows that

|U | = |U1|+ |U2|+ |U3|

≤
{

(p− 1) + (l1 − p− 2) + (n− l1 − k + 1) = n− k − 2 if p ≤ l1 − 2,
(p− 1) + 0 + (n− l1 − k + 1) = n− k − 1 if p = l1 − 1.

Consider |X| and |Y | now. Recall the assumption that (s, x) /∈ E(G). There
are at most k neighbors of x, {v1p, v1p+2}∪{t2, . . . , tk−1}, that are not included
in X. Furthermore, if p = l1 − 1 (or equivalently, x = t1), at most k − 1
neighbors of x, {v1p}∪{t2, . . . , tk−1}, are not included in X. Also, if p ≤ l1−2,

there are at most k neighbors of s, {v11, t1}∪ {v21, . . . , v
k−1
1 }, that contribute

no element to Y ; if p = l1 − 1, there are at most k − 1 such neighbors of s,
{v11} ∪ {v21, . . . , v

k−1
1 }. Thus, we have

|X| ≥
{
dG(x)− k if p ≤ l1 − 2,
dG(x)− k + 1 if p = l1 − 1;

|Y | ≥
{
dG(s)− k if p ≤ l1 − 2,
dG(s)− k + 1 if p = l1 − 1.

Therefore,

|X ∩ Y | = |X|+ |Y | − |X ∪ Y | ≥ |X|+ |Y | − |U |

≥
{

(dG(x)− k) + (dG(s)− k)− (n− k − 2) if p ≤ l1 − 2,
(dG(x)− k + 1) + (dG(s)− k + 1)− (n− k − 1) if p = l1 − 1,

≥ dG(x) + dG(s)− (n+ k − 2)

≥ (n+ k − 1)− (n+ k − 2) = 1,

proving the claim. This completes the entire proof. �

Remark 3. The bound, n + k − 1, on the degree sum dG(u) + dG(v) in
Theorem 5 is the minimum possible. Consider a graph G of order n ≥ k+ 2
made of a complete subgraph Kn−1 and a single vertex w /∈ V (Kn−1) that
is directly connected, via an edge, to each of some k vertices of Kn−1. That
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is, V (G) = V (Kn−1) ∪ {w} and E(G) = E(Kn−1) ∪ {(w, z) : z ∈ Z} for
some k-vertex subset Z of the subgraph Kn−1. Then, we have dG(u) +
dG(v) = n + k − 2 for all distinct nonadjacent vertices u and v of G. The
graph G, however, does not admit a one-to-many k-DPC joining s and
T = {t1, . . . , tk} if s = w and T = NG(w), because no s–ti path may pass
through a nonterminal vertex. Note that there exists a nonterminal vertex
in G since n ≥ k + 2.
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