Ore-Type Degree Conditions for Disjoint Path Covers in Simple Graphs

Hyeong-Seok Lim^a, Hee-Chul Kim^b, Jung-Heum Park^{c,*}

^aSchool of Electronics and Computer Engineering, Chonnam National University, Korea
^bDepartment of Computer Science and Engineering, Hankuk University of Foreign Studies, Korea

^cSchool of Computer Science and Information Engineering, The Catholic University of Korea, Korea

Abstract

A many-to-many k-disjoint path cover of a graph joining two disjoint vertex subsets S and T of equal size k is a set of k vertex-disjoint paths between S and T that altogether cover every vertex of the graph. It is classified as paired if each source in S is required to be paired with a specific sink in T, or unpaired otherwise. In this paper, we develop Ore-type sufficient conditions for the existence of many-to-many k-disjoint path covers joining arbitrary vertex subsets S and T. Also, an Ore-type degree condition is established for the one-to-many k-disjoint path cover, a variant derived by allowing to share a single source. The bounds on the degree sum are all best possible.

Keywords: Ore's theorem, degree condition, disjoint path cover, path partition, Hamiltonian-connected.

1. Introduction

Let G be a simple undirected graph, whose vertex and edge sets are denoted by V(G) and E(G), respectively. The order of G is the number of vertices in G. If $(u, v) \in E(G)$, u is adjacent to v or u is a neighbor of v. A path from v_1 to v_m is a sequence of vertices, (v_1, v_2, \ldots, v_m) , such that v_j is adjacent to v_{j-1} for every $j \in \{2, \ldots, m\}$. A disjoint path cover (DPC for short) of G is a set of paths in G such that every vertex of G belongs to one and only one path.

Preprint submitted to Discrete Mathematics

^{*}Corresponding author

Email addresses: hslim@chonnam.ac.kr (Hyeong-Seok Lim), hckim@hufs.ac.kr (Hee-Chul Kim), j.h.park@catholic.ac.kr (Jung-Heum Park)

Figure 1: Examples of disjoint path covers.

Definition 1 (Many-to-many k-disjoint path cover). Given two disjoint vertex subsets $S = \{s_1, \ldots, s_k\}$ and $T = \{t_1, \ldots, t_k\}$, each representing k sources and sinks, the many-to-many k-disjoint path cover of G is a disjoint path cover of size k, each of whose paths joins a pair of a source and a sink.

The disjoint path cover is *paired* if every source s_i must be joined with a specific sink t_i . On the other hand, it is *unpaired* if, for some permutation σ on $\{1, \ldots, k\}$, P_i is a path from s_i to $t_{\sigma(i)}$ for all $i \in \{1, \ldots, k\}$. The sources and sinks are referred to as *terminals*. By these definitions, a paired k-disjoint path cover is always an unpaired k-disjoint path cover. An example of the paired many-to-many DPC is shown in Figure 1(a).

Definition 2. A graph G is paired (resp. unpaired) many-to-many k-coverable if $|V(G)| \ge 2k$ and there exists a paired (resp. unpaired) many-to-many k-DPC for any disjoint source set S and sink set T of size k each.

Two simpler variants of the many-to-many k-disjoint path cover can be derived by allowing to share a single source and/or a single sink. The first one is of *one-to-many* type with $S = \{s\}$ and $T = \{t_1, \ldots, t_k\}$, in which all paths start from the unique source s. The second one is of *one-to-one* type with $S = \{s\}$ and $T = \{t\}$, where all internally disjoint paths connect the unique source and sink. Refer to Figure 1(b) for an example of the one-to-many DPC.

Definition 3. A graph G is one-to-many (resp. one-to-one) k-coverable if

 $|V(G)| \ge k+1$ and G has a one-to-many (resp. one-to-one) k-DPC for any disjoint source set $S = \{s\}$ and sink set $T = \{t_1, \ldots, t_k\}$ (resp. $T = \{t\}$).

The disjoint path cover problem is strongly related to the well-known Hamiltonian problem, which is a fundamental one in graph theory. Actually, a Hamiltonian path joining a pair of vertices in a graph forms a many-to-many, one-to-many, and one-to-one 1-disjoint path covers of the graph. A graph of order $n \geq 3$ is one-to-many 2-coverable if and only if it is Hamiltonian-connected. Moreover, a graph of order $n \geq 3$ is one-to-one 2-coverable if and only if it is Hamiltonian.

One of the core subjects in Hamiltonian graph theory is to develop sufficient conditions for a graph to have a Hamiltonian path/cycle (refer to [10] for a survey). The approaches taken to develop sufficient conditions usually involve degree conditions for providing enough edges to overcome any obstacle to the existence of a Hamiltonian path/cycle. Dirac [4] proved that a graph G of order $n \geq 3$ is Hamiltonian if $d_G(v) \geq n/2$ for every vertex v of G, where $d_G(v)$ denotes the degree of a vertex v in G. Ore [14, 15] improved Dirac's condition as follows:

Theorem 1 (Ore [14, 15]). (a) A graph G of order $n \ge 3$ is Hamiltonian if $d_G(u) + d_G(v) \ge n$ for all distinct nonadjacent vertices u and v. (b) A graph G of order $n \ge 2$ is Hamiltonian-connected if $d_G(u) + d_G(v) \ge n + 1$ for all distinct nonadjacent vertices u and v.

The close relationship between the disjoint path cover problem and the Hamiltonian problem motivates the study of developing degree conditions for a graph to have disjoint path covers. In this paper, we establish Ore-type conditions for the existence of k-disjoint path covers in a simple graph as follows:

- 1. A graph G of order $n \ge 2k$, where $k \ge 1$, is unpaired many-to-many k-coverable if $d_G(u) + d_G(v) \ge n + k$ for every pair of nonadjacent vertices u and v.
- 2. A graph G of order $n \ge 2k$, where $k \ge 2$, is paired many-to-many k-coverable if $d_G(u) + d_G(v) \ge n + 3k 4$ for every pair of nonadjacent vertices u and v.
- 3. A graph G of order $n \ge k+1$, where $k \ge 2$, is one-to-many k-coverable if $d_G(u) + d_G(v) \ge n + k - 1$ for every pair of nonadjacent vertices u and v.

Also, we show that all the above three bounds on the degree sum $d_G(u) + d_G(v)$ are the minimum possible. Note that the results for unpaired manyto-many and one-to-many disjoint path covers are generalizations of Ore's theorem, Theorem 1(b). For the one-to-one disjoint path cover problem, an Ore-type condition was derived by Lin *et al.* [12]: A graph G of order $n \ge k+1$, where $k \ge 2$, is one-to-one k-coverable if $d_G(u) + d_G(v) \ge n+k-2$ for every pair of nonadjacent vertices u and v. Moreover, the bound on the degree sum is tight. A one-to-one k-coverable graph is also known as a k^* -connected graph.

2. Related Works and Definitions

The disjoint path cover problem finds applications in many areas such as software testing, database design, and code optimization [1, 13]. In addition, the problem is concerned with applications where full utilization of network nodes is important [18]. It has been studied with respect to various graphs such as hypercubes [3, 5, 7], recursive circulants [8, 9, 18, 19], hypercubelike graphs [6, 11, 18, 19], cubes of connected graphs [16, 17], k-ary n-cubes [20, 21], and connected graphs [12]. Unfortunately, it is NP-complete to determine whether or not there exists a many-to-many, one-to-many, or one-to-one k-DPC for a given pair of terminal sets in a general graph for any fixed $k \geq 1$ [18, 19].

A Hamiltonian path of a graph G is a path that contains all the vertices of G. A graph is said to be Hamiltonian-connected if every pair of distinct vertices are joined by a Hamiltonian path. A cycle is a closed path of three or more vertices. A Hamiltonian cycle of G is a closed Hamiltonian path, i.e., a cycle that contains all the vertices of G. A graph is called Hamiltonian if it has a Hamiltonian cycle. An s-t path refers to a path from s to t; An s-path refers to a path starting at vertex s. For a path $P = (v_1, v_2, \ldots, v_m)$, the reverse of P is the path $(v_m, v_{m-1}, \ldots, v_1)$. The vertex and edge sets of path P are denoted by V(P) and E(P), respectively.

The neighborhood of a vertex v of G, denoted by $N_G(v)$, is the set of neighbors of v in G, i.e., $N_G(v) = \{u \in V(G) : (v, u) \in E(G)\}$. The degree of vertex v in G is the number of its neighbors, i.e., $d_G(v) = |N_G(v)|$. For a vertex subset $W \subseteq V(G)$, the subgraph of G induced by W is a graph whose vertex set is W and for every pair of vertices $u, v \in W$, (u, v) is an edge of the graph if and only if $(u, v) \in E(G)$. For a vertex subset $W \subseteq V(G)$, we denote by $G \setminus W$ the resultant subgraph obtained from G by deleting all the vertices in W (including the edges incident to them). Note that $G \setminus W$ is the subgraph of G induced by $V(G) \setminus W$. Graph theoretic terms not defined here can be found in [2].

We will often abbreviate the terms paired many-to-many k-DPC and unpaired many-to-many k-DPC as paired k-DPC and unpaired k-DPC, respectively.

3. Unpaired Many-to-Many Disjoint Path Covers

An unpaired many-to-many k-DPC of a graph G, in which a source set $S = \{s_1, \ldots, s_k\}$ and a sink set $T = \{t_1, \ldots, t_k\}$ such that $S \cap T = \emptyset$ are given, is a set of k pairwise disjoint paths, $\{P_1, \ldots, P_k\}$, such that each P_j joins s_j and $t_{\sigma(j)}$ for some permutation σ on $\{1, \ldots, k\}$ and $\bigcup_{j=1}^k V(P_j) = V(G)$. The first main result of this paper is the following.

Theorem 2. Let G be a graph of order $n \ge 2k$, where $k \ge 1$. If $d_G(u) + d_G(v) \ge n + k$ for all distinct nonadjacent vertices u and v, then G is unpaired many-to-many k-coverable.

PROOF. The proof is by induction on k. For the base step of k = 1, the theorem holds by Ore's theorem, Theorem 1(b). Note that G is unpaired many-to-many 1-coverable if and only if G is Hamiltonian-connected. Suppose $k \geq 2$ for the inductive step. Given a source set $S = \{s_1, \ldots, s_k\}$ and a sink set $T = \{t_1, \ldots, t_k\}$ in G such that $S \cap T = \emptyset$, we will show that there always exists an unpaired k-DPC joining S and T in G. Let G' denote the subgraph of G induced by $V(G) \setminus \{t_k\}$, i.e., $G' = G \setminus \{t_k\}$. For any pair of nonadjacent vertices u and v of G', we have $d_{G'}(u) + d_{G'}(v) \geq (d_G(u) - 1) + (d_G(v) - 1) \geq n + k - 2 = |V(G')| + (k - 1)$. Thus, by the induction hypothesis, G' is unpaired many-to-many (k - 1)-coverable. We are going to construct an unpaired k-DPC of G using some unpaired (k - 1)-DPC of G'.

Let $\{P_1, \ldots, P_{k-1}\}$ be an unpaired (k-1)-DPC of G' joining $S \setminus \{s_k\}$ and $T \setminus \{t_k\}$, in which each path P_j joins s_j and t_{i_j} where $\{i_1, \ldots, i_{k-1}\} = \{1, \ldots, k-1\}$. The path P_j for $1 \leq j \leq k-1$ may be represented as $(v_0^j, \ldots, v_{l_j}^j)$, where $s_j = v_0^j$ and $t_{i_j} = v_{l_j}^j$. There is a path, say P_1 , in the unpaired (k-1)-DPC that passes through the source s_k as an intermediate vertex. Then, $s_k = v_p^1$ for some $1 \leq p < l_1$, and let $x = v_{p-1}^1$, possibly $x = s_1$. If we delete the edge (x, s_k) from P_1 , then P_1 is divided into two paths: the s_1 -x path and s_k - t_{i_1} path. It follows that G' has a partition made of k pairwise disjoint s_j -paths for $1 \leq j \leq k$, where each s_j -path for $j \geq 2$ runs to a sink whereas the s_1 -path runs to $x \notin T$. Also, the partition of G' along with an additional one-vertex path (t_k) forms a partition of G. We rename v_j^1 as v_{j-p}^k for every $p \leq j \leq l_1$, so that like the other paths, the s_k -path is represented as $(v_0^k, \ldots, v_{l_k}^k)$ where $l_k = l_1 - p$.

In the remaining part of this proof, we will show that the s_1-x path and the path (t_k) can be combined into an s_1-t_k path; Or the s_1-x path, the path (t_k) , and one s_q -path for some $2 \leq q \leq k$ can be modified into two paths, an $s_1 - v_{l_q}^q$ path and $s_q - t_k$ path, each of which joins a source and a sink. If $(x, t_k) \in E(G)$, then it suffices to concatenate the s_1 -x path and the path (t_k) into an s_1-t_k path, $(v_0^1,\ldots,v_{p-1}^1,t_k)$. So, we assume $(x,t_k) \notin E(G)$ hereafter. If there exists a vertex-pair (v_r^1, v_{r+1}^1) such that $v_r^1 \in N_G(x)$ and $v_{r+1}^1 \in N_G(t_k)$ for some $0 \le r \le p-3$, it suffices to divide the s_1-x path into two paths, (v_0^1, \ldots, v_r^1) and $(v_{r+1}^1, \ldots, v_{p-1}^1)$, and then concatenate the three paths, (v_0^1, \ldots, v_r^1) , the reverse of $(v_{r+1}^1, \ldots, v_{p-1}^1)$, and the path (t_k) into an s_1-t_k path, as illustrated in Figure 2(a). Similarly, if there is a vertex-pair $(v_{r'}^q, v_{r'-1}^q)$ for some $2 \leq q \leq k$ such that $v_{r'}^q \in N_G(x)$ and $v_{r'-1}^q \in N_G(t_k)$ for some $1 \le r' \le l_q$, it suffices to concatenate $(v_0^1, \dots, v_{p-1}^1)$ and $(v_{r'}^q, \dots, v_{l_q}^q)$ into an $s_1 - v_{l_q}^q$ path, and then concatenate $(v_0^q, \dots, v_{r'-1}^q)$ and the path (t_k) into an s_q-t_k path, as shown in Figure 2(b). We claim that there always exists such vertex-pair, (v_r^1, v_{r+1}^1) or $(v_{r'}^q, v_{r'-1}^q)$, that satisfies the aforementioned conditions.

It remains to prove the claim. We let $U = U_1 \cup U_2$, where $U_1 := \{v_0^1, \ldots, v_{p-3}^1\}$ and $U_2 := \bigcup_{i=2}^k \{v_1^i, \ldots, v_{l_i}^i\} = \bigcup_{i=2}^k (V(P_i) \setminus \{s_i\})$. Define $X = N_G(x) \cap U$ and $Y = Y_1 \cup Y_2$, where

$$Y_1 := \{v_{j-1}^1 : v_j^1 \in N_G(t_k), \ 1 \le j \le p-2\} \subseteq U_1, \text{ and}$$

$$Y_2 := \{v_{j+1}^i : v_j^i \in N_G(t_k), \ 2 \le i \le k, \ 0 \le j \le l_i - 1\} \subseteq U_2.$$

Then, the claim holds if and only if $X \cap Y \neq \emptyset$. Keeping the relationship of $X \cup Y \subseteq U$ in mind, we will derive an upper bound on |U| and lower bounds on |X| and |Y|. Consider |U| first. We have $|U_1| = p - 2$ if $p \ge 2$; $|U_1| = 0$ otherwise. Also, we have $|U_2| = n - (p+1) - (k-1) = n - p - k$. It follows that

$$|U| = |U_1| + |U_2| \le \max\{(p-2) + (n-p-k), n-p-k\} \le n-k-1$$

because $p \ge 1$. Consider |X| and |Y| now. Recall $(x, t_k) \notin E(G)$. Observe that among the vertices of $N_G(x)$, there are at most k neighbors (of x) that are not included in X; The possible neighbors are v_{p-2}^1 and $\{s_2, \ldots, s_k\}$. Also, there are at most k neighbors of t_k , $\{s_1\} \cup \{t_1, \ldots, t_{k-1}\}$, that contribute no element to Y. Note that $\{v_{l_i}^i : 2 \le i \le k\} = \{t_1, \ldots, t_{k-1}\}$. Thus,

(a) $v_r^1 \in N_G(x)$ and $v_{r+1}^1 \in N_G(t_k)$ for some $0 \le r \le p-3$.

(b) $v_{r'}^q \in N_G(x)$ and $v_{r'-1}^q \in N_G(t_k)$ for some $2 \le q \le k$ and $1 \le r' \le l_q$.

we have

$$|X| \ge d_G(x) - k$$
 and $|Y| \ge d_G(t_k) - k$

Therefore,

$$\begin{split} |X \cap Y| &= |X| + |Y| - |X \cup Y| \ge |X| + |Y| - |U| \\ &\ge (d_G(x) - k) + (d_G(t_k) - k) - (n - k - 1) \\ &= d_G(x) + d_G(t_k) - n - k + 1 \\ &\ge (n + k) - n - k + 1 = 1, \end{split}$$

proving the claim. This completes the entire proof.

Remark 1. The bound, n + k, on the degree sum $d_G(u) + d_G(v)$ in Theorem 2 is the minimum possible, in a sense that not every graph G of order $n \ge 2k$ such that $d_G(u) + d_G(v) \ge n + k - 1$ for all distinct nonadjacent vertices u and v, is unpaired many-to-many k-coverable. Consider a graph G of order n = 3k + 1 defined as the *join* $G_1 + G_2$ of a complete graph G_1 of order 2k and a null graph G_2 of order k + 1. That is, $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup \{(x, y) : x \in V(G_1), y \in V(G_2)\}$. Then, for all distinct nonadjacent vertices u and v of G, we have $d_G(u) + d_G(v) = 2k + 2k =$ (3k + 1) + (k - 1) = n + k - 1. The graph G, however, does not admit an unpaired k-DPC joining S and T if $S, T \subseteq V(G_1)$, i.e., $S \cup T = V(G_1)$. This is because no path in the unpaired k-DPC may pass through two or more vertices of G_2 as intermediate vertices.

4. Paired Many-to-Many Disjoint Path Covers

In this section, we prove that a graph G of order $n \ge 2k$, where $k \ge 2$, is paired many-to-many k-coverable if $d_G(u) + d_G(v) \ge n + 3k - 4$ for all distinct nonadjacent vertices u and v of G. On the contrary to the unpaired k-DPC problem, it is not possible to rely on Ore's theorem, Theorem 1(b). So, we begin with the paired 2-DPC problem, as a base step of our inductive proof, in the following two lemmas. Note that if the degree sum condition for k = 2 is satisfied, then the graph G of order $n \in \{4, 5\}$ is a complete graph, and thus is paired 2-coverable. (Suppose for a contradiction G is not a complete graph. For some nonadjacent vertices x and y of G, we have $d_G(x) + d_G(y) \le (n-2) + (n-2) = 2n - 4$, which contradicts the fact that $d_G(x) + d_G(y) \ge n + 3 \cdot 2 - 4 = n + 2$.)

Lemma 1. Let G be a graph of order $n \ge 6$ in which four distinct terminals s_1 , t_1 , s_2 , and t_2 are given. If $d_G(u) + d_G(v) \ge n + 2$ for all distinct nonadjacent vertices u and v and moreover, there exists a Hamiltonian s_1 - t_1 path in $G \setminus \{s_2, t_2\}$, then there exists a paired many-to-many 2-DPC $\{P_1, P_2\}$ in G, where P_1 is an s_1 - t_1 path and P_2 is an s_2 - t_2 path.

PROOF. Let $P_h = (v_1, v_2, \ldots, v_{n-2})$ denote a Hamiltonian s_1-t_1 path of $G \setminus \{s_2, t_2\}$, where $s_1 = v_1$ and $t_1 = v_{n-2}$. If (s_2, t_2) is an edge of G, then P_h and the two-vertex path (s_2, t_2) form a desired 2-DPC and we are done. So, we assume $(s_2, t_2) \notin E(G)$ hereafter. Then, there exists a common neighbor of s_2 and t_2 in $P'_h := P_h \setminus \{s_1, t_1\} = (v_2, \ldots, v_{n-3})$; Suppose otherwise, $d_G(s_2) + d_G(t_2) \leq (n-4) + 2 + 2 = n$, which contradicts the hypothesis of this lemma that $d_G(s_2) + d_G(t_2) \geq n+2$. We let (v_p, \ldots, v_q) , where $p \leq q$, be a maximal contiguous subsequence of P'_h whose members are all common neighbors of s_2 and t_2 , in a sense that there exists no proper contiguous supersequence of (v_p, \ldots, v_q) whose members are all contained in $N_G(s_2) \cap N_G(t_2)$. That is, we have (i) $v_j \in N_G(s_2) \cap N_G(t_2)$ for every $p \leq j \leq q$, (ii) $v_{p-1} \notin N_G(s_2) \cap N_G(t_2)$ or p = 2, and (iii) $v_{q+1} \notin N_G(s_2) \cap N_G(t_2)$ or q = n-3. Also, let $x = v_{p-1}$ and $y = v_{q+1}$. If $(x, v_i) \in E(G)$ for some $p + 1 \leq i \leq q + 1$, there exists a paired 2-DPC in which P_1 is the concatenation of (v_1, \ldots, v_{p-1}) and (v_i, \ldots, v_{n-2}) , and P_2 is $(s_2, v_p, \ldots, v_{i-1}, t_2)$. Symmetrically, if $(y, v_j) \in E(G)$ for some p - 1

(b) $v_r \in N_G(x)$ and $v_{r+1} \in N_G(y)$ for some $q+2 \le r \le n-3$.

Figure 3: Hamiltonian s_1 - t_1 paths in the subgraph induced by $\{v_1, \ldots, v_{p-1}\} \cup \{v_{q+1}, \ldots, v_{n-2}\}.$

 $1 \leq j \leq q-1$, there also exists a paired 2-DPC, where P_1 is the concatenation of (v_1, \ldots, v_j) and $(v_{q+1}, \ldots, v_{n-2})$, and P_2 is $(s_2, v_{j+1}, \ldots, v_q, t_2)$. So, we assume $(x, v_i) \notin E(G)$ for every $p+1 \leq i \leq q+1$ and $(y, v_j) \notin E(G)$ for every $p-1 \leq j \leq q-1$. Note that $(x, y) \notin E(G)$.

In the remainder of this proof, we will show that there exists a Hamiltonian s_1-t_1 path P_1 in the subgraph induced by $\{v_1, \ldots, v_{p-1}\} \cup \{v_{q+1}, \ldots, v_{n-2}\}$, which implies that P_1 and $P_2 := (s_2, v_p, \ldots, v_q, t_2)$ form a desired 2-DPC. If there is a vertex-pair (v_r, v_{r+1}) such that $v_r \in N_G(x)$ and $v_{r+1} \in N_G(y)$ for some $1 \leq r \leq p-3$, it suffices to let P_1 be the concatenation of (v_1, \ldots, v_r) , the reverse of $(v_{r+1}, \ldots, v_{p-1})$, and $(v_{q+1}, \ldots, v_{n-2})$, as illustrated in Figure 3(a). Similarly, if there is a vertex-pair (v_r, v_{r+1}) such that $v_r \in N_G(x)$ and $v_{r+1} \in N_G(y)$ for some $q+2 \leq r \leq n-3$, it suffices to let P_1 be the concatenation of (v_1, \ldots, v_{p-1}) , the reverse of (v_{q+1}, \ldots, v_r) , and $(v_{r+1}, \ldots, v_{n-2})$, as shown in Figure 3(b). We claim that there always exists such vertex-pair (v_r, v_{r+1}) , where $v_r \in N_G(x)$, $v_{r+1} \in N_G(y)$, and either $1 \leq r \leq p-3$ or $q+2 \leq r \leq n-3$.

It remains to prove the claim. We let $U = U_1 \cup U_2$, where $U_1 := \{v_1, \ldots, v_{p-3}\}$ and $U_2 := \{v_{q+2}, \ldots, v_{n-3}\}$. Define $X = N_G(x) \cap U$ and $Y = Y_1 \cup Y_2$, where

$$Y_1 := \{v_{j-1} : v_j \in N_G(y), \ 2 \le j \le p-2\} \subseteq U_1, \text{ and} \\ Y_2 := \{v_{j-1} : v_j \in N_G(y), \ q+3 \le j \le n-2\} \subseteq U_2.$$

Then, the claim holds if and only if $X \cap Y \neq \emptyset$. To show $|X \cap Y| \ge 1$ as

in the proof of Theorem 2, we will derive an upper bound on |U| and lower bounds on |X| and |Y|. Consider |U| first. We have $|U_1| = p - 3$ if $p \ge 3$; $|U_1| = 0$ otherwise. Also, we have $|U_2| = n - q - 4$ if $q \le n - 4$; $|U_2| = 0$ otherwise. It follows that

$$\begin{split} |U| &= |U_1| + |U_2| \\ &= \begin{cases} (p-3) + (n-q-4) & \text{if } p \geq 3 \text{ and } q \leq n-4, \\ (p-3) + 0 & \text{if } p \geq 3 \text{ and } q = n-3, \\ 0 + (n-q-4) & \text{if } p = 2 \text{ and } q \leq n-4, \\ &\leq \begin{cases} n-6 & \text{if } p = q = n-3 \text{ or } p = q = 2, \\ n-7 & \text{elsewhere,} \end{cases} \end{split}$$

because $2 \le p \le q \le n-3$. Note that the case where p=2 and q=n-3never occurs. (Suppose p = 2 and q = n - 3. Then, we have $x = s_1$ and $y = t_1$, so that $d_G(x) + d_G(y) \le |\{v_2, s_2, t_2\}| + |\{v_{n-3}, s_2, t_2\}| = 6$, which contradicts the hypothesis that $d_G(x) + d_G(y) \ge n + 2 \ge 8$.) Consider |X| and |Y| now. Recall the assumption that $(x, v_i) \notin E(G)$ for every $p+1 \leq i \leq q+1$ and $(y, v_i) \notin E(G)$ for every $p - 1 \leq j \leq q - 1$. Observe that among the vertices of $N_G(x)$, there are at most four that are not included in X. The four are v_{p-2} , v_p , t_1 , and one of $\{s_2, t_2\}$ if $p \ge 3$ (i.e., $x \ne s_1$); They are v_p , t_1 , s_2 and t_2 otherwise (i.e., $x = s_1$). Furthermore, if p = q = n - 3(where $y = t_1$ and $x \neq s_1$), there are at most three vertices, v_{p-2} , v_p , and one of $\{s_2, t_2\}$, in $N_G(x) \setminus X$. Note that $x \notin N_G(s_2) \cap N_G(t_2)$ if $x \neq s_1$; $y \notin N_G(s_2) \cap N_G(t_2)$ if $y \neq t_1$. Also, there are at most four vertices of $N_G(y)$ that contribute no element to Y. The four are s_1, v_q, v_{q+2} , and one of $\{s_2, t_2\}$ if $q \leq n-4$ (i.e., $y \neq t_1$); They are s_1, v_q, s_2 , and t_2 otherwise (i.e., $y = t_1$). Furthermore, if p = q = 2 (where $x = s_1$ and $y \neq t_1$), there are at most three vertices, v_q , v_{q+2} , and one of $\{s_2, t_2\}$, of $N_G(y)$ that contribute no element to Y. Thus, we have

$$|X| \ge \begin{cases} d_G(x) - 3 & \text{if } p = q = n - 3, \\ d_G(x) - 4 & \text{elsewhere;} \end{cases} \quad |Y| \ge \begin{cases} d_G(y) - 3 & \text{if } p = q = 2, \\ d_G(y) - 4 & \text{elsewhere.} \end{cases}$$

Therefore,

$$\begin{split} |X \cap Y| &= |X| + |Y| - |X \cup Y| \ge |X| + |Y| - |U| \\ &\ge \begin{cases} (d_G(x) - 3) + (d_G(y) - 4) - (n - 6) & \text{if } p = q = n - 3, \\ (d_G(x) - 4) + (d_G(y) - 3) - (n - 6) & \text{if } p = q = 2, \\ (d_G(x) - 4) + (d_G(y) - 4) - (n - 7) & \text{elsewhere}, \end{cases} \\ &= d_G(x) + d_G(y) - n - 1 \\ &\ge (n + 2) - n - 1 = 1, \end{split}$$

Figure 4: The octahedral graph.

proving the claim. This completes the proof.

One might expect that if $d_G(u) + d_G(v) \ge n + 2$ for all distinct nonadjacent vertices u and v in a graph G of order $n \ge 6$, then G is 2-vertexfault Hamiltonian-connected, i.e., for any four distinct vertices s, t, v_f , and w_f , there exists a Hamiltonian s-t path in $G \setminus \{v_f, w_f\}$. Unfortunately, this is not always true. The octahedral graph, shown in Figure 4, is not 2-vertex-fault Hamiltonian-connected (for example, $\{s,t\} = \{v_1, v_4\}$ and $\{v_f, w_f\} = \{v_2, v_5\}$), while the degree sum condition is satisfied. The graph is, in fact, paired many-to-many 2-coverable, which will become clear soon. Instead, we will provide a direct construction of a paired 2-DPC of G satisfying the degree condition in case when $G \setminus \{s_2, t_2\}$ has no Hamiltonian s_1 - t_1 path, in the following lemma.

Lemma 2. Let G be a graph of order $n \ge 6$ in which four distinct terminals s_1 , t_1 , s_2 , and t_2 are given. If $d_G(u) + d_G(v) \ge n + 2$ for all distinct nonadjacent vertices u and v and moreover, there exists no Hamiltonian s_1 - t_1 path in $G \setminus \{s_2, t_2\}$, then there exists a paired many-to-many 2-DPC $\{P_1, P_2\}$ in G, where P_1 is an s_1 - t_1 path and P_2 is an s_2 - t_2 path.

PROOF. Let $G' = G \setminus \{s_2, t_2\}$, the subgraph induced by $V(G) \setminus \{s_2, t_2\}$. Then, there exists a Hamiltonian cycle in G' by Theorem 1(a). This is because for all distinct nonadjacent vertices u and v, $d_{G'}(u) + d_{G'}(v) \ge (d_G(u) - 2) + (d_G(v) - 2) = d_G(u) + d_G(v) - 4 \ge (n + 2) - 4 = |V(G')|$. From the Hamiltonian cycle of G', we can extract a Hamiltonian path, P_h , one of whose end-vertices is t_1 . Let P_h be represented as $(v_1, v_2, \ldots, v_{n-2})$, where $t_1 = v_{n-2}$ and $s_1 = v_p$ for some $1 \le p \le n - 3$. If p = 1, then the path P_h joins s_1 and t_1 , which contradicts the hypothesis of this lemma.

Figure 5: The graph H_j , where $1 \le j \le p$.

So, we assume $p \geq 2$. It will be shown that there exists a paired 2-DPC $\{P_1, P_2\}$, where for some $q \in \{2, \ldots, p\}$, P_1 is a Hamiltonian s_1 - t_1 path of the subgraph induced by $\{v_q, \ldots, v_{n-2}\}$ and P_2 is a Hamiltonian s_2 - t_2 path of the subgraph induced by $\{v_1, \ldots, v_{q-1}\} \cup \{s_2, t_2\}$.

We denote by H_1 the spanning subgraph of G composed of the Hamiltonian path P_h and two isolated vertices s_2 and t_2 . Expanding the graph H_1 , we define H_j , $1 \leq j \leq p$, to be a graph whose vertex and edge sets, respectively, are

$$V(H_j) = \{v_1, \dots, v_{n-2}\} \cup \{s_2, t_2\} \text{ and}$$

$$E(H_j) = \{(v_i, v_{i+1}) : 1 \le i < n-2\} \cup \{(s_2, v_i), (t_2, v_i) : 1 \le i \le j-1\},\$$

as shown in Figure 5. Let $x = v_{p+1}$ and $W_j = \{v_1, \ldots, v_{j-1}\}$ where $W_1 = \emptyset$.

Claim 1. If H_j , $j \in \{1, ..., p-1\}$, is a spanning subgraph of G such that $N_G(x) \cap W_j = \emptyset$, then

- the graph G_j , defined as the subgraph of G induced by $\{v_j, \ldots, v_{n-2}\}$, has a Hamiltonian s_1 - t_1 path, or
- H_{j+1} is a spanning subgraph of G such that $N_G(x) \cap W_{j+1} = \emptyset$.

Provided the claim is proved, we may conclude that for some $q \in \{1, \ldots, p\}$, the induced subgraph G_q has a Hamiltonian s_1-t_1 path, P_1 . Note that H_1 is a spanning subgraph of G such that $N_G(x) \cap W_1 = \emptyset$, and G_p has a Hamiltonian s_1-t_1 path, (v_p, \ldots, v_{n-2}) . It follows that if q = 1, then $G \setminus \{s_2, t_2\}$ has a Hamiltonian s_1-t_1 path, which contradicts the hypothesis of this lemma; If $q \geq 2$, G has a paired 2-DPC made of P_1 and an s_2-t_2 path, $P_2 = (s_2, v_1, \ldots, v_{q-1}, t_2)$. It remains to prove the claim.

PROOF OF CLAIM 1. If $(x, v_j) \in E(G)$, then there exists a Hamiltonian s_1-t_1 path, obtained by concatenating the reverse of (v_j, \ldots, v_p) and

(a) $v_r \in N_G(x)$ and $v_{r+1} \in N_G(v_j)$ for some $j+1 \le r \le p-1$.

(b) $v_{r'} \in N_G(x)$ and $v_{r'-1} \in N_G(v_j)$ for some $p+3 \le r' \le n-2$.

Figure 6: Hamiltonian s_1 - t_1 paths in the induced subgraph G_j .

 (v_{p+1},\ldots,v_{n-2}) , proving the claim. So, we assume $(x,v_j) \notin E(G)$. If there exists a vertex-pair (v_r,v_{r+1}) such that $v_r \in N_G(x)$ and $v_{r+1} \in N_G(v_j)$ for some $j+1 \leq r \leq p-1$, then we have a Hamiltonian s_1 - t_1 path of G_j by concatenating the three paths, the reverse of (v_{r+1},\ldots,v_p) , (v_j,\ldots,v_r) , and (v_{p+1},\ldots,v_{n-2}) , as shown in Figure 6(a). Similarly, if there exists a vertex-pair $(v_{r'},v_{r'-1})$ such that $v_{r'} \in N_G(x)$ and $v_{r'-1} \in N_G(v_j)$ for some $p+3 \leq r' \leq n-2$, then concatenating the three paths, the reverse of (v_j,\ldots,v_p) , the reverse of $(v_{p+1},\ldots,v_{r'-1})$, and $(v_{r'},\ldots,v_{n-2})$, results in a Hamiltonian s_1 - t_1 path of G_j , as shown in Figure 6(b). Similar to the proof of Lemma 1, we consider the existence of such vertex-pair (v_r,v_{r+1}) or $(v_{r'},v_{r'-1})$. We let $U = U_1 \cup U_2$, where $U_1 := \{v_{j+1},\ldots,v_{p-1}\}$ and $U_2 := \{v_{p+3},\ldots,v_{n-2}\}$. Define $X = N_G(x) \cap U$ and $Y_j = Y_1^j \cup Y_2^2$, where

$$Y_j^1 := \{v_{i-1} : v_i \in N_G(v_j), \ j+2 \le i \le p\} \subseteq U_1, \text{ and}$$

$$Y_j^2 := \{v_{i+1} : v_i \in N_G(v_j), \ p+2 \le i \le n-3\} \subseteq U_2.$$

Then, there exists a pair (v_r, v_{r+1}) or $(v_{r'}, v_{r'-1})$ satisfying the aforementioned conditions if and only if $X \cap Y_j \neq \emptyset$. To establish a lower bound on $|X \cap Y_j|$, we will derive inequalities on |U|, |X| and $|Y_j|$. We have $|U_1| = p - j - 1$. (Note that $j .) Also, <math>|U_2| = n - p - 4$ if $p \le n - 4$; $|U_2| = 0$ otherwise. It follows that

$$\begin{aligned} |U| &= |U_1| + |U_2| \le \max\{(p - j - 1) + (n - p - 4), (p - j - 1) + 0\} \\ &\le \begin{cases} n - j - 5 & \text{if } p \le n - 4 \text{ (i.e., } x \ne t_1), \\ n - j - 4 & \text{if } p = n - 3 \text{ (i.e., } x = t_1). \end{cases} \end{aligned}$$

At most four vertices, $\{s_1, v_{p+2}, s_2, t_2\}$, among the neighbors of x may not be contained in X if $p \leq n - 4$; Otherwise, there are at most three such vertices, $\{s_1, s_2, t_2\}$. Note that $(x, v_j) \notin E(G)$ and $N_G(x) \cap W_j = \emptyset$, i.e., $N_G(x) \cap W_{j+1} = \emptyset$. Also, at most j + 3 vertices, $\{v_{j+1}, t_1, s_2, t_2\} \cup W_j$, of $N_G(v_j)$ may contribute no element to Y_j if $p \leq n - 4$; Otherwise, there are at most j + 2 such vertices, $\{v_{j+1}, s_2, t_2\} \cup W_j$. Thus, we have

$$|X| \ge \begin{cases} d_G(x) - 4 & \text{if } p \le n - 4, \\ d_G(x) - 3 & \text{if } p = n - 3; \end{cases} \quad |Y_j| \ge \begin{cases} d_G(v_j) - j - 3 & \text{if } p \le n - 4, \\ d_G(v_j) - j - 2 & \text{if } p = n - 3. \end{cases}$$

Therefore,

$$\begin{split} |X \cap Y_j| &= |X| + |Y_j| - |X \cup Y_j| \ge |X| + |Y_j| - |U| \\ &\ge \begin{cases} (d_G(x) - 4) + (d_G(v_j) - j - 3) - (n - j - 5) & \text{if } p \le n - 4, \\ (d_G(x) - 3) + (d_G(v_j) - j - 2) - (n - j - 4) & \text{if } p = n - 3, \end{cases} \\ &= \begin{cases} d_G(x) + d_G(v_j) - n - 2 \ge (n + 2) - n - 2 = 0 & \text{if } p \le n - 4, \\ d_G(x) + d_G(v_j) - n - 1 \ge (n + 2) - n - 1 \ge 1 & \text{if } p = n - 3. \end{cases} \end{split}$$

If $|X \cap Y_j| \geq 1$, then there exists a desired pair (v_r, v_{r+1}) or $(v_{r'}, v_{r'-1})$ and the graph G_j has a Hamiltonian s_1 - t_1 path, proving the claim. So, we assume $|X \cap Y_j| = 0$. It follows that $p \leq n-4$, $|Y_j| = d_G(y) - j - 3$ and moreover, $\{v_{j+1}, t_1, s_2, t_2\} \cup W_j \subseteq N_G(v_j)$. This implies that H_{j+1} is a spanning subgraph of G such that $N_G(x) \cap W_{j+1} = \emptyset$, also proving the claim. \Box

Theorem 3. Let G be a graph of order $n \ge 4$. If $d_G(u) + d_G(v) \ge n+2$ for all distinct nonadjacent vertices u and v, then G is paired many-to-many 2-coverable.

PROOF. If $n \in \{4, 5\}$, then G is a complete graph and thus is paired manyto-many 2-coverable. For $n \ge 6$, the proof is a direct consequence of Lemmas 1 and 2.

Now, we are ready to consider the paired k-DPC problem for general $k \ge 2$.

Theorem 4. Let G be a graph of order $n \ge 2k$, where $k \ge 2$. If $d_G(u) + d_G(v) \ge n + 3k - 4$ for all distinct nonadjacent vertices u and v, then G is paired many-to-many k-coverable.

PROOF. The proof proceeds by induction on k. The base case of k = 2 holds due to Theorem 3. Let $k \geq 3$ for the inductive step. We first claim that $(s_k, t_k) \in E(G)$, or there exists a nonterminal vertex $w \in N_G(s_k) \cap N_G(t_k)$. To prove the claim, suppose $(s_k, t_k) \notin E(G)$. Then, we have $d_G(s_k) + d_G(t_k) \ge n + 3k - 4$ by the hypothesis of the theorem. This implies that there are at least (n + 3k - 4) - (n - 2) = 3k - 2 vertices in $N_G(s_k) \cap N_G(t_k)$ and among them, there are at least $(3k - 2) - 2(k - 1) = k \ge 3$ nonterminal vertices. Note that $s_k, t_k \notin N_G(s_k) \cup N_G(t_k)$. Thus, the claim is proved.

We let an s_k-t_k path, P_k , be the two-vertex path (s_k, t_k) if $(s_k, t_k) \in E(G)$; let $P_k = (s_k, w, t_k)$ otherwise. It suffices to prove that $G \setminus V(P_k)$, the subgraph of G induced by $V(G) \setminus V(P_k)$, is paired many-to-many (k-1)-coverable. Let G' be the induced subgraph, and let $n_k = |V(P_k)|$ where $n_k = 2$ or 3. For any two nonadjacent vertices u and v of G',

$$d_{G'}(u) + d_{G'}(v) \ge (d_G(u) - n_k) + (d_G(v) - n_k) = d_G(u) + d_G(v) - 2n_k$$

$$\ge (n + 3k - 4) - 2n_k = (n - n_k) + (3k - n_k) - 4$$

$$\ge |V(G')| + 3(k - 1) - 4.$$

Therefore, G' is paired (k-1)-coverable by the induction hypothesis, completing the proof.

Remark 2. The bound, n + 3k - 4, on the degree sum $d_G(u) + d_G(v)$ in Theorem 4 is the best possible. Consider a graph G of order n = 3k - 1, obtained from a complete graph, K_n , of order n by deleting k pairwise nonadjacent edges (u_i, v_i) for $1 \le i \le k$. That is, $V(G) = V(K_n)$ and $E(G) = E(K_n) \setminus M$, where M is a matching of K_n of size k. Then, for any two nonadjacent vertices, u_i and v_i for some i, of G, we have $d_G(u_i) + d_G(v_i) = (n-2) + (n-2) = n + (n-4) = n + 3k - 5$. The graph G, however, does not admit a paired k-DPC joining $S = \{s_1, \ldots, s_k\}$ and $T = \{t_1, \ldots, t_k\}$ if $s_i = u_i$ and $t_i = v_i$ for all i, because every $s_i - t_i$ path should pass through at least one nonterminal vertex as an intermediate vertex, which is impossible. Therefore, not every graph G of order $n \ge 2k$ such that $d_G(u) + d_G(v) \ge n + 3k - 5$ for all distinct nonadjacent vertices u and v, is paired many-to-many k-coverable.

5. One-to-Many Disjoint Path Covers

In this section, an Ore-type degree condition will be established for the one-to-many k-disjoint path covers. Given a single source s and a set of k distinct sinks $T = \{t_1, \ldots, t_k\}$ in a graph G such that $s \notin T$, a one-to-many k-DPC joining s and T refers to a set of k paths, $\{P_1, \ldots, P_k\}$, where each path P_i runs from the source s to sink t_i such that $\bigcup_{i=1}^k V(P_i) = V(G)$ and $V(P_i) \cap V(P_j) = \{s\}$ for all $i \neq j$.

Theorem 5. Let G be a graph of order $n \ge k+1$, where $k \ge 2$. If $d_G(u) + d_G(v) \ge n + k - 1$ for all distinct nonadjacent vertices u and v, then G is one-to-many k-coverable.

PROOF. The proof is by induction on k. The base case of k = 2 holds due to Ore's theorem, Theorem 1(b). Note that a graph of order at least three is one-to-many 2-coverable if and only if it is Hamiltonian-connected. Suppose $k \ge 3$ for the inductive step. Given a source s and a sink set $T = \{t_1, \ldots, t_k\}$ in G such that $s \notin T$, we will show that G has a one-to-many k-DPC joining s and T. By the induction hypothesis, G has a one-to-many (k-1)-DPC joining s and $T \setminus \{t_k\}$. Let $\{P_1, \ldots, P_{k-1}\}$ denote the one-to-many (k-1)-DPC, in which each path P_i joins s and t_i . The path P_i for $1 \le i \le k-1$ may be represented as $(v_0^i, \ldots, v_{l_i}^i)$, where $s = v_0^i$ and $t_i = v_{l_i}^i$. There exists a path, say P_1 , in the (k-1)-DPC that passes through the sink t_k as an intermediate vertex. Then, $t_k = v_p^1$ for some $1 \le p \le l_1 - 1$, and let $x = v_{p+1}^i$, possibly $x = t_1$. If $(s, x) \in E(G)$, then it suffices to let $P_k = (v_0^1, \ldots, v_p^1)$ and redefine $P_1 = (s, v_{p+1}^1, \ldots, v_{l_1}^1)$, so that $\{P_1, \ldots, P_k\}$ is a desired k-DPC of G. Hereafter, we assume $(s, x) \notin E(G)$, and thus $d_G(s) + d_G(x) \ge n + k - 1$.

If there exists a vertex-pair (v_r^1, v_{r+1}^1) such that $v_r^1 \in N_G(x)$ and $v_{r+1}^1 \in N_G(s)$ for some $1 \leq r \leq p-1$, it suffices to let $P_k = (s, v_{r+1}^1, \ldots, v_p^1)$ and redefine P_1 as the concatenation of (v_0^1, \ldots, v_r^1) and $(v_{p+1}^1, \ldots, v_{l_1}^1)$, as illustrated in Figure 7(a). Similarly, if there is a vertex-pair $(v_{r'}^1, v_{r'-1}^1)$ such that $v_{r'}^1 \in N_G(x)$ and $v_{r'-1}^1 \in N_G(s)$ for some $p+3 \leq r' \leq l_1$, then it suffices to let $P_k = (v_0^1, \ldots, v_p^1)$ and redefine P_1 as the concatenation of three path segments, one-vertex path (s), the reverse of $(v_{p+1}^1, \ldots, v_{r'-1}^1)$, and $(v_{r'}^1, \ldots, v_{l_1}^1)$, as shown in Figure 7(b). In addition, if there exists a vertex-pair (v_q^i, v_{q+1}^i) for some $2 \leq i \leq k-1$ such that $v_q^i \in N_G(x)$ and $v_{q+1}^i \in N_G(s)$ for some $1 \leq q \leq l_i - 1$, it suffices to let $P_k = (v_0^1, \ldots, v_p^1)$ and redefine P_1 and P_i as follows (see Figure 7(c)): P_1 is the concatenation of (v_0^1, \ldots, v_q^i) and $(v_{p+1}^1, \ldots, v_{l_1}^{i_1})$, and P_i is the concatenation of the path (s) and $(v_{q+1}^i, \ldots, v_{l_i}^{i_1})$. It remains to prove that there always exists at least one such vertex-pair, $(v_r^1, v_{r+1}^1), (v_{r'}^1, v_{r'-1}^1)$, or (v_q^i, v_{q+1}^i) , that satisfies the aforementioned conditions.

As in the proof of Theorem 2, we let $U = U_1 \cup U_2 \cup U_3$, where $U_1 := \{v_1^1, \ldots, v_{p-1}^1\}, U_2 := \{v_{p+3}^1, \ldots, v_{l_1}^1\}, \text{ and } U_3 := \bigcup_{i=2}^{k-1} \{v_1^i, \ldots, v_{l_i-1}^i\} = \bigcup_{i=2}^{k-1} V(P_i) \setminus (\{s\} \cup \{t_2, \ldots, t_{k-1}\}).$ Define $X = N_G(x) \cap U$ and $Y = V_i = V_i + V_i$

Figure 7: Construction of a one-to-many k-DPC from a one-to-many (k-1)-DPC of G.

 $Y_1 \cup Y_2 \cup Y_3$, where

$$Y_{1} := \{v_{j-1}^{1} : v_{j}^{1} \in N_{G}(s), \ 2 \leq j \leq p\} \subseteq U_{1},$$

$$Y_{2} := \{v_{j+1}^{1} : v_{j}^{1} \in N_{G}(s), \ p+2 \leq j \leq l_{1}-1\} \subseteq U_{2}, \text{ and}$$

$$Y_{3} := \{v_{j-1}^{i} : v_{j}^{i} \in N_{G}(s), \ 2 \leq i \leq k-1, \ 2 \leq j \leq l_{i}\} \subseteq U_{3}$$

It suffices to show that $|X \cap Y| \ge 1$. An upper bound on |U| and lower bounds on |X| and |Y| will be derived first. We have $|U_1| = p - 1$. Also, we have $|U_2| = l_1 - p - 2$ if $p \le l_1 - 2$; $|U_2| = 0$ otherwise. In addition, $|U_3| = (n - l_1) - (1 + (k - 2)) = n - l_1 - k + 1$. It follows that

$$\begin{split} |U| &= |U_1| + |U_2| + |U_3| \\ &\leq \begin{cases} (p-1) + (l_1 - p - 2) + (n - l_1 - k + 1) = n - k - 2 & \text{if } p \le l_1 - 2 \\ (p-1) + 0 + (n - l_1 - k + 1) = n - k - 1 & \text{if } p = l_1 - 1 \end{cases} \end{split}$$

Consider |X| and |Y| now. Recall the assumption that $(s, x) \notin E(G)$. There are at most k neighbors of x, $\{v_p^1, v_{p+2}^1\} \cup \{t_2, \ldots, t_{k-1}\}$, that are not included in X. Furthermore, if $p = l_1 - 1$ (or equivalently, $x = t_1$), at most k - 1 neighbors of x, $\{v_p^1\} \cup \{t_2, \ldots, t_{k-1}\}$, are not included in X. Also, if $p \leq l_1 - 2$, there are at most k neighbors of s, $\{v_1^1, t_1\} \cup \{v_1^2, \ldots, v_1^{k-1}\}$, that contribute no element to Y; if $p = l_1 - 1$, there are at most k - 1 such neighbors of s, $\{v_1^1\} \cup \{v_1^2, \ldots, v_1^{k-1}\}$. Thus, we have

$$|X| \ge \begin{cases} d_G(x) - k & \text{if } p \le l_1 - 2, \\ d_G(x) - k + 1 & \text{if } p = l_1 - 1; \end{cases} |Y| \ge \begin{cases} d_G(s) - k & \text{if } p \le l_1 - 2, \\ d_G(s) - k + 1 & \text{if } p = l_1 - 1. \end{cases}$$

Therefore,

$$\begin{aligned} |X \cap Y| &= |X| + |Y| - |X \cup Y| \ge |X| + |Y| - |U| \\ &\ge \begin{cases} (d_G(x) - k) + (d_G(s) - k) - (n - k - 2) & \text{if } p \le l_1 - 2, \\ (d_G(x) - k + 1) + (d_G(s) - k + 1) - (n - k - 1) & \text{if } p = l_1 - 1, \end{cases} \\ &\ge d_G(x) + d_G(s) - (n + k - 2) \\ &\ge (n + k - 1) - (n + k - 2) = 1, \end{aligned}$$

proving the claim. This completes the entire proof.

Remark 3. The bound, n + k - 1, on the degree sum $d_G(u) + d_G(v)$ in Theorem 5 is the minimum possible. Consider a graph G of order $n \ge k + 2$ made of a complete subgraph K_{n-1} and a single vertex $w \notin V(K_{n-1})$ that is directly connected, via an edge, to each of some k vertices of K_{n-1} . That is, $V(G) = V(K_{n-1}) \cup \{w\}$ and $E(G) = E(K_{n-1}) \cup \{(w, z) : z \in Z\}$ for some k-vertex subset Z of the subgraph K_{n-1} . Then, we have $d_G(u) + d_G(v) = n + k - 2$ for all distinct nonadjacent vertices u and v of G. The graph G, however, does not admit a one-to-many k-DPC joining s and $T = \{t_1, \ldots, t_k\}$ if s = w and $T = N_G(w)$, because no $s-t_i$ path may pass through a nonterminal vertex. Note that there exists a nonterminal vertex in G since $n \ge k + 2$.

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Nos. NRF-2013R1A1A2012890 and 2012R1A1A2005511).

References

- K. Asdre and S.D. Nikolopoulos, "The 1-fixed-endpoint path cover problem is polynomial on interval graphs," *Algorithmica* 58(3), pp. 679–710, 2010.
- [2] J.A. Bondy and U.S.R. Murty, *Graph Theory*, 2nd printing, Springer, 2008.
- [3] X.-B. Chen, "Paired many-to-many disjoint path covers of the hypercubes," Inf. Sci. 236, pp. 218–223, 2013.
- [4] G. Dirac, "Some theorems on abstract graphs," Proc. London Math. Soc. 2, pp. 69–81, 1952.
- [5] T. Dvořák and P. Gregor, "Partitions of faulty hypercubes into paths with prescribed endvertices," SIAM J. Discrete Math. 22(4), pp. 1448– 1461, 2008.
- [6] S. Jo, J.-H. Park, and K.Y. Chwa, "Paired 2-disjoint path covers and strongly Hamiltonian laceability of bipartite hypercube-like graphs," *Inf. Sci.* 242, pp. 103–112, 2013.
- [7] S. Jo, J.-H. Park, and K.Y. Chwa, "Paired many-to-many disjoint path covers in faulty hypercubes," *Theor. Comput. Sci.* 513, pp. 1–24, 2013.

- [8] S.-Y. Kim, J.-H. Lee, and J.-H. Park, "Disjoint path covers in recursive circulants $G(2^m, 4)$ with faulty elements," *Theor. Comput. Sci.* **412(35)**, pp. 4636–4649, 2011.
- [9] S.-Y. Kim and J.-H. Park, "Paired many-to-many disjoint path covers in recursive circulants G(2^m, 4)," *IEEE Trans. Computers* 62(12), pp. 2468–2475, Dec. 2013.
- [10] H. Li, "Generalizations of Dirac's theorem in Hamiltonian graph theory — A survey," *Discrete Math.* **313**, pp. 2034–2053, 2013.
- [11] P.-L. Lai and H.-C. Hsu, "The two-equal-disjoint path cover problem of matching composition network," *Inf. Process. Lett.* **107(1)**, pp. 18–23, 2008.
- [12] C.-K. Lin, H.-M Huang, J.J.M. Tan, and L.-H Hsu, "On spanning connected graphs," *Discrete Math.* 308, pp. 1330–1333, 2008.
- [13] S.C. Ntafos and S.L. Hakimi, "On path cover problems in digraphs and applications to program testing, *IEEE Trans. Software Eng.* 5(5), pp. 520–529, Sept. 1979.
- [14] O. Ore, "Note on Hamilton circuits," Amer. Math. Monthly 67, p. 55, 1960.
- [15] O. Ore, "Hamilton-connected graphs," J. Math. Pures Appl. 42, pp. 21–27, 1963.
- [16] J.-H. Park and I. Ihm, "Single-source three-disjoint path covers in cubes of connected graphs," *Inform. Proc. Lett.* **113(14–16)**, pp. 527–532, 2013.
- [17] J.-H. Park and I. Ihm, "Disjoint path covers in cubes of connected graphs," *Discrete Math.* **325**, pp. 65–73, 2014.
- [18] J.-H. Park, H.-C. Kim, and H.-S. Lim, "Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements," *IEEE Trans. Parallel & Distrib. Syst.* 17(3), pp. 227–240, Mar. 2006.
- [19] J.-H. Park, H.-C. Kim, and H.-S. Lim, "Many-to-many disjoint path covers in the presence of faulty elements," *IEEE Trans. Computers* 58(4), pp. 528–540, Apr. 2009.

- [20] Y.-K. Shih and S.-S. Kao, "One-to-one disjoint path covers on k-ary n-cubes," Theor. Comp. Sci. 412(35), pp. 4513–4530, 2011.
- [21] S. Zhang and S. Wang, "Many-to-many disjoint path covers in k-ary n-cubes," Theor. Comp. Sci. 491, pp. 103–118, 2013.