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Abstract

A many-to-many k-disjoint path cover of a graph joining two disjoint vertex
subsets S and T of equal size k is a set of k vertex-disjoint paths between
S and T that altogether cover every vertex of the graph. It is classified as
paired if each source in S' is required to be paired with a specific sink in 7', or
unpaired otherwise. In this paper, we develop Ore-type sufficient conditions
for the existence of many-to-many k-disjoint path covers joining arbitrary
vertex subsets S and T. Also, an Ore-type degree condition is established
for the one-to-many k-disjoint path cover, a variant derived by allowing to
share a single source. The bounds on the degree sum are all best possible.

Keywords: Ore’s theorem, degree condition, disjoint path cover, path
partition, Hamiltonian-connected.

1. Introduction

Let G be a simple undirected graph, whose vertex and edge sets are
denoted by V(G) and E(G), respectively. The order of G is the number of
vertices in G. If (u,v) € E(G), u is adjacent to v or u is a neighbor of v. A
path from vy to vy, is a sequence of vertices, (v1,va,...,vm), such that v; is
adjacent to v;_; for every j € {2,...,m}. A disjoint path cover (DPC for
short) of G is a set of paths in G such that every vertex of G belongs to one
and only one path.
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Figure 1: Examples of disjoint path covers.

Definition 1 (Many-to-many k-disjoint path cover). Given two dis-
joint vertex subsets S = {s1,...,sp} and T = {t1,...,t;}, each representing
k sources and sinks, the many-to-many k-disjoint path cover of G is a dis-
joint path cover of size k, each of whose paths joins a pair of a source and
a sink.

The disjoint path cover is paired if every source s; must be joined with a
specific sink ¢;. On the other hand, it is unpaired if, for some permutation o
on {1,...,k}, P;is a path from s; to t,(; for all i € {1,...,k}. The sources
and sinks are referred to as terminals. By these definitions, a paired k-
disjoint path cover is always an unpaired k-disjoint path cover. An example
of the paired many-to-many DPC is shown in Figure 1(a).

Definition 2. A graph G is paired (resp. unpaired) many-to-many k-
coverable if |V (G)| > 2k and there exists a paired (resp. unpaired) many-to-
many k-DPC for any disjoint source set S and sink set T of size k each.

Two simpler variants of the many-to-many k-disjoint path cover can be
derived by allowing to share a single source and/or a single sink. The first
one is of one-to-many type with S = {s} and T' = {¢1,...,t}, in which
all paths start from the unique source s. The second one is of one-to-one
type with S = {s} and T' = {t}, where all internally disjoint paths connect
the unique source and sink. Refer to Figure 1(b) for an example of the
one-to-many DPC.

Definition 3. A graph G is one-to-many (resp. one-to-one) k-coverable if



[V(G)| > k41 and G has a one-to-many (resp. one-to-one) k-DPC for any
disjoint source set S = {s} and sink set T'= {t1,...,tx} (resp. T = {t}).

The disjoint path cover problem is strongly related to the well-known
Hamiltonian problem, which is a fundamental one in graph theory. Ac-
tually, a Hamiltonian path joining a pair of vertices in a graph forms a
many-to-many, one-to-many, and one-to-one 1-disjoint path covers of the
graph. A graph of order n > 3 is one-to-many 2-coverable if and only if it
is Hamiltonian-connected. Moreover, a graph of order n > 3 is one-to-one
2-coverable if and only if it is Hamiltonian.

One of the core subjects in Hamiltonian graph theory is to develop suffi-
cient conditions for a graph to have a Hamiltonian path/cycle (refer to [10]
for a survey). The approaches taken to develop sufficient conditions usually
involve degree conditions for providing enough edges to overcome any ob-
stacle to the existence of a Hamiltonian path/cycle. Dirac [4] proved that a
graph G of order n > 3 is Hamiltonian if dg(v) > n/2 for every vertex v of
G, where dg(v) denotes the degree of a vertex v in G. Ore [14, 15] improved
Dirac’s condition as follows:

Theorem 1 (Ore [14, 15]). (a) A graph G of order n > 3 is Hamiltonian
if dg(u) + dg(v) > n for all distinct nonadjacent vertices u and v.

(b) A graph G of order n > 2 is Hamiltonian-connected if dg(u) + dg(v) >
n+ 1 for all distinct nonadjacent vertices u and v.

The close relationship between the disjoint path cover problem and the
Hamiltonian problem motivates the study of developing degree conditions
for a graph to have disjoint path covers. In this paper, we establish Ore-type
conditions for the existence of k-disjoint path covers in a simple graph as
follows:

1. A graph G of order n > 2k, where k > 1, is unpaired many-to-many
k-coverable if dg(u) + dg(v) > n + k for every pair of nonadjacent
vertices v and v.

2. A graph G of order n > 2k, where k > 2, is paired many-to-many
k-coverable if dg(u) +dg(v) > n+ 3k —4 for every pair of nonadjacent
vertices v and v.

3. A graph G of order n > k+1, where k > 2, is one-to-many k-coverable
if dg(u) + dg(v) > n+ k — 1 for every pair of nonadjacent vertices u
and v.



Also, we show that all the above three bounds on the degree sum dg(u) +
dg(v) are the minimum possible. Note that the results for unpaired many-
to-many and one-to-many disjoint path covers are generalizations of Ore’s
theorem, Theorem 1(b). For the one-to-one disjoint path cover problem,
an Ore-type condition was derived by Lin et al. [12]: A graph G of order
n > k+1, where k > 2, is one-to-one k-coverable if dg(u)+dg(v) > n+k—2
for every pair of nonadjacent vertices u and v. Moreover, the bound on the
degree sum is tight. A one-to-one k-coverable graph is also known as a
k*-connected graph.

2. Related Works and Definitions

The disjoint path cover problem finds applications in many areas such as
software testing, database design, and code optimization [1, 13]. In addition,
the problem is concerned with applications where full utilization of network
nodes is important [18]. It has been studied with respect to various graphs
such as hypercubes [3, 5, 7], recursive circulants [8, 9, 18, 19], hypercube-
like graphs [6, 11, 18, 19], cubes of connected graphs [16, 17], k-ary n-cubes
[20, 21], and connected graphs [12]. Unfortunately, it is NP-complete to
determine whether or not there exists a many-to-many, one-to-many, or
one-to-one k-DPC for a given pair of terminal sets in a general graph for
any fixed k > 1 [18, 19].

A Hamiltonian path of a graph G is a path that contains all the vertices
of G. A graph is said to be Hamiltonian-connected if every pair of distinct
vertices are joined by a Hamiltonian path. A cycle is a closed path of three
or more vertices. A Hamiltonian cycle of G is a closed Hamiltonian path,
i.e., a cycle that contains all the vertices of G. A graph is called Hamiltonian
if it has a Hamiltonian cycle. An s-t path refers to a path from s to t; An
s-path refers to a path starting at vertex s. For a path P = (v1,va,...,Un),
the reverse of P is the path (vy,, Vm—1,...,v1). The vertex and edge sets of
path P are denoted by V(P) and E(P), respectively.

The neighborhood of a vertex v of G, denoted by Ng(v), is the set of
neighbors of v in G, i.e., Ng(v) = {u € V(G) : (v,u) € E(G)}. The degree
of vertex v in G is the number of its neighbors, i.e., dg(v) = |[Ng(v)|. For a
vertex subset W C V(G), the subgraph of G induced by W is a graph whose
vertex set is W and for every pair of vertices u,v € W, (u,v) is an edge of
the graph if and only if (u,v) € E(G). For a vertex subset W C V(G), we
denote by G'\ W the resultant subgraph obtained from G by deleting all the
vertices in W (including the edges incident to them). Note that G\ W is



the subgraph of G induced by V(G)\ W. Graph theoretic terms not defined
here can be found in [2].

We will often abbreviate the terms paired many-to-many k-DPC and
unpaired many-to-many k-DPC as paired k-DPC and unpaired k-DPC, re-
spectively.

3. Unpaired Many-to-Many Disjoint Path Covers

An unpaired many-to-many k-DPC of a graph G, in which a source set
S ={s1,...,sc} and asink set T = {t1,...,t;} such that SNT = () are given,
is a set of k pairwise disjoint paths, {Pi,..., Py}, such that each P; joins
sj and t,(;) for some permutation o on {1,...,k} and U§:1 V(P;) =V(G).
The first main result of this paper is the following.

Theorem 2. Let G be a graph of order n > 2k, where k > 1. If dg(u) +
dg(v) > n + k for all distinct nonadjacent vertices u and v, then G is
unpaired many-to-many k-coverable.

PROOF. The proof is by induction on k. For the base step of k = 1, the
theorem holds by Ore’s theorem, Theorem 1(b). Note that G is unpaired
many-to-many 1-coverable if and only if G is Hamiltonian-connected. Sup-
pose k > 2 for the inductive step. Given a source set S = {s1,...,s;} and
a sink set T = {t1,...,tx} in G such that SNT = (), we will show that
there always exists an unpaired k-DPC joining S and T in G. Let G’ de-
note the subgraph of G induced by V(G) \ {tx}, i.e., G = G\ {tx}. For
any pair of nonadjacent vertices u and v of G', we have dg (u) + dgr(v) >
(dg(u) — 1) + (dg(v) = 1) > n+ k-2 = |V(G')| + (k —1). Thus, by
the induction hypothesis, G’ is unpaired many-to-many (k — 1)-coverable.
We are going to construct an unpaired k-DPC of G using some unpaired
(k —1)-DPC of G".

Let {Pi,...,Pr_1} be an unpaired (k — 1)-DPC of G’ joining S \ {sx}
and 7'\ {#x}, in which each path P; joins s; and t;, where {i1,... i1} =
{1,...,k —1}. The path P; for 1 < j < k — 1 may be represented as
‘ : | ljj There is a path, say P;, in the
unpaired (k — 1)-DPC that passes through the source s; as an intermediate
vertex. Then, s = U; for some 1 < p < [y, and let =z = v;_l, possibly
x = s1. If we delete the edge (z,si) from Pj, then Pj is divided into two
paths: the s;—z path and sp—t;, path. It follows that G’ has a partition
made of k pairwise disjoint s;j-paths for 1 < j < k, where each s;-path for
J > 2 runs to a sink whereas the sj-path runs to z ¢ T'. Also, the partition

j J ) N
(’L}O,...,Ulj), where s; = vy and t;, = v



of G’ along with an additional one-vertex path (t;) forms a partition of G.

We rename vjl- as v;?_p for every p < j <, so that like the other paths, the

sg-path is represented as (vg, ... ,vi) where [, = [1 — p.

In the remaining part of this proof, we will show that the s;—x path and
the path () can be combined into an s;—t; path; Or the s;—x path, the
path (#x), and one s -path for some 2 < ¢ < k can be modified into two
paths, an srqu path and s,—t; path, each of which joins a source and a sink.
If (z,t;) € E(G), then it suffices to concatenate the s;—z path and the path
(tr) into an s;—t path, (vé,...,v;_l,tk). So, we assume (x,t;) ¢ E(G)
hereafter. If there exists a vertex-pair (v},v; ;) such that v; € Ng(z)
and U%H € Ng(tx) for some 0 < r < p — 3, it suffices to divide the s;—=

path into two paths, (v8,...,v}) and (U}H, .. 7”571)7 and then concatenate

»Er
the three paths, (v{,...,v}), the reverse of (viﬂ, ... ,1)11)_1), and the path
(t;) into an s;—t; path, as illustrated in Figure 2(a). Similarly, if there is

a vertex-pair (v?,,v?, ) for some 2 < ¢ < k such that v, € Ng(x) and

1y Upr_q
v, | € Na(ty) for some 1 <7/ < g, it suffices to concatenate (vd,... ,vzl,fl)
and (v?,.. .,Uqu) into an sl—qu path, and then concatenate (vf,...,v% ;)

and the path (¢;) into an s,~tj path, as shown in Figure 2(b). We claim that
there always exists such vertex-pair, (v}, v} 41) or (vh,vf,_), that satisfies
the aforementioned conditions.

It remains to prove the claim. We let U = U; U Uy, where U; =
{vg, ..., vhg} and Us == Ufo{v}, ... vj } = Uly(V(P) \ {s:}). Define
X = Ng(x)NU and Y = Y] UYs, where

Yi:={vj_1:vj € No(ty), 1 <j <p—2} CUi, and
Yy = {vjy1:0) € No(t), 2< i <k, 0<j <1 =1} C Ua.

Then, the claim holds if and only if X NY # (). Keeping the relationship of
X UY C U in mind, we will derive an upper bound on |U| and lower bounds
on |X| and |Y|. Consider |U| first. We have |U;j| =p—2ifp>2; |U;| =0
otherwise. Also, we have |Us| =n—(p+1) —(k—1) =n—p— k. It follows
that

|U| = |Ui| + U] <max{(p—2)+(n—p—k)n—p—k}<n—-k-1

because p > 1. Consider | X| and |Y| now. Recall (z,t;) ¢ E(G). Observe
that among the vertices of Ng(x), there are at most k neighbors (of ) that
are not included in X; The possible neighbors are v;_Q and {sg,...,s,}.
Also, there are at most k neighbors of t5, {s1} U {t1,...,tx—1}, that con-

tribute no element to Y. Note that {v] :2 <i <k} = {t1,...,t;—1}. Thus,
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(a) vy € Ng(x) and vi 41 € Ng(ts) for some 0 < r < p—3.
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(b) v?, € Ng(x) and v?, | € Ng(tx) for some 2 < q <k
and 1 <71’ <lg.

Figure 2: Construction of an unpaired k-DPC of G from an unpaired (k — 1)-DPC of G'.

we have
| X| > dg(x) —k and |Y| > dg(tg) — k.
Therefore,
(X NY|=[X[+[Y] - |[XUY]=|X[+ V|- [U]

2 (da(x) — k) + (da(ty) — k) — (n =k —1)

=dg(x) +da(ty) —n—k+1

>(n+k)—-n—-k+1=1,
proving the claim. This completes the entire proof. ]

Remark 1. The bound, n + k, on the degree sum dg(u) + dg(v) in Theo-
rem 2 is the minimum possible, in a sense that not every graph G of order
n > 2k such that dg(u) + dg(v) > n+k —1 for all distinct nonadjacent ver-
tices u and v, is unpaired many-to-many k-coverable. Consider a graph G of
order n = 3k+1 defined as the join G1+ G2 of a complete graph GG of order
2k and a null graph Gs of order k + 1. That is, V(G) = V(G1) UV (G2) and
E(G) = E(G1)UE(G2)U{(z,y) : x € V(G1), y € V(G2)}. Then, for all dis-
tinct nonadjacent vertices u and v of G, we have dg(u) +dg(v) = 2k + 2k =



(B3k+ 1)+ (k—1) =n+ k — 1. The graph G, however, does not admit an
unpaired k-DPC joining S and T'if 5,7 C V(Gy), i.e., SUT = V(G1). This
is because no path in the unpaired k-DPC may pass through two or more
vertices of (G5 as intermediate vertices.

4. Paired Many-to-Many Disjoint Path Covers

In this section, we prove that a graph G of order n > 2k, where k > 2,
is paired many-to-many k-coverable if dg(u) + dg(v) > n + 3k — 4 for all
distinct nonadjacent vertices v and v of G. On the contrary to the unpaired
k-DPC problem, it is not possible to rely on Ore’s theorem, Theorem 1(b).
So, we begin with the paired 2-DPC problem, as a base step of our inductive
proof, in the following two lemmas. Note that if the degree sum condition
for k = 2 is satisfied, then the graph G of order n € {4,5} is a complete
graph, and thus is paired 2-coverable. (Suppose for a contradiction G is not
a complete graph. For some nonadjacent vertices x and y of G, we have
dg(x) +da(y) < (n—2) 4 (n—2) = 2n — 4, which contradicts the fact that
dg(z)+da(y) >n+3-2—4=n+2.)

Lemma 1. Let G be a graph of order n > 6 in which four distinct terminals
s1, t1, s2, and ta are given. If dg(u) + dg(v) > n + 2 for all distinct
nonadjacent vertices u and v and moreover, there exists a Hamiltonian s1—t1
path in G\{s2,ta2}, then there exists a paired many-to-many 2-DPC { Py, P»}
i G, where Py is an s1-t1 path and P» is an so—ty path.

ProoOF. Let P, = (v1,v2,...,v,_2) denote a Hamiltonian s;—t; path of G'\
{s2,t2}, where s1 = v; and t; = v,_g. If (s2,t2) is an edge of G, then P}, and
the two-vertex path (sg,t2) form a desired 2-DPC and we are done. So, we
assume (so,t2) ¢ E(G) hereafter. Then, there exists a common neighbor of
sy and tp in P = P, \{s1,t1} = (v2,...,v,—3); Suppose otherwise, dg(s2)+
da(t2) < (n—4)+2+2 = n, which contradicts the hypothesis of this lemma
that dg(s2) +da(t2) > n+2. We let (vp, ..., v,4), where p < ¢, be a maximal
contiguous subsequence of P; whose members are all common neighbors of
s and t9, in a sense that there exists no proper contiguous supersequence of
(Up, ..., vq) whose members are all contained in N¢(s2)NNg(t2). That is, we
have (i) v; € Ng(s2)NNg(t2) for every p < j < ¢, (ii) vp—1 ¢ Na(s2)NNg(t2)
or p = 2, and (iii) vg4+1 ¢ Ng(s2)NNg(t2) or ¢ = n—3. Also, let x = v, and
y = vgq1. If (z,v;) € E(G) for some p+ 1 <i < g+ 1, there exists a paired
2-DPC in which P; is the concatenation of (v1,...,vp—1) and (vi, ..., vp—2),
and Py is (s2,vp, ..., vi—1,t2). Symmetrically, if (y,v;) € E(G) for some p —



(a) vr € Ng(z) and vr41 € Ng(y) for some 1 <r <p—3.

X Y
S1 A\ O O tl
121 vp—l Uq+ Uy Vr+1 VUn-2

(b) vr € Ng(x) and vr41 € Ng(y) for some ¢ +2 <r <n—3.

Figure 3: Hamiltonian s1—¢1 paths in the subgraph induced by {wvi,...,vp—1} U
{’UCI+17"'7UTL72}‘

1 < j < q—1, there also exists a paired 2-DPC, where P; is the concatenation
of (vi,...,v;) and (Vg41,...,Vn—2), and Ps is (s2,vj41,...,04,t2). So, we
assume (z,v;) ¢ E(Q) for every p+1 < i < g+ 1 and (y,v;) ¢ E(G) for
every p— 1 < j < g — 1. Note that (z,y) ¢ E(G).

In the remainder of this proof, we will show that there exists a
Hamiltonian s;-t; path P; in the subgraph induced by {vi,...,vp—1} U
{vg+1,...,vn—2}, which implies that P; and P := (s2,vp, ..., Vg, t2) form a
desired 2-DPC. If there is a vertex-pair (v,, vy4+1) such that v, € Ng(x) and
vr4+1 € Ng(y) for some 1 < r < p— 3, it suffices to let P; be the concatena-
tion of (v1,...,v,), the reverse of (vy41,...,vp—1), and (vg41,...,0n—2), as
illustrated in Figure 3(a). Similarly, if there is a vertex-pair (vy, v,41) such
that v, € Ng(z) and v,41 € Ng(y) for some g+ 2 < r < n — 3, it suffices to
let P; be the concatenation of (vi,...,vp—1), the reverse of (vg41,...,v,),
and (Vy41,...,Un—2), as shown in Figure 3(b). We claim that there always
exists such vertex-pair (v,,v,4+1), where v, € Ng(x), vy41 € Ng(y), and
either 1 <r<p—3orq+2<r<n-3.

It remains to prove the claim. We let U = U; U Uy, where U; :=
{vi,...,vp—3} and Uy := {vgy2,...,vp—3}. Define X = Ng(z) N U and
Y =Y, UY5, where

Y1 :={vj_1:v; € Ng(y),2<j<p—-2} CUi, and
Yo :={vj_1:v; € Na(y), ¢ +3<j<n—-2} CU.

Then, the claim holds if and only if X NY # (). To show [ X NY| > 1 as



in the proof of Theorem 2, we will derive an upper bound on |U| and lower
bounds on |X| and |Y|. Consider |U]| first. We have |U;| =p—3ifp > 3;
|Ui| = 0 otherwise. Also, we have |Us| =n—qg—4if ¢ <n—4; |Us] =0
otherwise. It follows that

[U| = |U1| + |Us]
(p—3)+(n—qg—4) ifp>3and g<n-—4,
=< (p—3)+0 ifp>3and g=n— 3,
04+ (n—q—4) ifp=2and g <n-—4,

n—6 ifp=g=n—-3orp=q=2,
{ n — 7 elsewhere,

because 2 < p < ¢ < n — 3. Note that the case where p =2 and ¢ =n — 3
never occurs. (Suppose p = 2 and ¢ = n — 3. Then, we have z = s; and
y = t1, so that dg(x) + da(y) < [{ve,s2,ta}| + [{vn—3, s2,t2}| = 6, which
contradicts the hypothesis that dg(z)+da(y) > n+2 > 8.) Consider | X| and
Y| now. Recall the assumption that (z,v;) ¢ E(G) for every p+1 < i < g+1
and (y,v;) ¢ E(G) for every p—1 < j < g — 1. Observe that among the
vertices of Ng(x), there are at most four that are not included in X. The
four are vy_a, vp, t1, and one of {sa,t2} if p > 3 (i.e., & # s1); They are
Up, t1, S and ty otherwise (i.e., x = s1). Furthermore, if p =¢ =n -3
(where y = t; and x # s1), there are at most three vertices, v,_2, vp, and
one of {s9,t2}, in Ng(x)\ X. Note that © ¢ Ng(s2) N Ng(t2) if x # s1;
y & Ng(s2) N Ng(te) if y # t1. Also, there are at most four vertices of
N¢(y) that contribute no element to Y. The four are si, vy, vg42, and one
of {sg,t2} if ¢ < n —4 (ie., y # t1); They are s1, vy, S2, and ty otherwise
(i.e., y = t1). Furthermore, 1fp = q = 2 (where x = s; and y # t1), there are
at most three vertices, vy, vg+2, and one of {sa,t2}, of Ng(y) that contribute
no element to Y. Thus, we have

dg(z) -3 ifp=qg=n-3, da(y) —3 ifp=q=2,
> >
X1 = { dg(x) —4 elsewhere; ¥l dg(y) —4 elsewhere.
Therefore,
(XNY]=|X[+]Y]- !XUY! > [ X[+ Y] = U]

(da(r) =3) + (da(y) —4) = (n—=6) ifp=g=n-3,
> (do(z) - 4) (da(y) =3) = (n—6) ifp=q=2,
(dg(x) —4) + (dg(y) —4) — (n—T) elsewhere,

=dg(z) +dg(y) —n—1
>n+2)—-n—1=1,
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Figure 4: The octahedral graph.

proving the claim. This completes the proof. |

One might expect that if dg(u) + dg(v) > n + 2 for all distinct nonad-
jacent vertices u and v in a graph G of order n > 6, then G is 2-vertex-
fault Hamiltonian-connected, i.e., for any four distinct vertices s, ¢, vy, and
wy, there exists a Hamiltonian s—t path in G \ {vg,ws}. Unfortunately,
this is not always true. The octahedral graph, shown in Figure 4, is not
2-vertex-fault Hamiltonian-connected (for example, {s,t} = {v1,v4} and
{vf,ws} = {v2,v5}), while the degree sum condition is satisfied. The graph
is, in fact, paired many-to-many 2-coverable, which will become clear soon.
Instead, we will provide a direct construction of a paired 2-DPC of G sat-
isfying the degree condition in case when G \ {s2,t2} has no Hamiltonian
s1—t1 path, in the following lemma.

Lemma 2. Let G be a graph of order n > 6 in which four distinct terminals
s1, t1, s2, and to are given. If dg(u) + dg(v) > n + 2 for all distinct
nonadjacent vertices u and v and moreover, there exists no Hamiltonian
s1—t1 path in G\ {sa,t2}, then there exists a paired many-to-many 2-DPC
{P1, P2} in G, where Py is an s1—t1 path and Py is an sy—ta path.

PROOF. Let G' = G\ {s2,t2}, the subgraph induced by V(G) \ {s2,t2}.
Then, there exists a Hamiltonian cycle in G’ by Theorem 1(a). This is
because for all distinct nonadjacent vertices v and v, dgr(u) + dgr(v) >
(da(u) —2) + (dg(v) — 2) = dg(u) + dg(v) —4 > (n+2) —4 = |[V(G)].
From the Hamiltonian cycle of G’, we can extract a Hamiltonian path, P,
one of whose end-vertices is t1. Let P, be represented as (vi,ve,...,vn_2),
where t1 = v,—2 and s = v, for some 1 < p < n —3. If p =1, then the
path Py joins s; and t1, which contradicts the hypothesis of this lemma.

11
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Figure 5: The graph Hj;, where 1 <7 <p.

So, we assume p > 2. It will be shown that there exists a paired 2-DPC
{P1, P2}, where for some q € {2,...,p}, P, is a Hamiltonian s;—¢; path of
the subgraph induced by {vy,...,v,—2} and P» is a Hamiltonian so—to path
of the subgraph induced by {v1,...,v4—1} U {s2,t2}.

We denote by Hj the spanning subgraph of G composed of the Hamil-
tonian path Pj and two isolated vertices so and ¢3. Expanding the graph
H,y, we define H;, 1 < j < p, to be a graph whose vertex and edge sets,
respectively, are

V(HJ) = {Ulv EEE) 'Unf2} U {52,t2} and
E(Hj) = {(vi,vig1) : 1 <i<n— 2} U{(s2,v), (t2,v5) : 1 <i < j— 1},

as shown in Figure 5. Let = vpq1 and W; = {v1,...,vj_1} where W; = (.

Claim 1. If Hj, j € {1,...,p — 1}, is a spanning subgraph of G such that
Ne(z) "W, =0, then

e the graph G;, defined as the subgraph of G induced by {vj,...,vn—2},
has a Hamiltonian s1—t1 path, or
e Hj.y is a spanning subgraph of G such that Ng(z) N Wit = 0.

Provided the claim is proved, we may conclude that for some ¢ €
{1,...,p}, the induced subgraph G, has a Hamiltonian s;-t; path, P;. Note
that H; is a spanning subgraph of G such that Ng(z) N W; = 0, and G,
has a Hamiltonian s;-t; path, (vp,...,v,—2). It follows that if ¢ = 1, then
G\ {s2,t2} has a Hamiltonian s;—¢; path, which contradicts the hypothesis
of this lemma; If ¢ > 2, G has a paired 2-DPC made of P; and an so—to
path, P, = (s, v1,...,04—1,t2). It remains to prove the claim.

Proor orF CLAIM 1. If (z,v;) € E(G), then there exists a Hamilto-
nian s;—t; path, obtained by concatenating the reverse of (vj,...,vp,) and

12



Up+1

(a) vr € Ng(z) and vr41 € Ng(vj) for  (b) v € Ng(z) and v,v_1 € Ng(vj) for some
some j+1<r<p-1. p+3<r <n—2.

Figure 6: Hamiltonian s;—¢; paths in the induced subgraph Gj.

(Up+1, ..., Un—2), proving the claim. So, we assume (x,v;) ¢ E(G). If there
exists a vertex-pair (v, v,41) such that v, € Ng(x) and v, 41 € Ng(v;) for
some j +1 < r < p— 1, then we have a Hamiltonian s1-¢; path of G;
by concatenating the three paths, the reverse of (vy41,...,vp), (vj,...,v,),
and (vpy1,...,Un—2), as shown in Figure 6(a). Similarly, if there exists a
vertex-pair (v,,,v_1) such that vy € Ng(z) and v,y € Ng(v;) for some
p+3 <1 < n— 2, then concatenating the three paths, the reverse of
(vj,...,vp), the reverse of (vpy1,...,vv—1), and (vy,...,vy—2), results in
a Hamiltonian s;-t; path of G, as shown in Figure 6(b). Similar to the
proof of Lemma 1, we consider the existence of such vertex-pair (v, v,41)
or (vy,v_1). We let U = Uy U U, where Uy := {vj41,...,vp-1} and
U :={vp43,...,0p—2}. Define X = Ng(z)NU and Y; = le U Y]?, where

Y}l = {vi—1:v; € Ng(vj), j +2 <i<p} CUj, and
Yf = {vit1:v; € Ng(vj), p+2<i<n—-3} CU,.
Then, there exists a pair (v, vy41) or (v,r,v,v_1) satisfying the aforemen-
tioned conditions if and only if X NY; # 0. To establish a lower bound
on |X NYj|, we will derive inequalities on |[U|, |X| and |Y;|. We have
Uil =p—j5—1. (Note that j < p <n—3.) Also, Uz =n—p—4if
p < n—4; |Uz| =0 otherwise. It follows that
U= [U1| +|Uz] <max{(p—j—1)+(n—p—4),(p—j—1)+0}
n—j—5 ifp<n—4(ie, x#t),
< . . .
|l n—j—4 ifp=n-3(ie, x=11).

At most four vertices, {s1,vp2, s2,t2}, among the neighbors of  may not
be contained in X if p < n — 4; Otherwise, there are at most three such

13



vertices, {s1,s2,t2}. Note that (z,v;) ¢ E(G) and Ng(xz) N W; = 0, ie.,
Ng(z) N Wig1 = 0. Also, at most j + 3 vertices, {vjy1,t1,52,t2} U W, of
N¢(vj) may contribute no element to Yj if p < n — 4; Otherwise, there are
at most j + 2 such vertices, {vjt1, S2,t2} U W;. Thus, we have

dg(x) —4 if p<n—4, dg(vj) —j—3 if p<n-—4,
> i >
X|_{d@(£ﬂ)3 iftp=n—3; Y51 = dg(vj) —j—2 ifp=n-3.

Therefore,

(X NYj = X[+ [Yj] = [X UYj] > | X[+ [Yj] - |U]
 { (ol 90+ ot =3 =9 =) ip <
~ | (da(@) =3) + (da(vj) —j—2) —(n—j—4) ifp=n-3,
[ dg(z)+dg(v;)) —n—2>(n+2)—n—-2=0 ifp<n-—4,
| de(x)+dg(vj)) —n—1>n+2)—n—-1>1 ifp=n-—3.

If | X NYj| > 1, then there exists a desired pair (v, v,41) or (v, 1)
and the graph G has a Hamiltonian s;—t; path, proving the claim. So,
we assume | X NY;| = 0. It follows that p < n —4, |Y;| = dg(y) —j —3
and moreover, {vjy1,t1,52,t2} UW; C Ng(vj). This implies that H;i; is
a spanning subgraph of G such that Ng(x) N W41 = 0, also proving the
claim. [J |

Theorem 3. Let G be a graph of order n > 4. If dg(u)+dg(v) > n+2 for
all distinct nonadjacent vertices u and v, then G is paired many-to-many
2-coverable.

ProoOF. If n € {4,5}, then G is a complete graph and thus is paired many-
to-many 2-coverable. For n > 6, the proof is a direct consequence of Lem-
mas 1 and 2. [}

Now, we are ready to consider the paired k-DPC problem for general
k> 2.

Theorem 4. Let G be a graph of order n > 2k, where k > 2. If dg(u) +
dg(v) > n+ 3k — 4 for all distinct nonadjacent vertices u and v, then G is
paired many-to-many k-coverable.

PROOF. The proof proceeds by induction on k. The base case of k = 2 holds
due to Theorem 3. Let £ > 3 for the inductive step. We first claim that
(sk,tx) € E(G), or there exists a nonterminal vertex w € Ng(sg) N Ng(t).
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To prove the claim, suppose (sg,tx) ¢ E(G). Then, we have dg(sx) +
dg(tp) > n+ 3k — 4 by the hypothesis of the theorem. This implies that
there are at least (n+ 3k —4) — (n—2) = 3k — 2 vertices in Ng(sg) N Ng(tx)
and among them, there are at least (3k —2) —2(k —1) = k& > 3 nonterminal
vertices. Note that sy, tx ¢ Na(sg) U Ng(tx). Thus, the claim is proved.

We let an sp—t; path, Py, be the two-vertex path (sg,tx) if (sk,tx) €
E(G); let P, = (sg,w, tx) otherwise. It suffices to prove that G\ V(P%), the
subgraph of G induced by V(G) \ V(P), is paired many-to-many (k — 1)-
coverable. Let G’ be the induced subgraph, and let ny = |V(Pg)| where
ng = 2 or 3. For any two nonadjacent vertices v and v of G’,

der(u) + der(v) = (da(u) —ni) + (da(v) —ni) = dg(u) + dg(v) — 2ny,
>(n+3k—4)—2n,=(n—nk)+ Bk —ng) — 4
> V(G| + 30k~ 1) 4

Therefore, G’ is paired (k — 1)-coverable by the induction hypothesis, com-
pleting the proof. |

Remark 2. The bound, n + 3k — 4, on the degree sum dg(u) + dg(v) in
Theorem 4 is the best possible. Consider a graph G of order n = 3k — 1,
obtained from a complete graph, K, of order n by deleting k pairwise
nonadjacent edges (u;,v;) for 1 < i < k. That is, V(G) = V(K,) and
E(G) = E(K,) \ M, where M is a matching of K, of size k. Then, for
any two nonadjacent vertices, u; and v; for some i, of G, we have dg(u;) +
dag(vi) = (n—=2)+(n—2) =n+ (n—4) = n+ 3k —5. The graph G,
however, does not admit a paired k-DPC joining S = {s1,...,sx} and T =
{t1,...,tx} if s; = u; and t; = v; for all i, because every s;—t; path should
pass through at least one nonterminal vertex as an intermediate vertex,
which is impossible. Therefore, not every graph G of order n > 2k such that
dg(u) + dg(v) > n+ 3k — 5 for all distinct nonadjacent vertices u and v, is
paired many-to-many k-coverable.

5. One-to-Many Disjoint Path Covers

In this section, an Ore-type degree condition will be established for the
one-to-many k-disjoint path covers. Given a single source s and a set of k
distinct sinks 7' = {¢1,...,tx} in a graph G such that s ¢ T, a one-to-many
k-DPC joining s and T refers to a set of k paths, {P,..., Py}, where each
path P; runs from the source s to sink ¢; such that Ule V(P;) =V(G) and
V(P) NV (P;) = {s} for all i # j.
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Theorem 5. Let G be a graph of order n > k+ 1, where k > 2. If dg(u) +
dg(v) > n+k —1 for all distinct nonadjacent vertices u and v, then G is
one-to-many k-coverable.

ProoOF. The proof is by induction on k. The base case of k = 2 holds due
to Ore’s theorem, Theorem 1(b). Note that a graph of order at least three is
one-to-many 2-coverable if and only if it is Hamiltonian-connected. Suppose
k > 3 for the inductive step. Given a source s and a sink set 7" = {t1,...,t;}
in G such that s ¢ T, we will show that G has a one-to-many k-DPC joining
s and T. By the induction hypothesis, G has a one-to-many (k — 1)-DPC
joining s and T'\ {tx}. Let {P1,..., Py_1} denote the one-to-many (k — 1)-
DPC, in which each path P; joins s and ¢;. The path P; for 1 <<k —1
may be represented as (’Ué, e ,vlii), where s = Ué and t; = vl‘Z There exists
a path, say P, in the (k — 1)-DPC that passes through the sink t; as an
intermediate vertex. Then, . = v; forsome 1 <p<l;—1,andlet x = U;H,
possibly 2 = t;. If (s,2) € E(G), then it suffices to let P, = (vg,...,v,) and
redefine P; = (s,v;H, ... ,vlll), so that {Py,..., Py} is a desired k-DPC of
G. Hereafter, we assume (s,z) ¢ E(G), and thus dg(s) +dg(z) > n+k—1.

If there exists a vertex-pair (v}, v, ;) such that v} € Ng(z) and v}, €
Ng(s) for some 1 < r < p — 1, it suffices to let P, = (s,v},,...,vp)
and redefine P as the concatenation of (v},...,v}) and (Ull)_H, el Ulll), as
illustrated in Figure 7(a). Similarly, if there is a vertex-pair (v}, v} ;) such
that U}, € Ng(z) and ’Ui,_l € Ng(s) for some p+ 3 < ¢/ < [y, then it
suffices to let P, = (v§,...,v;) and redefine Py as the concatenation of
three path segments, one-vertex path (s), the reverse of (’U})_H, ce Ul ),
and (v),... ,vlll), as shown in Figure 7(b). In addition, if there exists a
vertex-pair (vé,véﬂ) for some 2 < i < k — 1 such that vf] € Ng(z) and
U;+1 € Ng(s) for some 1 < ¢ < I; — 1, it suffices to let P, = (vg,...,v,)
and redefine Py and P; as follows (see Figure 7(c)): P; is the concatenation
of (vi,... ,vé) and (U;_H, . ,Ulll), and P; is the concatenation of the path
(s) and (vé FRTRR Ullz) It remains to prove that there always exists at least
one such vertex-pair, (v}, vl,;), (vh, vl ), or (vé, véﬂ), that satisfies the
aforementioned conditions.

As in the proof of Theorem 2, we let U = U; U Uy U Us, where Uy :=

P ,
{vi,... ’Ull)_l , Uy := {v11)+3,...,vlll}, and Uz := Ui:21{vi,...,vlli_1} =

U1}
Ui vP) \ ({s} U {t2,...,ts_1}). Define X = Ng(z) NU and Y =
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a) vl € Ng(z) and v, € Ng(s) for some 1 <r <p—1.
+

s O —O
1 1
170 Vi p vp+1 _1 vll

(¢) v) € Ne(x) and vly, € Ng(s) for some 2 < i < k — 1 and
1<q<l;—1.

Figure 7: Construction of a one-to-many k-DPC from a one-to-many (k — 1)-DPC of G.
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Y1 UY5 U Y3, where

Y1 :={vj_1 :vj € Ng(s), 2 < j < p} C Uy,
Y5 —{vm vleNG(s),p+2Sj§z1—1}gU2, and

It suffices to show that |[X NY| > 1. An upper bound on |U| and lower
bounds on |X| and |Y| will be derived first. We have |U;| = p — 1. Also,
we have |Us| = 11 —p—2if p < I} — 2; |Uz| = 0 otherwise. In addition,
Us|=(n—04L)—(1+(k—2))=n—1; —k+ 1. It follows that

\U| = |U1] + |Uz] + |U3|

< p-D+lG—-p—-2)+(n—-lL-k+1)=n—k—-2 ifp<i —2,
“ |l p-1)+0+(n—-lL—-k+1)=n—-k—-1 ifp=1 —1.

Consider |X| and |Y| now. Recall the assumption that (s,x) ¢ E(G). There
are at most k neighbors of z, {v}), v;,H}U{tg, ..., tx_1}, that are not included
in X. Furthermore, if p = [ — 1 (or equivalently, = = t;), at most k — 1
neighbors of z, {v;}u{tg, ..., tg_1}, are not included in X. Also, if p <13 -2,
there are at most k neighbors of s, {vi, t;}U{v, ..., v’f_l}, that contribute

no element to Y; if p = [y — 1, there are at most £ — 1 such neighbors of s,
(vl U {o?,..., 081}, Thus, we have

dg(x) — k if p<iy— da(s) — k itp <l —2,
> >
X‘{d@(x)—k—i-l ifp=1— |Y| da(s) —k+1 ifp=10 —1

Therefore,

(X NY|=|X[+ Y] |XUY|=|X|+|V]|-|U|

{(d() k) + (da(s) — k) = (n—k —2) ifp<hi—2
(da(z) —k+1)+ (dg(s) —k+1)—(n—k—-1) ifp=10 —1,
>dg(z) +dg(s) — (n+k—2)

>n+k—-1)—(n+k—-2)=1,

proving the claim. This completes the entire proof. |

Remark 3. The bound, n + k — 1, on the degree sum dg(u) + dg(v) in
Theorem 5 is the minimum possible. Consider a graph G of order n > k + 2
made of a complete subgraph K,_; and a single vertex w ¢ V(K,_1) that
is directly connected, via an edge, to each of some k vertices of K,,_1. That
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is, V(G) = V(K,—1) U{w} and E(G) = E(K,-1) U{(w,2) : z € Z} for
some k-vertex subset Z of the subgraph K,_;. Then, we have dg(u) +
dg(v) = n+ k — 2 for all distinct nonadjacent vertices u and v of G. The
graph G, however, does not admit a one-to-many k-DPC joining s and
T = {t1,...,tx} if s = w and T = Ng(w), because no s—t; path may pass
through a nonterminal vertex. Note that there exists a nonterminal vertex
in G since n > k + 2.
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