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Reursive Cirulants and their Embeddings

among Hyperubes

Abstrat

We propose an interonnetion struture for multiomputer networks, alled reursive iru-

lant. Reursive irulant G(N; d) is de�ned to be a irulant graph with N nodes and jumps of

powers of d. G(N; d) is node symmetri, and has some strong hamiltonian properties. G(N; d) has

a reursive struture when N = d

m

, 1 �  < d. We develop a shortest path routing algorithm in

G(d

m

; d), and analyze various network metris of G(d

m

; d) suh as onnetivity, diameter, mean

internode distane, and visit ratio. G(2

m

; 4), whose degree is m, ompares favorably to the hy-

perube Q

m

. G(2

m

; 4) has the maximum possible onnetivity, and its diameter is d(3m� 1)=4e.

Reursive irulants have interesting relationship with hyperubes in terms of embedding. We

present expansion one embeddings among reursive irulants and hyperubes, and analyze the

osts assoiated with eah embedding. The earlier version of this paper appeared in [21℄.

Key Words: Cirulant graph, onnetivity, diameter, embedding, hamiltonian property, inter-

onnetion struture, multiomputer network, routing algorithm
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1 Introdution

Need for high omputing power has ontinued to drive the high speed omputer design. One of the

most straightforward and the least expensive means of ahieving this end is to onstrut multiomputer

networks that onsist of nodes with loal memory (no shared memory) and a ommuniation ontroller,

where eah node is onneted by ommuniation links to a number of other nodes [23℄. Whenever

a node wants to ommuniate with another node, it ommuniates through other nodes unless there

exists a diret ommuniation link between the two.

The interonnetion struture for a multiomputer network plays a entral role in determining the

overall performane of the system [14,23℄. Sine the 1960's, many authors have been onerned with

the problems assoiated with the design and analysis of interonnetion strutures [1, 2, 7, 10, 21, 23℄.

One of the most popular interonnetion strutures being used is a hyperube [9, 25℄.

We propose an interonnetion struture for multiomputer networks, alled reursive irulant.

The reursive irulant G(N; d), d � 2, is de�ned as follows: the node set V = f0; 1; 2; � � � ; N � 1g,

and the edge set E = f(v; w) j 9 i, 0 � i � dlog

d

Ne � 1, suh that v + d

i

� w (mod N)g. Here

eah d

i

is alled a jump. G(N; d) also an be de�ned as a irulant graph with jumps of powers of d,

d

0

; d

1

; � � � ; d

dlog

d

Ne�1

. Examples of reursive irulants are shown in Figure 1.
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Figure 1: Examples of G(N; d)

Reursive irulant is a Cayley graph over an abelian group, in more preise words, the Cayley

graph of the yli group Z

N

with the generating set fd

0

; d

1

; � � � ; d

dlog

d

Ne�1

g. Reursive irulant is

node symmetri, and thus regular. Reursive irulant is not edge symmetri. For example, G(8; 4)

has one yle of length 4 passing through the edge (0; 1), and has two distint yles of length 4
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passing through the edge (0; 4). However, two edges (v; v + d

i

) and (w;w + d

i

) are similar, that is,

there is an automorphism g of G(N; d) suh that g(v) = w and g(v + d

i

) = w + d

i

.

Reursive irulant G(N; d) has a reursive struture when N = d

m

, 1 �  < d. In other words,

G(d

m

; d) an be de�ned reursively by utilizing the following property.

Property 1 Let V

i

be a subset of nodes in G(d

m

; d) suh that V

i

= fv j v � i (mod d)g, m � 1. For

0 � i < d, the subgraph of G(d

m

; d) indued by V

i

is isomorphi to G(d

m�1

; d).

G(d

m

; d), m � 1, an be de�ned reursively on d opies of G(d

m�1

; d) as follows. Let G

i

(V

i

; E

i

),

0 � i < d, be a opy of G(d

m�1

; d). We assume that V

i

= fv

i

0

; v

i

1

; � � � ; v

i

d

m�1

�1

g, and G

i

is isomorphi

to G(d

m�1

; d) for the isomorphism mapping v

i

j

to j for all 0 � j < d

m�1

. We relabel v

i

j

by

jd + i. The node set V of G(d

m

; d) is

S

0�i<d

V

i

, and its edge set E is

S

0�i<d

E

i

[ X , where

X = f(v; w) j v + 1 � w (mod d

m

)g. The onstrution of G(32; 4) on four opies of G(8; 4) is

illustrated in Figure 2.
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Figure 2: Constrution of G(32; 4) on 4 opies of G(8; 4)

When  � 3, G(d

0

; d) and G(d

1

; d) are isomorphi to the yle graph of length  and the  � d
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double loop network, respetively. We denote by Æ

m

the degree of G(d

m

; d). Then, Æ

m

= Æ

m�1

+ 2,

m � 1. Æ

m

in a losed-form is shown below:

Æ

m

=

8

>

>

>

>

>

<

>

>

>

>

>

:

2m� 1 if  = 1 and d = 2;

2m if  = 1 and d 6= 2;

2m+ 1 if  = 2;

2m+ 2 if  > 2:

Depending on the restrition on N and d, we have interesting lasses of reursive irulants. Their

inlusion relationships are shown in Figure 3. Among them, G(2

m

; 2) is a supergraph of an m-

dimensional hyperube Q

m

, and G(2

m

; 4) has the same number of nodes and edges as Q

m

. G(2

m

; 4)

with m � 3 is not isomorphi to Q

m

sine G(2

m

; 4) has a yle of odd length. In fat, G(2

m

; 2

k

) with

2 � k < m is known to be a tripartite graph.

G(cd ,d)
m

G(N,d)

G(2 ,2 )
m k

G(2 ,2)
m

G(2 ,4)
m

Figure 3: Classes of reursive irulants

Reursive irulants have some interesting hamiltonian properties. Obviously, G(N; d) has a hamil-

tonian yle unless N � 2. Reursive irulant G(d

m

; d) is hamiltonian deomposable [11,19,20℄, that

is, G(d

m

; d) has bÆ

m

=2 edge-disjoint hamiltonian yles. Hamiltonian deomposability of G(N; d)

remains open. In Setion 2 of this paper, we show that G(N; d) with degree three or more is either

hamiltonian onneted or bipartite and bihamiltonian onneted.

Network metris provide a framework for omparing various networks systematially. They inlude

not only node symmetry, edge symmetry, and hamiltonian property, but also onnetivity, diameter,

mean internode distane, and visit ratio. We develop a shortest path routing algorithm in G(d

m

; d)

in Setion 3, and analyze network metris of G(d

m

; d) in Setion 4.

Compared with Q

m

, G(2

m

; 4) ahieves notieable improvements in diameter, mean internode dis-

tane, and node visit ratio. The diameter, mean internode distane, and node visit ratio of G(2

m

; 4)

are d(3m� 1)=4e, approximately (9=20)m, and approximately ((9=20)m+ 1)=2

m

, while those of Q

m

are m, approximately (1=2)m, and approximately ((1=2)m+ 1)=2

m

, respetively.

The onnetivity and edge onnetivity of G(2

m

; 4) are m, whih is the best possible. The edge

visit ratio of G(2

m

; 4) is 1=(2

m

�1), whih is equal to that of Q

m

. G(2

m

; 4) has a simple shortest path

routing algorithm without routing table and a simple reursive broadasting algorithm [21℄. Moreover,
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G(2

m

; 4) is known to be a minimum broadast (and gossip) graph, that is, G(2

m

; 4) is a graph with

the minimum number of edges suh that a broadast (and gossip) from any node an be performed

in minimum time.

Understanding relationships among di�erent interonnetion strutures plays an important role in

parallel proessing [8, 24℄. We investigate relationships among reursive irulants and hyperubes in

terms of embedding. Many problems of interest an be modeled by embedding suh as VLSI iruit

layout, simulating one interonnetion struture by another, and simulating one data struture by

another [3℄.

G(2

m

; 4) ontains as subgraphs yles of any length stritly greater than three, binomial trees with

2

m

nodes, and full binary trees with no more than 2

m

nodes [18℄. Pyramid of level m is known to

be embedded into reursive irulant G(2

2m�1

; 4) with dilation two, ongestion two, and the optimal

expansion [17℄. Many of the embedding problems into reursive irulants remain unsolved.

In Setion 5, we present expansion one embeddings among reursive irulants G(2

m

; 2

k

) and

hyperubes Q

m

. The embedding of G(2

m

; 2

k

) into Q

m

is based on the binary reeted Gray ode

and has dilation two and ongestion four. The dilation is the best possible when k < m. For the

reverse, we an always embed Q

m

into G(2

m

; 2

k

) with the same embedding osts as the embedding of

Q

k

into a path graph with 2

k

verties. Embedding of a graph into a path graph is known as a linear

arrangement. Employing the linear arrangements of hyperubes [12, 13℄, we an ahieve embeddings

of Q

m

into G(2

m

; 2

k

) with either dilation 2

k�1

and ongestion b2

k+1

=3 or dilation

P

k�1

i=0

�

i

bi=2

�

and

ongestion d

k

2

e

�

k

bk=2

�

.

2 Hamiltonian property of G(N; d)

A graph is hamiltonian onneted if there is a hamiltonian path joining every pair of verties. Hamil-

tonian onnetedness as well as hamiltonian deomposition is an interesting strong hamiltoniity, that

is, a hamiltonian property whih implies the existene of a hamiltonian yle. Neessarily, a hamilto-

nian onneted graph is not bipartite. In this setion, we show that reursive irulant G(N; d) with

degree three or more is either hamiltonian onneted or bipartite and bihamiltonian onneted. A

bipartite graph is bihamiltonian onneted if between every pair of verties with olors di�erent from

eah other, there is a hamiltonian path. Eah vertex in a bipartite graph has one of two olors, say

red and blue, in suh a way that no two adjaent verties are of the same olor.

We employ a theorem in [6℄ on hamiltonian onnetedness of a Cayley graph over an abelian group.

Theorem 1 A Cayley graph over a �nite abelian group is hamiltonian onneted if and only if it is

neither a yle graph nor a bipartite graph.
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Corollary 1 Every reursive irulant G(N; d) with degree three or more is hamiltonian onneted if

it is not bipartite.

Now, let us onentrate on bipartite reursive irulant G(N; d).

Lemma 1 G(N; d) with degree three or more is bipartite if and only if N is even and d is odd.

Proof G(N; d) has a hamiltonian yle of length N , and has a yle (0; 1; � � � ; d) of length d + 1.

Thus, we have the neessity. For the suÆieny, we observe that every jump d

i

(inluding jump d

0

)

in G(N; d) joins a pair of an even vertex and an odd vertex. This ompletes the proof. �

Again, we employ a lemma in [6℄. A p � q retangular grid is a produt of two path graphs with

p and q verties, respetively. A retangular grid is bipartite. We all a vertex in a retangular grid

a orner vertex if it is of degree two.

Lemma 2 Let G be a p� q retangular grid with p; q � 2.

(a) If pq is even, then G has a hamiltonian path from any orner vertex v to any other vertex with

olor di�erent from v.

(b) If pq is odd, then G has a hamiltonian path from any orner vertex v to any other vertex with the

same olor as v.

Theorem 2 Every bipartite reursive irulant G(N; d) with degree three or more is bihamiltonian

onneted.

Proof A irulant graph C

N

(1; d), the Cayley graph of a yli group Z

N

with the generating set

f1; dg, is a spanning subgraph of G(N; d). We are suÆient to show that C

N

(1; d) with N even

and d odd (d 6= 1; N � 1) is bihamiltonian onneted. We an assume that d � N=2 sine C

N

(1; d)

is isomorphi to C

N

(1; N � d). We let n = bN=d and d

0

= N mod d, that is, N = nd + d

0

,

0 � d

0

< d. We have that d � 3 by Lemma 1 and n � 2. A spanning subgraph of C

N

(1; d) is shown in

Figure 4 depending on the parity of n. We denote by G

0

the subgraph of C

N

(1; d) indued by verties

f0; 1; 2; � � � ; nd � 1g. G

0

ontains a d � n retangular grid as a spanning subgraph. It is suÆient to

show that C

N

(1; d) has a hamiltonian path joining an odd vertex N � 1 and every even vertex sine

C

N

(1; d) is node symmetri.

Case 1 n is even.

When d

0

= 0, N � 1 is a orner vertex of G

0

, and thus, by Lemma 2 (a), there is a hamiltonian

path joining N � 1 and every even vertex. We let d

0

> 0. Note that nd is even and (n � 1)d

is an odd orner vertex. For even vertex v suh that v < nd, we onstrut a hamiltonian path

P = N � 1; N � 2; � � � ; nd; (n� 1)d; P

1

; v, where P

1

is a hamiltonian path in G

0

joining (n� 1)d and v

due to Lemma 2 (a). For v suh that v � nd, we have a hamiltonian path P = N � 1; N � 2; � � � ; v +

6



1; v� d+1; P

2

; (n� 1)d; nd; nd+1; � � � ; v, where P

2

is a hamiltonian path in G

0

between v� d+1 and

(n� 1)d.

Case 2 n is odd.

In this ase, nd is odd and (n�1)d is an even orner vertex. For an even vertex v suh that v < nd and

v 6= (n� 1)d, we onstrut a hamiltonian path P = N � 1; N � 2; � � � ; nd; (n� 1)d; P

3

; v, where P

3

is a

hamiltonian path in G

0

joining (n�1)d and v due to Lemma 2 (b). For v = (n�1)d, we utilize another

even orner vertex nd�1 and onstrut a hamiltonian path P = N�1; N�2; � � � ; nd; nd�1; P

4

; (n�1)d,

where P

4

is a hamiltonian path in G

0

between nd� 1 and (n� 1)d. For v � nd, there is a hamiltonian

path P = N � 1; N � 2; � � � ; v + 1; v � d+ 1; P

5

; (n� 1)d; nd; nd+ 1; � � � ; v, where P

5

is a hamiltonian

path in G

0

between v � d+ 1 and (n� 1)d. This ompletes the proof. �

d 2d0 (n-1)d

1

2

d-2

d+1

d+2

2d-2

2d-1d-1 3d-1 nd-1

nd

nd+1

N-1

(a) n is even

d 2d0 (n-1)d

1

2

d-2

d+1

d+2

2d-2

2d-1d-1 3d-1 nd-1

nd

nd+1

N-1

(b) n is odd

Figure 4: Illustration of the proof of Theorem 2

3 Routing algorithm in G(d

m

; d)

In this setion, we develop a shortest path routing algorithm inG(d

m

; d). From now on, all arithmetis

are done modulo d

m

using the appropriate residues. We desribe our routing algorithm briey as

follows. When a node v of G(d

m

; d) has a message to w, v sends it along edges of jump d

0

to one

of the two nodes x and y suh that x � y � w (mod d), x < v < y, v � x < d, and y � v < d, if

v �= w (mod d); otherwise, v does nothing. Then routing in the subgraph of G(d

m

; d) indued by

V

w

= fz j z � w (mod d)g is performed reursively. Note that the indued subgraph is isomorphi to

G(d

m�1

; d). The routing algorithm is based on the properties of a shortest path from node 0 to node

v.

A path from node 0 to node v is a sequene of nodes v

0

= 0; v

1

; v

2

; � � � ; v

t

= v. It also an be

7



represented by a

1

; a

2

; � � � ; a

t

, where a

i

= v

i

� v

i�1

, 1 � i � t. The ith node v

i

is

P

1�j�i

a

j

. Here

a

i

is either +d

j

or �d

j

for some j, that is, a jump with diretion either + or �. For example, the

path 0; 4; 5; 6; 10; 9; 8 of G(16; 4) in Figure 1 (b) an be represented by +4;+1;+1;+4;�1;�1. We

will represent a path from node 0 by a sequene of jumps with diretions. The destination node v

of a path P = a

1

; a

2

; � � � ; a

t

, from node 0 is

P

1�j�t

a

j

. Note that an arbitrary permutation of P

represents a path (may have a yle) to the same destination of the same length.

Lemma 3 Let P = a

1

; a

2

; � � � ; a

t

, be a shortest path from 0 to v.

(a) P has no pair of +d

j

and �d

j

for any j.

(b) P has less than d \+d

j

's" and has less than d \�d

j

's" for any j.

Proof Suppose P has a pair of +d

j

and �d

j

for some j, we an onstrut another path P

0

from 0 to

v shorter than P by removing the pair of +d

j

and �d

j

in P . This is ontradition to the fat that P

is a shortest path. Suppose P has d or more \+d

j

's" (resp. \�d

j

's"). The d \+d

j

's" (resp. \�d

j

's")

an be replaed by one \+d

j+1

" (resp. \�d

j+1

"), resulting in a path shorter than P by d� 1, if +d

j

is not a jump of maximum size. If +d

j

is a jump of maximum size, the sum of d or less (d if  = 1, 

otherwise) +d

j

's (resp. �d

j

's) is zero, thus they an be removed to get a shorter path than P . This

ompletes the proof. �

A node v is alled a town if v is a multiple of d; otherwise, v is alled a village. For a village v,

there exists a unique i suh that di < v < d(i+ 1). Here, di and d(i+ 1) are alled near towns of v.

Every village has two near towns.

Lemma 4 (a) No shortest path from 0 to a town passes through villages.

(b) There is a shortest path from 0 to a village v passing through one of the near towns of v.

Proof Let P = a

1

; a

2

; � � � ; a

t

, be a shortest path from 0 to v. To prove (a), we assume that v is a

town. Suppose P passes through some villages, then P has either +d

0

or �d

0

. By Lemma 3 (a) and

(b), v =

P

1�i�t

a

i

�= 0 (mod d), whih is a ontradition to the fat that v is a town. To prove

(b), we assume that v is a village suh that di < v < d(i + 1) for some i. By Lemma 3 (a) and (b),

we an see that P has either v � di \+d

0

's" or d(i + 1) � v \�d

0

's". When P has v � di \+d

0

's",

we let P

0

= a

0

1

; a

0

2

; � � � ; a

0

t

be a permutation of P suh that a

0

j

= +d

0

for all j, t � (v � di) < j � t.

P

0

is a shortest path from 0 to v, and passes through di sine

P

1�j�t�(v�di)

a

0

j

= di. When P has

d(i + 1) � v \�d

0

's", in a similar way, we let P

00

= a

00

1

; a

00

2

; � � � ; a

00

t

be a permutation of P suh that

a

00

j

= �d

0

for all j, t � (d(i + 1) � v) < j � t. P

00

is a shortest path from 0 to v passing through

d(i+ 1). This ompletes the proof. �

Lemma 4 (a) implies that a shortest path from 0 to a town an be found in the subgraph of

G(d

m

; d) indued by all towns. Note that the subgraph indued by all towns is isomorphi to

G(d

m�1

; d) by Property 1. We denote by dist

m

(v) the length of a shortest path from 0 to v in

8



G(d

m

; d). The length of a shortest path from 0 to a village v suh that di < v < d(i+1) is, by Lemma 4

(b), minf(v � di) + dist

m

(di); (d(i+ 1)� v) + dist

m

(d(i+ 1))g. Observe that dist

m

(di) = dist

m�1

(i)

and dist

m

(d(i+ 1)) = dist

m�1

(i+ 1).

A near town di (resp. d(i + 1)) of v is alled the nearest town of v if v � di < d(i + 1)� v (resp.

d(i+1)� v < v� di). When d is odd, every village has a unique nearest town. When d is even, every

village other than di+ d=2 has a nearest town; the node di+ d=2 has no nearest town.

Lemma 5 If a village v has a nearest town, there is a shortest path from 0 to v passing through the

nearest town.

Proof If di is the nearest town, we have dist

m

(v) = minf(v�di)+dist

m

(di); (d(i+1)�v)+dist

m

(d(i+

1))g = (v� di)+ dist

m

(di). Note that the di�erene between dist

m

(di) and dist

m

(d(i+1)) is at most

1 sine di and d(i + 1) are adjaent. If d(i + 1) is the nearest town, we an see that dist

m

(v) =

(d(i+ 1)� v) + dist

m

(d(i+ 1)). Thus, we have the lemma. �

Lemma 6 (a) For odd d, dist

m

(di) < dist

m

(di+1) < � � � < dist

m

(di+bd=2), and dist

m

(di+dd=2e) >

dist

m

(di+ (dd=2e+ 1)) > � � � > dist

m

(di+ d).

(b) For even d, dist

m

(di) < dist

m

(di + 1) < � � � < dist

m

(di + (d=2 � 1)) � dist

m

(di + d=2), and

dist

m

(di+ d=2) � dist

m

(di+ (d=2 + 1)) > dist

m

(di+ (d=2 + 2)) > � � � > dist

m

(di+ d).

Proof It is suÆient to show, by Lemmas 3 and 5, that the two inequalities dist

m

(di+ (d=2� 1)) �

dist

m

(di+ d=2) and dist

m

(di+ d=2) � dist

m

(di+ (d=2+ 1)) hold for even d. For the �rst inequality,

by Lemmas 3, 4, and 5, we have dist

m

(di + d=2) = d=2 + minfdist

m

(di); dist

m

(d(i + 1))g � d=2 +

(dist

m

(di) � 1) = (d=2 � 1) + dist

m

(di) = dist

m

(di + (d=2 � 1)). We show the other inequality in

a similar way that dist

m

(di + d=2) � d=2 + (dist

m

(d(i + 1)) � 1) = (d=2 � 1) + dist

m

(d(i + 1)) =

d(i+ 1)� (di+ (d=2 + 1)) + dist

m

(d(i+ 1)) = dist

m

(di+ (d=2 + 1)). Thus, we have the lemma. �

For a village v without a nearest town (d is even and v = di+d=2), we know that there is a shortest

path from 0 to v passing through di if dist

m

(di) � dist

m

(d(i + 1)) and one passing through d(i + 1)

if dist

m

(d(i + 1)) � dist

m

(di). Let us onsider the question of determining whether dist

m

(di) �

dist

m

(d(i + 1)) or dist

m

(d(i + 1)) � dist

m

(di). Sine dist

m

(di) = dist

m�1

(i) and dist

m

(d(i + 1)) =

dist

m�1

(i+ 1), it is suÆient to determine whether dist

m�1

(i) � dist

m�1

(i+ 1) or dist

m�1

(i+ 1) �

dist

m�1

(i). A simple solution for our question is given in the following lemma.

Lemma 7 Let d be even.

(a) When m = 1, dist

m�1

(i) � dist

m�1

(i+ 1) if i < =2; otherwise, dist

m�1

(i+ 1) � dist

m�1

(i).

(b) When m � 2, dist

m�1

(i) � dist

m�1

(i + 1) if i (mod d) < d=2; otherwise, dist

m�1

(i + 1) �

dist

m�1

(i).

9



Proof Whenm = 1, the subgraph of G(d

1

; d) indued by the towns is a yle of length  (degenerated

or not). For the ase where i < =2 (or equivalently i � (�1)=2), dist

m�1

(i+1) = minfi+1; � (i+

1)g = (�1)=2 if i = (�1)=2; otherwise (or equivalently i � =2�1), dist

m�1

(i+1) = i+1. Thus, we

have dist

m�1

(i+ 1) � i = dist

m�1

(i). For the other ase where i � =2, dist

m�1

(i+ 1) = � (i+ 1),

whih is less than dist

m�1

(i) =  � i. This proves (a). When m � 2, there exists i

0

suh that

di

0

� i < d(i

0

+ 1). Now di

0

and d(i

0

+ 1) are towns in G(d

m�1

; d). The statement (b) is immediate

from Lemma 6 (b), whih says that dist

m�1

(di

0

) < dist

m�1

(di

0

+1) < � � � < dist

m�1

(di

0

+(d=2�1)) �

dist

m�1

(di

0

+d=2), and that dist

m�1

(di

0

+d=2) � dist

m�1

(di

0

+(d=2+1)) > dist

m�1

(di

0

+(d=2+2)) >

� � � > dist

m�1

(di

0

+ d). �

Now, we are ready to give our routing algorithm in G(d

m

; d). A message in a node v of G(d

m

; d)

to node 0 is delivered along a shortest path from 0 to v in a reverse order. When v is a village of

G(d

m

; d), v sends it to one of the near towns of v via edges of either a jump +d

0

or �d

0

. Between

the near towns, v prefers the nearest town, if any; otherwise, v hooses one aording to Lemma 7.

When v is a town, v does nothing. Then, routing in G(d

m�1

; d) is performed reursively. For the

base ase of m = 0, routing in G(d

0

; d) is performed aording to the following lemma.

Lemma 8 For v in G(d

0

; d), dist

0

(v) � dist

0

(v + 1) if v < =2; otherwise, dist

0

(v + 1) � dist

0

(v).

Proof The lemma is a restatement of Lemma 7 (a). �

The routing from v to w an be ahieved easily from the routing from v �w to 0, sine a shortest

path from v to w when it is represented by a sequene of jumps with diretions is a shortest path

from v �w to 0. The routing algorithm in G(d

m

; d) shown below sends a message in a urrent node

to one of its neighbor nodes. Repeating this proess, the message eventually reahes the destination.

We denote by v and w the urrent and destination node, respetively. We assume that v is di�erent

from w.

Theorem 3 The shortest path routing algorithm in G(d

m

; d) is orret.

Proof The algorithm is performed on G(d

m�r

; d), the subgraph of G(d

m

; d) indued by all multiple

of d

r

nodes. Let v

00

be b

m

� � � b

r+1

b

r

in the d-ary number representation. Now v

00

is a village of

G(d

m�r

; d). When r = m, routing is performed aording to Lemma 8. When r < m, v

00

�nds its

nearest town, if any. If v

00

has no nearest town, v

00

hooses one between its near towns di and d(i+1)

aording to Lemma 7. Note that the d-ary representation of di is b

m

� � � b

r+1

0, and that b

r+1

= i for

r = m� 1, and b

r+1

= i (mod d) for r < m� 1. The theorem is immediate from Lemmas 3, 4, 5, 6,

7, and 8. �
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Shortest Path Routing Algorithm in G(d

m

; d)

v

0

:= (v � w) mod d

m

;

Let b

m

� � � b

1

b

0

be the d-ary number representation of v

0

;

r := the least signi�ant non-zero digit number of v

0

;

/* Now, we perform routing in G(d

m�r

; d) */

if r < m then /* r is not the most signi�ant digit number */

ase b

r

of

b

r

< d=2 : forward the message to v � d

r

; /* by Lemmas 5 and 6 */

b

r

> d=2 : forward the message to v + d

r

; /* by Lemmas 5 and 6 */

b

r

= d=2 : /* d even */

if r = m� 1 then /* by Lemma 7 (a) */

if b

r+1

< =2 then forward the message to v � d

r

else forward the message to v + d

r

;

else /* by Lemma 7 (b) */

if b

r+1

< d=2 then forward the message to v � d

r

else forward the message to v + d

r

;

end;

else /* r = m and  6= 1; by Lemma 8 */

if b

m

< =2 then forward the message to v � d

r

else forward the message to v + d

r

;

4 Network metris of G(d

m

; d)

4.1 Connetivity and edge onnetivity

Connetivity measures the resilieny of a network and its ability to ontinue operation despite faulty

nodes and ommuniation links. Connetivity (resp. edge-onnetivity) is the minimum number of

nodes (resp. ommuniation links) that must fail to partition the network into two or more disjoint

subnetworks. We denote by �(G) and �(G) the onnetivity and edge-onnetivity of a graph G,

respetively. It holds that �(G) � �(G) � Æ(G) for every graph G.

By employing a suÆient ondition in [5℄ for a irulant graph to have the maximum possible

onnetivity, we an show that �

m

= �

m

= Æ

m

, where �

m

and �

m

are the onnetivity and edge

onnetivity of G(d

m

; d), respetively.

Theorem 4 A irulant graph G with n nodes and k jumps a

1

; a

2

; � � � ; a

k

suh that a

1

< a

2

< � � � <

a

k

� n=2 has �(G) = Æ(G) if a

1

= 1 and a

i+1

� a

i

� a

i+2

� a

i+1

for all i, 1 � i � k � 2.

Corollary 2 �

m

= �

m

= Æ

m

.

Connetivity problems of reursive irulants were onsidered in [15℄. It was shown that G(N; d)

also has the maximum possible onnetivity, and that G(d

m

; d) is super-� and super-� if it is not

isomorphi to C

n

, a yle graph of length n. Here, a graph G is alled super-� if every vertex ut of

11



size �(G) is the set of verties adjaent to a single vertex. A graph is super-� if every edge ut of size

�(G) is the set of edges inident to a single vertex.

4.2 Diameter

The diameter of a network is the maximum number of ommuniation links that must be traversed

to transmit a message from a node to another node along a shortest path between them. Sine

G(d

m

; d) is node symmetri, the diameter dia

m

of G(d

m

; d) is the maximum of dist

m

(v) over all

nodes v, that is, dia

m

= max

0�v<d

m

fdist

m

(v)g. We know that dia

0

= b=2. For m � 1, v

an be rewritten as di + j for some i and j, 0 � i < d

m�1

, 0 � j < d. Thus, we have that

dia

m

= max

0�i<d

m�1
max

0�j<d

fdist

m

(di+ j)g. We let T

i

= max

0�j<d

fdist

m

(di+ j)g. To alulate

T

i

, we employ Lemma 6. There are two ases depending on the parity of d.

CASE A d is odd.

We have that T

i

= maxfdist

m

(di + bd=2); dist

m

(di + dd=2e)g by Lemma 6 (a). It holds that

dist

m

(di+ bd=2) = dist

m

(di) + bd=2 and dist

m

(di+ dd=2e) = dist

m

(d(i+1)) + bd=2 by Lemma 5.

Combining them with dist

m

(di) = dist

m�1

(i) and dist

m

(d(i + 1)) = dist

m�1

(i + 1), we have that

T

i

= maxfdist

m�1

(i); dist

m�1

(i + 1)g + bd=2. Thus, we have that dia

m

= max

0�i<d

m�1
T

i

=

max

0�i<d

m�1
fmaxfdist

m�1

(i); dist

m�1

(i + 1)gg + bd=2. The max-of-max term in the equation is

equal to max

0�i<d

m�1
fdist

m�1

(i)g, whih is equal to dia

m�1

. At last we get a reursive formula for

dia

m

: dia

0

= b=2; dia

m

= dia

m�1

+ bd=2, m � 1.

Theorem 5 For odd d, dia

m

= bd=2m+ b=2.

Proof We prove the theorem by indution on m. For m � 1, we have that dia

m

= dia

m�1

+ bd=2 =

bd=2(m� 1) + b=2+ bd=2 = bd=2m+ b=2. This ompletes the proof. �

CASE B d is even.

By Lemma 6 (b), we have that T

i

= dist

m

(di + d=2). Sine the node di + d=2 has no near-

est town, by Lemma 4 (b), we have that dist

m

(di + d=2) = minfdist

m

(di); dist

m

(d(i + 1))g +

d=2 = minfdist

m�1

(i); dist

m�1

(i + 1)g + d=2. Thus, we have that dia

m

= max

0�i<d

m�1
T

i

=

max

0�i<d

m�1
minfdist

m�1

(i); dist

m�1

(i + 1)g + d=2. Let S

m�1

be the max-of-min term in the last

equation, that is, S

m�1

= max

0�i<d

m�1
minfdist

m�1

(i); dist

m�1

(i+ 1)g.

Lemma 9 S

m�1

= dia

m�1

� �

m�1

, where

�

m

=

8

<

:

0; if G(d

m

; d) has a node pair (i; i+ 1) suh that dist

m

(i) = dist

m

(i+ 1) = dia

m

;

1; otherwise.
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Proof We know that S

m�1

� dia

m�1

. We have that S

m�1

� dia

m�1

� 1 sine the di�erene

between dist

m�1

(i) and dist

m�1

(i + 1) is at most one for all i, 0 � i < d

m�1

. If �

m�1

= 0, there

exists a vertex v suh that minfdist

m�1

(v); dist

m�1

(v + 1)g = dia

m�1

; otherwise, for every vertex i,

minfdist

m�1

(i); dist

m�1

(i+ 1)g � dia

m�1

� 1. Thus, we have the lemma. �

Now, we have a reursive formula for dia

m

: dia

0

= b=2; dia

m

= dia

m�1

+ d=2� �

m�1

, m � 1.

The term �

m�1

depends only on the parity of  and d as shown in the following lemma.

Lemma 10 �

m

= 1 if and only if both  and m are either odd or even.

Proof �

0

= 0 if  is odd; otherwise, �

0

= 1. It is suÆient to show that �

m

= 1 � �

m�1

for

all m � 1. Firstly, we assume that �

m�1

= 0 and show that �

m

= 1. For every vertex v =

di + j suh that 0 � i < d

m�1

, 0 � j 6= d=2 < d, we have that dist

m

(v) = minfdist

m

(di) +

j; dist

m

(d(i + 1)) + (d � j)g � dia

m�1

+ minfj; d � jg < dia

m�1

+ d=2 = dia

m

. Thus, there is no

vertex v suh that dist

m

(v) = dist

m

(v + 1) = dia

m

, and we have �

m

= 1. Seondly, we assume

that �

m�1

= 1 and show that �

m

= 0. There is i suh that dist

m�1

(i) = dia

m�1

. We know

that dist

m�1

(i + 1) = dia

m�1

� 1. We show that dist

m

(di + d=2 � 1) = dist

m

(di + d=2) = dia

m

.

We have that dist

m

(di + d=2 � 1) = dist

m

(di) + d=2 � 1 = dia

m�1

+ d=2 � 1 = dia

m

, and that

dist

m

(di + d=2) = dist

m

(d(i + 1)) + d=2 = dia

m�1

� 1 + d=2 = dia

m

. Thus, �

m

= 0. We have the

lemma. �

Theorem 6 For even d,

dia

m

=

8

<

:

b

d�1

2

m+ b=2; if  is even;

d

d�1

2

me+ b=2; if  is odd.

Proof The proof is done by indution on m for ases depending on the parities of  and m. We know

that dia

m

= dia

m�1

+ d=2� �

m�1

for m � 1.

Case 1 both  and m are even.

We have that dia

m

= dia

m�1

+ d=2 = b

d�1

2

(m� 1)+ b=2+ d=2 = b

d�1

2

(m � 1) + d=2+ b=2 =

b

d�1

2

m+ b=2.

Case 2  is even and m is odd.

We have that dia

m

= dia

m�1

+ d=2� 1 = b

d�1

2

(m � 1) + b=2+ d=2 � 1 = b

d�1

2

(m � 1) + d=2 �

1+ b=2 = b

d�1

2

m+ b=2.

Case 3 both  and m are odd.

We have that dia

m

= dia

m�1

+ d=2 = d

d�1

2

(m� 1)e+ b=2+ d=2 = d

d�1

2

(m � 1) + d=2e+ b=2 =

d

d�1

2

me+ b=2.

Case 4  is odd and m is even.

We have that dia

m

= dia

m�1

+ d=2� 1 = d

d�1

2

(m � 1)e + b=2+ d=2 � 1 = d

d�1

2

(m � 1) + d=2 �

1e+ b=2 = d

d�1

2

me+ b=2. �
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Fault diameter of a graph G is the maximum diameter of any graph obtained from G by removing

�(G) � 1 or less verties. It was shown that the fault diameter of G(2

m

; 2

k

) with k � 2 (resp. with

k = 1) is no more than the diameter of G(2

m

; 2

k

) plus 2

k�1

(resp. 2) [22℄, and that the fault diameter

of G(2

m

; 4) is no more than the diameter of G(2

m

; 4) plus 1 for m � 5 [16℄. The fault diameter of

G(d

m

; d) is not known in the literature.

4.3 Mean internode distane

Mean internode distane is the average distane between two distint nodes, whih is an indiator of

average message delay under the uniform message distribution. The total distane td

m

from node 0 to

all other nodes in G(d

m

; d) is de�ned to be

P

0�v<d

m

dist

m

(v). The mean internode distane mid

m

of G(d

m

; d) is td

m

=(d

m

� 1) sine G(d

m

; d) is node symmetri. The rest of this setion is devoted

to alulating td

m

.

Lemma 11 td

0

= b

2

=4.

Proof Let td

k

0

be the total distane when  = k. It holds that td

1

0

= 0 and td

2

0

= 1. Let � = td

k

0

�td

k�2

0

for k � 3. We have that � =

k�1

2

+

k�1

2

= k � 1 for odd k, and that � =

k

2

+

k�2

2

= k � 1 for even

k. Thus, td

k

0

= td

k�2

0

+� = b(k � 2)

2

=4+ (k � 1) = bk

2

=4. �

For m � 1, we have that td

m

=

P

0�v<d

m

dist

m

(v) =

P

0�i<d

m�1

P

0�j<d

dist

m

(di + j) =

P

0�j<d

P

0�i<d

m�1

dist

m

(di+ j). Let U

j

=

P

0�i<d

m�1

dist

m

(di+ j), and thus td

m

=

P

0�j<d

U

j

.

We have two ases depending on the parity of d.

CASE A d is odd.

By Lemma 5, it holds that U

j

=

P

0�i<d

m�1

fdist

m�1

(i) + jg = td

m�1

+ j � d

m�1

for 0 � j � bd=2,

and that U

j

=

P

0�i<d

m�1

fdist

m�1

(i + 1) + (d � j)g = td

m�1

+ (d � j) � d

m�1

for dd=2e � j <

d. Thus, the total distane td

m

an be expressed in a reursive formula: td

m

=

P

0�j<d

U

j

=

P

0�j�bd=2

U

j

+

P

dd=2e�j<d

U

j

= f(bd=2+1) � td

m�1

+ d

m�1

P

0�j�bd=2

jg+f(d�dd=2e) � td

m�1

+

d

m�1

P

dd=2e�j<d

(d� j)g = d � td

m�1

+ 2d

m�1

P

1�j�bd=2

j = d � td

m�1

+

d

2

�1

4

d

m�1

.

Theorem 7 For odd d, td

m

= d

m

(

d

2

�1

4d

m+ b

2

=4=).

Proof We prove the theorem by indution on m. By Lemma 11, td

0

= b

2

=4. For m � 1, td

m

=

d � td

m�1

+

d

2

�1

4

d

m�1

= dfd

m�1

(

d

2

�1

4d

(m� 1)+ b

2

=4=)g+

d

2

�1

4

d

m�1

= d

m

(

d

2

�1

4d

m+ b

2

=4=).

�

CASE B d is even.

We analyze U

j

based on Lemmas 4 (b) and 5. Note that node di + j has a nearest town exept

only when j = d=2. Thus, we have that U

j

=

P

0�i<d

m�1

fdist

m�1

(i) + jg = td

m�1

+ j � d

m�1

for

14



0 � j � d=2 � 1, and that U

j

=

P

0�i<d

m�1

fdist

m�1

(i + 1) + (d � j)g = td

m�1

+ (d � j) � d

m�1

for d=2 � 1 � j < d. When j = d=2, U

j

=

P

0�i<d

m�1

fminfdist

m�1

(i); dist

m�1

(i + 1)g + d=2g =

P

0�i<d

m�1

minfdist

m�1

(i); dist

m�1

(i + 1)g + (d=2) � d

m�1

. Let S

0

m�1

be the sum-of-min term in

the last equation, that is, S

0

m�1

=

P

0�i<d

m�1

minfdist

m�1

(i); dist

m�1

(i+ 1)g.

We introdue �

m

whih is the number of node pairs (v; v + 1) in G(d

m

; d) suh that dist

m

(v) =

dist

m

(v+1), and disuss relationship between S

0

m�1

and �

m

later. We an see, by Lemmas 5 and 6 (b),

that the equality dist

m

(di+(d=2�1)) = dist

m

(di+d=2) holds only when dist

m

(di)+1 = dist

m

(d(i+1)),

and that dist

m

(di+ d=2) = dist

m

(di+ (d=2+1)) only when dist

m

(di) = dist

m

(d(i+1))+ 1. That is,

a pair of towns di and d(i + 1) suh that dist

m

(di) 6= dist

m

(d(i + 1)) ontributes one to �

m

. Thus,

we have that �

m

= d

m�1

� �

m�1

for m � 1; �

0

= 0 for even , and �

0

= 1 for odd .

Lemma 12 S

0

m�1

= td

m�1

� �

m

=2.

Proof We let S

00

m�1

=

P

0�i<d

m�1

maxfdist

m�1

(i); dist

m�1

(i + 1)g. To the sum S

0

m�1

+ S

00

m�1

, i

and i + 1 ontribute dist

m�1

(i) and dist

m�1

(i + 1), for all i, 0 � i < d

m�1

. Thus, we have that

S

0

m�1

+S

00

m�1

=

P

0�i<d

m�1

fdist

m�1

(i)+dist

m�1

(i+1)g = 2 �td

m�1

. To the di�erene S

00

m�1

�S

0

m�1

,

i and i+1 ontribute one only when dist

m�1

(i) 6= dist

m�1

(i+1). Thus, S

00

m�1

�S

0

m�1

= d

m�1

��

m�1

,

whih is equal to �

m

. Combining them, we have that S

0

m�1

= td

m�1

� �

m

=2. �

Lemma 13 �

m

=

1

d+1

d

m

� (�1)

m

(



d+1

� �

0

).

Proof By indution on m. The equation holds for m = 0. Sine �

m

= d

m�1

� �

m�1

for m � 1, we

have that �

m

= d

m�1

�f

1

d+1

d

m�1

� (�1)

m�1

(



d+1

��

0

)g = (1�

1

d+1

)d

m�1

+(�1)

m�1

(



d+1

��

0

) =

1

d+1

d

m

� (�1)

m

(



d+1

� �

0

). �

We return to the total distane td

m

. We have that td

m

=

P

0�j<d

U

j

=

P

0�j�d=2�1

U

j

+

P

d=2+1�j<d

U

j

+U

d=2

=

P

0�j�d=2�1

ftd

m�1

+ j � d

m�1

g+

P

d=2+1�j<d

ftd

m�1

+ (d� j) � d

m�1

g+

fS

0

m�1

+(d=2)�d

m�1

g = d�td

m�1

+(2

P

1�j�d=2�1

j+d=2)�d

m�1

��

m

=2 = d�td

m�1

+(d

2

=4)d

m�1

�

�

m

=2. Thus, we get a reursive formula for td

m

: td

m

= d � td

m�1

+ (d

2

=4)d

m�1

�

1

2

f

1

d+1

d

m

�

(�1)

m

(



d+1

� �

0

)g = d � td

m�1

+ d

m



2

(

d

2

�

1

d+1

) + (�1)

m

1

2

(



d+1

� �

0

).

Theorem 8 For even d, td

m

= d

m

f



2

(

d

2

�

1

d+1

)m+b

2

=4�

1

2(d+1)

(



d+1

��

0

)g+(�1)

m

1

2(d+1)

(



d+1

��

0

).

Proof The proof is by indution on m. td

0

= b

2

=4 as we want. For m � 1, we have that

td

m

= d � td

m�1

+ d

m



2

(

d

2

�

1

d+1

) + (�1)

m

1

2

(



d+1

� �

0

)

= d[d

m�1

f



2

(

d

2

�

1

d+1

)(m� 1) + b

2

=4 �

1

2(d+1)

(



d+1

� �

0

)g+ (�1)

m�1

1

2(d+1)

(



d+1

� �

0

)℄

+d

m



2

(

d

2

�

1

d+1

) + (�1)

m

1

2

(



d+1

� �

0

)

= d

m

f



2

(

d

2

�

1

d+1

)m+ b

2

=4 �

1

2(d+1)

(



d+1

� �

0

)g+ (�1)

m�1

d

2(d+1)

(



d+1

� �

0

) + (�1)

m

1

2

(



d+1

� �

0

)

= d

m

f



2

(

d

2

�

1

d+1

)m+ b

2

=4 �

1

2(d+1)

(



d+1

� �

0

)g+ (�1)

m

(



d+1

� �

0

)(

1

2

�

d

2(d+1)

)

= d

m

f



2

(

d

2

�

1

d+1

)m+ b

2

=4 �

1

2(d+1)

(



d+1

� �

0

)g+ (�1)

m

1

2(d+1)

(



d+1

� �

0

).

This ompletes the proof. �
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4.4 Node visit ratio and edge visit ratio

Eah time a node sends a message to another node in a network, the message must ross some

ommuniation links and pass through intermediate nodes before reahing its destination. If the

probability that all possible soure-destination pairs exhange messages is known, the number of

visits to eah node and ommuniation link by an average message an be alulated. The number of

visits to a node (resp. an edge) by an average message is alled visit ratio of the node (resp. the edge).

Node visit ratio (resp. edge visit ratio) is the maximum of the visit ratios over all nodes (resp. edges) in

the network, and an be used to loate the bottlenek nodes (resp. edges) that limit the performane

of the network. Under the uniform message distribution, we analyze node visit ratio nvr

m

and edge

visit ratio evr

m

of the shortest path routing algorithm in G(d

m

; d) presented in Setion 3.

Node visit ratio nvr

m

an be alulated easily using the fat that G(d

m

; d) is node symmetri.

A message from v to w ontributes one to the visit ount of eah node in the path between v and w

(inluding v and w), and thus we have that nvr

m

is (mid

m

+ 1)=d

m

.

Theorem 9 nvr

m

= ftd

m

=(d

m

� 1) + 1g=d

m

.

Now, we onsider edge visit ratio evr

m

. We denote by tv

m

(e) the number of messages visiting the

edge e among d

m

�1 messages to 0 from all nodes other than 0, and by tv

m

(d

i

) the sum of tv

m

(e) for

every edge e of jump d

i

. Employing the fat that every edge pair (v; v+ d

i

) and (w;w+ d

i

) is similar,

we an see that evr

m

is the maximum of tv

m

(d

i

)=(d

m

� 1), where tv

m

(d

i

) is the average number of

messages rossing edge e of jump d

i

, that is, tv

m

(d

i

) = tv

m

(d

i

)=E

i

, where E

i

is the number of edges

of jump d

i

. E

i

= d

m

=2 if and only if d

i

= d

m

=2.

E

i

=

8

>

>

<

>

>

:

0 if  = 1 and i = m;

d

m

=2 if either  = 1, d = 2, and i = m� 1 or  = 2 and i = m;

d

m

otherwise:

To analyze tv

m

(d

i

), we assume that every node (inluding node 0) has one message to 0 in

G(d

m

; d). The message on 0 does not a�et the edge visit ratio. Remember that the routing al-

gorithm sends messages along the smallest jump �rst. Consider the situation that every message is

sent via all edges of jump d

j

suh that 0 � j < i, and waits for delivery in a node whih is a multiple of

d

i

. We denote by �(kd

i

; i�1) the number of messages waiting for delivery in node kd

i

, 0 � k < d

m�i

.

Here,

P

0�k<d

m�i

�(kd

i

; i� 1) is always d

m

. We onsider �(kd

i

; i� 1), and then disuss tv

m

(d

i

). By

assumption, �(kd

0

;�1) = 1 for all 0 � k < d

m

. To ompute �(kd

i

; i � 1), routing is onsidered on

the subgraph indued by the multiples of d

i�1

whih is isomorphi to G(d

m�(i�1)

; d).

Lemma 14 For odd d, �(kd

i

; i� 1) = d

i

for all 0 � i � m, 0 � k < d

m�i

.

16



Proof We show the lemma by indution on i. For i = 0, �(kd

0

;�1) = d

0

. The node kd

i

re-

eives messages from (kd + j)d

i�1

for all �bd=2 � j � bd=2. Thus, we have that �(kd

i

; i � 1) =

P

�bd=2�j�bd=2

�((kd+ j)d

i�1

; i� 2) =

P

�bd=2�j�bd=2

d

i�1

= d

i

. �

Lemma 15 For even d and 0 � i < m,

�(kd

i

; i� 1) =

8

>

>

<

>

>

:

d

i

+D

i�1

if k mod d = 0;

d

i

�D

i�1

if k mod d = d=2;

d

i

otherwise:

where D

j

= d

j

�D

j�1

; D

�1

= 0.

Proof D

j

an be rewritten as d

j

� d

j�1

+ d

j�2

� � �+ (�1)

j

d

0

. We prove the lemma by indution on

i. For i = 0, �(kd

0

;�1) = d

0

. The node kd

i

reeives messages from (kd+ j)d

i�1

for all �(d=2� 1) �

j � d=2� 1. kd

i

may reeive messages from (kd� d=2)d

i�1

or (kd+ d=2)d

i�1

aording to Lemma 7

(b). We have the following:

�(kd

i

; i� 1) =

8

>

>

>

>

>

<

>

>

>

>

>

:

P

�d=2�j�d=2

�((kd + j)d

i�1

; i� 2) if k mod d = 0;

P

�d=2<j<d=2

�((kd + j)d

i�1

; i� 2) if k mod d = d=2;

P

�d=2<j�d=2

�((kd + j)d

i�1

; i� 2) if 1 � k mod d � d=2� 1;

P

�d=2�j<d=2

�((kd + j)d

i�1

; i� 2) if d=2 + 1 � k mod d � d� 1:

When k mod d = 0, we have that �(kd

i

; i�1) =

P

�d=2�j�d=2

�(jd

i�1

; i�2) = d�d

i�1

+(d

i�1

�D

i�2

) =

d

i

+D

i�1

. For k = d=2, �(kd

i

; i � 1) = d � d

i�1

� (d

i�1

�D

i�2

) = d

i

�D

i�1

. When k 6= 0; d=2, we

have that �(kd

i

; i� 1) = d

i

. Thus, we have the theorem. �

Lemma 16 For even d, �(kd

m

;m� 1) = d

m

if  = 1. When  � 2,

�(kd

m

;m� 1) =

8

>

>

<

>

>

:

d

m

+D

m�1

if k = 0;

d

m

�D

m�1

if k = d=2e;

d

m

otherwise:

Proof When  = 1, k must be 0 and �(kd

m

;m� 1) = d

m

. For  � 2, we have the following based on

Lemma 7 (a). Here, we have no assumption on the parity of .

�(kd

m

;m� 1) =

8

>

>

>

>

>

<

>

>

>

>

>

:

P

�d=2�j�d=2

�((kd+ j)d

m�1

;m� 2) if k = 0;

P

�d=2<j<d=2

�((kd+ j)d

m�1

;m� 2) if k = d=2e;

P

�d=2<j�d=2

�((kd+ j)d

m�1

;m� 2) if 1 � k � d=2e � 1;

P

�d=2�j<d=2

�((kd+ j)d

m�1

;m� 2) if d=2e+ 1 � k � � 1:

For k = 0, �(kd

m

;m� 1) =

P

�d=2�j�d=2

�(jd

m�1

;m� 2) = d � d

m�1

+(d

m�1

�D

m�2

) = d

m

+D

m�1

by Lemma 15. For k = d=2e, we have that �(kd

m

;m�1) = d �d

m�1

� (d

m�1

�D

m�2

) = d

m

�D

m�1

.

For the rest ases, �(kd

m

;m� 1) = d

m

. This ompletes the proof. �
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Let us onsider tv

m

(d

i

). Note that tv

m

(d

m

) is not de�ned when  = 1, sine there is no edge of

jump d

m

. It holds that 0 < D

j

=d

j

� 1 and D

j

=d

j

=

d

d+1

f1� (�

1

d

)

j+1

g for all j � 0.

Lemma 17

tv

m

(d

i

) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

b

2

=4 if i = 0 and m = 0;

d

m�1

bd

2

=4 if i = 0 and m � 1;

d

m�1

bd

2

=4 if 1 � i < m and d odd;

d

m�1

fbd

2

=4 � (1=2)D

i�1

=d

i�1

g if 1 � i < m and d even;

d

m

b

2

=4 if i = m and d odd:

d

m

b

2

=4 � b=2D

m�1

if i = m and d even:

Proof We have that tv

0

(d

0

) =

P

0<j<

minfj;  � jg. It holds that

P

0<j<

minfj;  � jg =

2

P

1�j�(�1)=2

j = b

2

=4 for odd , and that

P

0<j<

minfj; �jg = 2

P

1�j�(=2�1)

j+=2 = b

2

=4

for even . Thus, tv

0

(d

0

) = b

2

=4. For m � 1, we have that td

m

(d

0

) =

P

0�k<d

m�1

P

0<j<d

�((kd+

j);�1) � minfj; d � jg = d

m�1

P

0<j<d

minfj; d � jg = d

m�1

bd

2

=4. Now, we onsider the ase of

1 � i < m. We have that td

m

(d

i

) =

P

0�k<d

m�i�1

P

0<j<d

�((kd + j)d

i

; i � 1) � minfj; d � jg =

d

m�i�1

P

0<j<d

�(jd

i

; i � 1) � minfj; d � jg. For odd d, by Lemma 14, we have that td

m

(d

i

) =

d

m�i�1

P

0<j<d

d

i

�minfj; d� jg = d

m�1

bd

2

=4. For even d, by Lemma 15, we have that tv

m

(d

i

) =

d

m�i�1

f2

P

1�j�d=2�1

d

i

� j + (d

i

� D

i�1

) � d=2g = d

m�1

fbd

2

=4 � (1=2)D

i�1

=d

i�1

g. For the last

ase of i = m( � 2), we have that tv

m

(d

m

) =

P

0<k<

�(kd

m

;m � 1) � minfk;  � kg. For odd

d, by Lemma 14, tv

m

(d

m

) =

P

0<k<

d

m

� minfk;  � kg = d

m

b

2

=4. For even d, by Lemma 16,

tv

m

(d

m

) =

P

0<k<;k 6=d=2e

d

m

�minfj; � jg+ (d

m

�D

m�1

) � b=2 = d

m

b

2

=4 � b=2D

m�1

. �

Lemma 18 (a) For 1 � i < m, tv

m

(d

i

) � tv

m

(d

0

).

(b) For m � 1 and  � 2, tv

m

(d

m

) � tv

m

(d

0

).

() For even d and 1 � i < m, tv

m

(d

i

)� tv

m

(d

i�1

) = (�1)

i

d

m�i

=2.

Proof A proof of (a) is immediate from Lemma 17 sine D

i�1

=d

i�1

is always positive. We have that

td

m

(d

0

)�td

m

(d

m

) = d

m�1

fbd

2

=4�db

2

=4g > 0 for odd d and td

m

(d

0

)�td

m

(d

m

) = d

m�1

fbd

2

=4�

db

2

=4g + b=2D

m�1

> 0 for even d, sine bd

2

=4 � db

2

=4 � (d

2

� 1)=4 � d(

2

=4) = fd(d �

) � g=4 � (d � )=4 > 0. For (), we have that tv

m

(d

i

) � tv

m

(d

i�1

) = �(1=2)d

m�1

(D

i�1

=d

i�1

�

D

i�2

=d

i�2

). Here, D

i�1

=d

i�1

�D

i�2

=d

i�2

= (D

i�1

� dD

i�2

)=d

i�1

= (�1)

i�1

=d

i�1

. This ompletes

the proof. �

By using Lemmas 17 and 18, we an alulate edge visit ratio evr

m

.

Theorem 10

evr

m

=

8

>

>

>

>

>

<

>

>

>

>

>

:

fb

2

=4=g=(d

m

� 1) if m = 0;

1

3

f2 + (�

1

2

)

m�1

g=(d

m

� 1) if  = 1, d = 2, and m � 2;

1=(d

m

� 1) if either  = 1, d = 2, and m = 1 or  = 2 and d = 3;

fbd

2

=4=dg=(d

m

� 1) otherwise:
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Proof Let T be the maximum of tv

m

(d

i

) = tv

m

(d

i

)=E

i

over all possible i. Then we have that

evr

m

= T=(d

m

� 1). When m = 0, we have that T = tv

m

(d

0

)=d

0

= b

2

=4=. We assume that

m � 1. Note that E

i

= 0 if  = 1 and i = m; E

i

= d

m

=2 if either  = 1, d = 2, and i = m � 1 or

 = 2 and i = m; otherwise, E

i

= d

m

.

Case 1  = 1: We have no edge of jump d

m

.

Case 1.1 d odd:

By Lemma 18 (a), T = max

0�i�m�1

tv

m

(d

i

)=d

m

= tv

m

(d

0

)=d

m

= d

m�1

bd

2

=4=d

m

= bd

2

=4=d.

Case 1.2 d even:

Case 1.2.1 d = 2: E

m�1

= d

m

=2.

Whenm = 1, T = tv

m

(d

0

)=E

0

= d

m�1

bd

2

=4=(d

m

=2) = 1. Form � 2, we have that max

0�i�m�2

tv

m

(d

i

)=d

m

=

tv

m

(d

0

)=d

m

= bd

2

=4=d = 1=2, and that tv

m

(d

m�1

)=E

m�1

= d

m�1

fbd

2

=4�(1=2)D

m�2

=d

m�2

g=(d

m

=2) =

1 � (1=2)D

m�2

=d

m�2

� 1=2 sine it holds that 0 � D

m�2

=d

m�2

� 1. Thus, we have that T =

1� (1=2)D

m�2

=d

m�2

and an show that T = f2 + (�1=2)

m�1

g=3.

Case 1.2.2 d 6= 2:

We have that T = max

0�i�m�1

tv

m

(d

i

)=d

m

= tv

m

(d

0

)=d

m

= bd

2

=4=d.

Case 2  = 2: E

m

= d

m

=2.

Case 2.1 d odd:

We have that max

0�i�m�1

tv

m

(d

i

)=d

m

= tv

m

(d

0

)=d

m

= bd

2

=4=d, and that tv

m

(d

m

)=(d

m

=2) =

d

m

b

2

=4=(d

m

=2) = (2=)b

2

=4 = 1. Thus, T = maxfbd

2

=4=d; 1g. T = 1 if d = 3; otherwise,

T = bd

2

=4=d.

Case 2.2 d even:

We have that max

0�i�m�1

tv

m

(d

i

)=d

m

= tv

m

(d

0

)=d

m

= bd

2

=4=d, and that tv

m

(d

m

)=(d

m

=2) =

fd

m

b

2

=4� b=2D

m�1

g=(d

m

=2) = (2=)b

2

=4� (2=d)b=2D

m�1

=d

m�1

= 1� (1=d)D

m�1

=d

m�1

.

We an see that bd

2

=4=d = d=4 � 1, and that 1�(1=d)D

m�1

=d

m�1

= 1�

1

d+1

f1�(�

1

d

)

m

g � 1�

1

d

sine

0 < 1� (�

1

d

)

m

�

d+1

d

for all m � 1. Thus, we have that T = maxfbd

2

=4=d; 1� (1=d)D

m�1

=d

m�1

g

= bd

2

=4=d.

Case 3  � 3:

We have that T = max

0�i�m

tv

m

(d

i

)=d

m

= tv

m

(d

0

)=d

m

= bd

2

=4=d. This ompletes the proof. �

5 Embeddings among G(2

m

; 2

k

) and Q

m

An embedding of a (guest) graph G into a (host) graph H is a one-to-one mapping � of the verties

of G into the verties of H , ombined with a mapping of an edge e = (v; w) of G to a path �(e) of H

between �(v) and �(w). The ost of an embedding � is measured in terms of dilation, ongestion, and

expansion. The dilation of an edge e in G under the embedding � is the length of the path �(e), and

the dilation of � is the maximum dilation over all edges in G. The ongestion of an edge e

0

in H is the
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number of edges e in G with �(e) inluding e

0

, and the ongestion of � is the maximum ongestion

over all edges in H . The expansion of � is the ratio of the size of G to the size of H .

5.1 Embedding of G(2

m

; 2

k

) into Q

m

We present an expansion one embedding �

m

of reursive irulant G(2

m

; 2

k

) into hyperube Q

m

.

The embedding �

m

is simple and reursively de�ned. The node �

m

(v) of Q

m

to whih a node v of

G(2

m

; 2

k

) is mapped is a vth m-bit binary reeted Gray ode, whih is de�ned as follows: �

1

(0) = 0

and �

1

(1) = 1; �

m

(v) = �

m�1

(bv=2) b, where b = 0 if v mod 4 is either 0 or 3, b = 1 otherwise. The

sequene of �

3

(v)'s, for example, is (000; 001; 011; 010; 110; 111; 101; 100). The sequene of �

m

(v)'s

forms a hamiltonian yle of Q

m

, and we all it the anonial yle of Q

m

.

Let us restrit our attention to the embedding of G(2

m

; 2) into Q

m

. The embedding of G(2

m

; 2

k

)

into Q

m

an be obtained diretly from the embedding of G(2

m

; 2) into Q

m

with the same embedding

osts sine G(2

m

; 2

k

) is a subgraph of G(2

m

; 2). To de�ne the path �

m

(e) of Q

m

for an edge e of

G(2

m

; 2), it is onvenient to represent the embedding �

m

in a graphial way.

In the graphial representation of �

m

, Q

m

is drawn in a usual way (see Figure 5 (a) and (b)):

small irles for verties and solid lines for edges of Q

m

. A node v of G(2

m

; 2) mapped to the node

�

m

(v) of Q

m

is parenthesized and shown next to �

m

(v). An edge e = (v; w) of G(2

m

; 2) mapped to

the path �

m

(e) of Q

m

is drawn in dotted line between �

m

(v) and �

m

(w).

The embedding �

m

of G(2

m

; 2) into Q

m

an be onstruted reursively (see also Figure 5). We

denote by �

0

m

the embedding �

m

exluding all the dotted paths mapped from the edges of jump

one. That is, �

0

m

is an embedding of G(2

m

; 2) without edges of jump one into Q

m

. We make two

opies �

0

m�1

and onatenate \0" and \1" at the end of verties in the �rst and seond opy of Q

m�1

,

respetively. Now they are the verties of Q

m

. Join by a solid edge between nodes di�ering only in

the last bit position, and rename the parenthesized nodes of G(2

m

; 2) aording to �

m

(v).

Observe that the dotted path mapped from an edge of jump 2

j

(j � 1) in �

m�1

is now the path

for an edge of jump 2

j+1

in �

m

. The dotted paths �

m

(e) for edges of jump one are drawn on the

anonial yle of Q

m

, and the dotted paths �

m

(e) for edges of jump two are drawn in suh a way

that the ongestions of edges on the anonial yle of eah Q

m�1

are inreased by no more than two

and the ongestions of edges joining nodes di�ering in the last bit position are three.

We are ready to de�ne the path �

m

(e) of Q

m

to whih an edge e = (v; w) of G(2

m

; 2) is mapped.

The path is represented by a sequene of verties. Assume v + 2

i

� w (mod 2

m

).

Case 1 i � 2

�

m

(e) is obtained by onatenating b at the end of eah vertex in the path �

m�1

(e

0

) of Q

m�1

,

where e

0

= (bv=2; bw=2), b = 0 if v mod 4 is either 0 or 3, and b = 1 otherwise.
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(a) �

2

(b) �

3

0000 (0)

0110
(4)0100

(7)

1100 (8)

1000 (15)

0001 (1)

0011 (2)

0111 (5)0101 (6)

1101 (9)

1011
(13)

1001
(14)

0010
(3)

1110 (11)

1010 (12)

1111
(10)

() �

4

Figure 5: Graphial representation of �

m
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Case 2 i = 1

�

m

(e) is the path of length two passing through the vertex �

m

((v + 3) mod 2

m

) if v mod 4 is

either 0 or 2, and passing through the vertex �

m

((v � 1) mod 2

m

) otherwise.

Case 3 i = 0

�

m

(e) is the path �

m

(v); �

m

(w) of length one.

Now, we onsider the osts, dilation and ongestion, of the embedding �

m

of G(2

m

; 2) into Q

m

.

To analyze the osts, we onsider the osts of �

0

m

�rst.

Lemma 19 The embedding �

0

m

satis�es the two onditions for all m.

(a) The dilation of an edge of jump greater than one is two.

(b) The ongestion of an edge on the anonial yle of Q

m

is no more than two, and the ongestions

of the other edges are no more than four.

Proof We prove the lemma by indution on m. Observe that two onditions (a) and (b) hold for

m = 2; 3 as shown in Figure 5. Assume that the embedding �

0

m�1

satis�es the onditions. The dilation

of an edge of jump two is two by the de�nition of �

m

. The dilation of an edge of jump greater than

two in �

0

m

is equal to that of an edge of half jump in �

0

m�1

, thus two. Thus, we have (a). An edge

on the anonial yle of Q

m

is either an edge joining nodes di�ering in the last bit position (we all

it type A edge) or on an anonial yle of Q

m�1

(we all it type B edge). The ongestion of type

A edge is two by the onstrution of �

m

, and the ongestion of type B edge remains two sine every

dotted path from an edge of jump two passes through no type B edge. The ongestion of an edge not

on the anonial yle of Q

m

but on an anonial yle of Q

m�1

is inreased by two, still no more

than four. The ongestions of the other edges remain unhanged. This ompletes the proof. �

Theorem 11 G(2

m

; 2) an be embedded into Q

m

with dilation two and ongestion four.

Proof The dotted paths �

m

(e) for edges of jump one are of length one and drawn on the anonial

yle of Q

m

. The dilation of an edge of jump one in G(2

m

; 2) is one, and the ongestion of an edge on

the anonial yle is inreased by one. Thus, by Lemma 19, �

m

is an embedding with dilation two

and ongestion four. �

Corollary 3 G(2

m

; 2

k

) an be embedded into Q

m

with dilation two and ongestion four.

Dilation of the embedding is the best possible for k < m, sine G(2

m

; 2

k

) is not a subgraph of Q

m

.

G(2

m

; 2

k

) has a yle 0; 1; � � � ; 2

k

of length 2

k

+ 1, while Q

m

has no odd length yle.

22



5.2 Embedding of Q

m

into G(2

m

; 2

k

)

We present the embeddings of Q

m

into G(2

m

; 2

k

) based on the embeddings of Q

k

into a path graph

P

2

k , whih has verties f0; 1; :::; 2

k

� 1g and edges f(v; w) j v+1 = wg. One of the embeddings of Q

m

into G(2

m

; 2

k

), denoted by  

k

m

, is an identity mapping. Reall that Q

m

and G(2

m

; 2

k

) have the same

vertex set. We also employ graphial representations for embedding  

k

m

. Here small irles and solid

lines are used for representing verties and edges of G(2

m

; 2

k

), and dotted lines for paths of G(2

m

; 2

k

)

mapped from edges of Q

m

. For example, see Figure 6.

Under the embedding  

k

m

, the verties of Q

m

with the same least signi�ant k bits are mapped

to the verties of G(2

m

; 2

k

) with the same remainder when divided by 2

k

. The dotted path  

k

m

(e)

in G(2

m

; 2

k

) for an edge e = (v; w) is drawn on the line between  

k

m

(v) and  

k

m

(w) if v and w di�er

in one of the least signi�ant k bits; otherwise, the path  

k

m

(e) omes from the path  

k

m�k

(e

0

) in

G(2

m�k

; 2

k

), where e

0

= (bv=2

k

; bw=2

k

).

(a)  

2

2

0 (0000)

1 (0001)

2 (0010)

3 (0011)

4
(0100)

8 (1000)

12 (1100)

5
(0101)

9 (1001)

6
(0110)

10 (1010)

7 (0111)
11 (1011)

15
(1111)

13
(1101)

14
(1110)

(b)  

2

4

Figure 6: Graphial representation of  

2

m

The path  

k

m

(e) of G(2

m

; 2

k

) for an edge e = (v; w) of Q

m

is de�ned in the following. We

assume that v = b

m�1

� � � b

i+1

0b

i�1

� � � b

0

and w = b

m�1

� � � b

i+1

1b

i�1

� � � b

0

, b

j

2 f0; 1g. The path is

represented by a sequene of verties.

Case 1 0 � i � k � 1
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k

m

(e) is the dotted path  

k

m

(v);  

k

m

(v + 1); � � � ;  

k

m

(w) of length 2

i

.

Case 2 k + 1 � i � m

 

k

m

(e) is the path obtained by multiplying 2

k

and adding  

k

m

(v) mod 2

k

for eah vertex in the

path  

k

m�k

(e

0

), where e

0

= (v

0

; w

0

), and v

0

and w

0

are m � k bit binary numbers obtained by

deleting the least signi�ant k bits of v and w, respetively.

Let us onsider the osts of embedding  

k

m

. The identity embedding of Q

k

into P

2

k was studied

in [12℄. It was proved that the embedding has dilation 2

k�1

and ongestion b2

k+1

=3, and that both

ongestion and the sum 2

2k�1

� 2

k�1

of dilations over all edges are the minimum possible.

Lemma 20 The identity embedding of Q

k

into P

2

k
has dilation 2

k�1

and ongestion b2

k+1

=3.

Theorem 12 Q

m

an be embedded into G(2

m

; 2

k

) with dilation 2

k�1

and ongestion b2

k+1

=3.

Proof The dilation (resp. ongestion) of  

k

m

is the maximum of the dilation (resp. ongestion) of

 

k

m�k

and the dilation (resp. ongestion) of identity embedding of Q

k

into P

2

k . For m

0

� k, both

dilation and ongestion of  

k

m

0

are less than or equal to those of the identity embedding of Q

k

into P

2

k ,

respetively. Thus, the dilation and ongestion of  

k

m

are equal to those of the identity embedding of

Q

k

into P

2

k , respetively. �

Insisting on embeddings of Q

m

into G(2

m

; 2

k

) suh that verties of Q

m

with the same last k bits

are mapped to verties of G(2

m

; 2

k

) with the same remainder when divided by 2

k

, we an redue

dilation of the embedding by employing the optimal dilation embedding of Q

k

into P

2

k
in [13℄. We

an de�ne another embedding  

0k

m

of Q

m

into G(2

m

; 2

k

) in a very similar way to  

k

m

. An edge (v; w)

is mapped to the path  

0k

m

(e) aording to the embedding of Q

k

into P

2

k
if v and w di�er in one of

the least signi�ant k bits; otherwise, the path  

0k

m

(e) omes from the path  

0k

m�k

(e

0

) in G(2

m�k

; 2

k

),

where e

0

= (bv=2

k

; bw=2

k

). Detailed desription of the embedding  

0k

m

is omitted.

Lemma 21 Q

k

an be embedded into P

2

k with dilation

P

k�1

i=0

�

i

bi=2

�

and ongestion d

k

2

e

�

k

bk=2

�

.

Proof We employ the algorithm in [13℄ for embedding Q

k

into P

2

k with the optimal dilation

P

k�1

i=0

�

i

bi=2

�

to analyze the ongestion of the embedding. The algorithm hooses any vertex and

maps it to 0; having l verties mapped to f0; 1; � � � ; l�1g, it maps to l from any vertex adjaent to the

earliest mapped vertex as possible. For our purpose, we assume that in the �rst step, the algorithm

hooses the vertex 0 in Q

k

. We denote byW

i

the subset of verties in Q

k

whose binary representation

has i 1's. We observe that every vertex in W

i

is hosen before any vertex in W

i+1

, and that the

verties in W

i

are mapped to W

0

i

= fv

i

; v

i

+ 1; � � � ; v

i

+ jW

i

j � 1g where v

i

=

P

0�j<i

jW

j

j. Among

k edges inident to a vertex mapped to v

i

+ j, i edges have endverties in W

i�1

and the remaining

k � i edges have endverties in W

i+1

. Thus, the ongestion of the edge (v

i

+ j � 1; v

i

+ j) is equal
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to i(jW

i

j � j) + (k � i)j. The maximum ongestion C

i

over all edges inident to a vertex in W

0

i

is

max

0�j�jW

i

j

fi(jW

i

j � j) + (k � i)jg = maxfi; k � igjW

i

j. Note that C

i

= maxfi; k � ig

�

k

i

�

= C

k�i

.

The ongestion of the embedding is C

max

= max

0�i�k

C

i

= max

0�i�bk=2

C

i

. We laim that C

max

=

C

bk=2

= d

k

2

e

�

k

bk=2

�

. For every i � bk=2 � 1, it holds that C

i+1

=C

i

= (k � (i+ 1))=(i+ 1) � 1 sine

maxfi+1; k� (i+1)g = k� (i+1), maxfi; k� ig = k� i, and

�

k

i+1

�

=

�

k

i

�

= (k� i)=(i+1). Thus, we

have the laim. This ompletes the proof. �

Theorem 13 Q

m

an be embedded into G(2

m

; 2

k

) with dilation

P

k�1

i=0

�

i

bi=2

�

and ongestion d

k

2

e

�

k

bk=2

�

.

Proof We an observe that the dilation (resp. ongestion) of  

0k

m

is the maximum of the dilation

(resp. ongestion) of  

0k

m�k

and the dilation (resp. ongestion) of the embedding of Q

k

into P

2

k , and

thus we have the theorem by Lemma 21. �

5.3 Embedding of G(2

m

; 2) into G(2

m

; 2

k

)

We present an embedding of G(2

m

; 2) into G(2

m

; 2

k

). The embedding is an identity mapping, that is,

a vertex v of G(2

m

; 2) is mapped to the same vertex v of G(2

m

; 2

k

). An edge e = (v; w) of G(2

m

; 2)

satisfying v + 2

i

� w (mod 2

m

) is mapped to the dotted path v; v + 1; v + 2; � � � ; w between v and w

on the hamiltonian yle onsisting of edges of jump one if i < k. Here, the additions are performed

modulo 2

m

. Otherwise, the path omes from the embedding of G(2

m�k

; 2) into G(2

m�k

; 2

k

). Detailed

desription of the embedding is omitted.

Theorem 14 G(2

m

; 2) an be embedded into G(2

m

; 2

k

) with dilation 2

k�1

and ongestion 2

k

� 1.

Proof Let us onsider the embedding of all edges of jump less than 2

k

into the hamiltonian yle of

length 2

m

. The dilation of the embedding is obviously 2

k�1

. All edges of jump 2

i

ontribute 2

i

to

the ongestion of an edge, and thus the ongestion of the embedding is

P

0�j�k�1

2

j

= 2

k

� 1. We

an observe that the dilation (resp. ongestion) of the embedding of G(2

m

; 2) into G(2

m

; 2

k

) is the

maximum of 2

k�1

(resp. 2

k

� 1) and the dilation (resp. ongestion) of the embedding of G(2

m�k

; 2)

into G(2

m�k

; 2

k

). Combining this with the fat that the dilation (resp. ongestion) of the embedding

of G(2

m

0

; 2) into G(2

m

0

; 2

k

) with m

0

� k is less than or equal to 2

k�1

(resp. 2

k

� 1), we an prove the

theorem. �

5.4 Relationship among G(2

m

; 2), G(2

m

; 4), and Q

m

Let us disuss some interesting relationships between reursive irulants and hyperubes, espeially

among G(2

m

; 2), G(2

m

; 4), and Q

m

. The relationships are presented in Figure 7. Here an arrow with

weights from a graph G to H is an embedding of G into H and their assoiated osts: dilation and

ongestion in sequene. Both G(2

m

; 4) and Q

m

are subgraphs of G(2

m

; 2). G(2

m

; 2) an be embedded
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into Q

m

with dilation two and ongestion four by Theorem 11. G(2

m

; 4) also an be embedded into

Q

m

with the same osts. And Q

m

an be embedded into G(2

m

; 4) with dilation two and ongestion

two by Theorem 12. The embedding of G(2

m

; 2) into G(2

m

; 4) is due to the Theorem 14.

G(2 ,2)
m

Qm

G(2 ,4)
m

2,3

2,4

1,1

2,2
1,1

2,4

Figure 7: Relationship among G(2

m

; 2), G(2

m

; 4), and Q

m

in their embeddings

Now, let us onsider optimality of the embedding osts given in Figure 7. It is easy to hek that

dilations of all the given embeddings are optimal. Congestion of the embedding of Q

m

into G(2

m

; 4) is

optimal for m � 3 sine they are non-isomorphi graphs with the same number of verties and edges.

Optimality of ongestion of the embedding of G(2

m

; 2) into G(2

m

; 4) an be shown by a simple

ounting argument. Among (2m � 1)2

m�1

edges of G(2

m

; 2), at most m2

m�1

edges are mapped to

dotted paths of length one and at least (m�1)2

m�1

edges are mapped to paths of length two or more.

The sum of lengths of the dotted paths is at least (3m�2)2

m�1

. Even though they are distributed over

all edges of G(2

m

; 4), ongestion of the embedding is at least d(3m�2)2

m�1

=m2

m�1

e = d(3m�2)=me,

whih is greater than or equal to three for all m � 3. Thus, the embedding of G(2

m

; 2) into G(2

m

; 4)

has an optimal ongestion for m � 3.

It is not known whether or not ongestions of the embedding of G(2

m

; 2) and G(2

m

; 4) into Q

m

are optimal. If we insist on embeddings by the binary reeted Gray ode, ongestion four is not

avoidable by a ounting argument.

6 Conluding Remarks

In this paper, reursive irulants were proposed as an interonnetion struture for multiomputer

networks. Reursive irulants are node symmetri and have some strong hamiltonian properties:

G(N; d) is either hamiltonian onneted or bipartite and bihamiltonian onneted, and G(d

m

; d) is

hamiltonian deomposable. We developed a shortest path routing algorithm without routing table

in G(d

m

; d), and analyzed several important network metris of G(d

m

; d) suh as onnetivity,

diameter, mean internode distane, and visit ratio (under the uniform message distribution). As shown

in Table 1, G(2

m

; 4) ahieves notieable improvements ompared with hyperube Q

m

in diameter,

mean internode distane, and node visit ratio. Connetivity and edge onnetivity, edge visit ratio of

G(2

m

; 4) are equal to those of Q

m

, respetively. G(2

m

; 4) has a simple shortest path routing algorithm
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and a simple reursive broadasting algorithm.

Table 1: Comparison of G(2

m

; 4) with Q

m

G(2

m

; 4) Q

m

number of nodes 2

m

2

m

degree m m

symmetry node- yes yes

edge- no yes

hamiltoniity hamiltonian onneted yes bihamiltonian onneted

hamiltonian deomposition yes yes

onnetivity node- m m

edge- m m

distane diameter d(3m� 1)=4e m

mean internode distane approx. (9=20)m approx. (1=2)m

visit ratio node- approx. f(9=20)m+ 1g=2

m

approx. f(1=2)m+ 1g=2

m

edge- 1=(2

m

� 1) 1=(2

m

� 1)

yle of length l every l � 4 every even l � 4

subgraph omplete binary tree yes no

binomial tree yes yes

graph invariant hromati number, m � 3 3 2

independene number, m � 3 (3=8)2

m

(1=2)2

m

We presented an embedding of G(2

m

; 2

k

) into Q

m

based on the binary reeted Gray ode with

dilation two and ongestion four, and also gave embeddings of Q

m

into G(2

m

; 2

k

) based on embed-

dings of Q

k

into P

2

k with either dilation 2

k�1

and ongestion b2

k+1

=3 or dilation

P

k�1

i=0

�

i

bi=2

�

and

ongestion d

k

2

e

�

k

bk=2

�

. All of the embeddings presented in this paper have an optimal expansion. To

study embeddings into Q

m

and G(2

m

; 2

k

), it is worthwhile investigating embeddings into G(2

m

; 2).

Embedding of an arbitrary binary tree into Q

m

with dilation two is one of the long standing open

questions [4, 26, 27℄. Related to the open question, we pose an open problem whether or not every

binary tree with 2

m

nodes or less is a subtree of G(2

m

; 2). If our open problem has a positive answer,

the question also has a positive one, but the onverse is not true in general.
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