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Re
ursive Cir
ulants and their Embeddings

among Hyper
ubes

Abstra
t

We propose an inter
onne
tion stru
ture for multi
omputer networks, 
alled re
ursive 
ir
u-

lant. Re
ursive 
ir
ulant G(N; d) is de�ned to be a 
ir
ulant graph with N nodes and jumps of

powers of d. G(N; d) is node symmetri
, and has some strong hamiltonian properties. G(N; d) has

a re
ursive stru
ture when N = 
d

m

, 1 � 
 < d. We develop a shortest path routing algorithm in

G(
d

m

; d), and analyze various network metri
s of G(
d

m

; d) su
h as 
onne
tivity, diameter, mean

internode distan
e, and visit ratio. G(2

m

; 4), whose degree is m, 
ompares favorably to the hy-

per
ube Q

m

. G(2

m

; 4) has the maximum possible 
onne
tivity, and its diameter is d(3m� 1)=4e.

Re
ursive 
ir
ulants have interesting relationship with hyper
ubes in terms of embedding. We

present expansion one embeddings among re
ursive 
ir
ulants and hyper
ubes, and analyze the


osts asso
iated with ea
h embedding. The earlier version of this paper appeared in [21℄.

Key Words: Cir
ulant graph, 
onne
tivity, diameter, embedding, hamiltonian property, inter-


onne
tion stru
ture, multi
omputer network, routing algorithm
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1 Introdu
tion

Need for high 
omputing power has 
ontinued to drive the high speed 
omputer design. One of the

most straightforward and the least expensive means of a
hieving this end is to 
onstru
t multi
omputer

networks that 
onsist of nodes with lo
al memory (no shared memory) and a 
ommuni
ation 
ontroller,

where ea
h node is 
onne
ted by 
ommuni
ation links to a number of other nodes [23℄. Whenever

a node wants to 
ommuni
ate with another node, it 
ommuni
ates through other nodes unless there

exists a dire
t 
ommuni
ation link between the two.

The inter
onne
tion stru
ture for a multi
omputer network plays a 
entral role in determining the

overall performan
e of the system [14,23℄. Sin
e the 1960's, many authors have been 
on
erned with

the problems asso
iated with the design and analysis of inter
onne
tion stru
tures [1, 2, 7, 10, 21, 23℄.

One of the most popular inter
onne
tion stru
tures being used is a hyper
ube [9, 25℄.

We propose an inter
onne
tion stru
ture for multi
omputer networks, 
alled re
ursive 
ir
ulant.

The re
ursive 
ir
ulant G(N; d), d � 2, is de�ned as follows: the node set V = f0; 1; 2; � � � ; N � 1g,

and the edge set E = f(v; w) j 9 i, 0 � i � dlog

d

Ne � 1, su
h that v + d

i

� w (mod N)g. Here

ea
h d

i

is 
alled a jump. G(N; d) also 
an be de�ned as a 
ir
ulant graph with jumps of powers of d,

d

0

; d

1

; � � � ; d

dlog

d

Ne�1

. Examples of re
ursive 
ir
ulants are shown in Figure 1.
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(b) G(16; 4)

Figure 1: Examples of G(N; d)

Re
ursive 
ir
ulant is a Cayley graph over an abelian group, in more pre
ise words, the Cayley

graph of the 
y
li
 group Z

N

with the generating set fd

0

; d

1

; � � � ; d

dlog

d

Ne�1

g. Re
ursive 
ir
ulant is

node symmetri
, and thus regular. Re
ursive 
ir
ulant is not edge symmetri
. For example, G(8; 4)

has one 
y
le of length 4 passing through the edge (0; 1), and has two distin
t 
y
les of length 4
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passing through the edge (0; 4). However, two edges (v; v + d

i

) and (w;w + d

i

) are similar, that is,

there is an automorphism g of G(N; d) su
h that g(v) = w and g(v + d

i

) = w + d

i

.

Re
ursive 
ir
ulant G(N; d) has a re
ursive stru
ture when N = 
d

m

, 1 � 
 < d. In other words,

G(
d

m

; d) 
an be de�ned re
ursively by utilizing the following property.

Property 1 Let V

i

be a subset of nodes in G(
d

m

; d) su
h that V

i

= fv j v � i (mod d)g, m � 1. For

0 � i < d, the subgraph of G(
d

m

; d) indu
ed by V

i

is isomorphi
 to G(
d

m�1

; d).

G(
d

m

; d), m � 1, 
an be de�ned re
ursively on d 
opies of G(
d

m�1

; d) as follows. Let G

i

(V

i

; E

i

),

0 � i < d, be a 
opy of G(
d

m�1

; d). We assume that V

i

= fv

i

0

; v

i

1

; � � � ; v

i


d

m�1

�1

g, and G

i

is isomorphi


to G(
d

m�1

; d) for the isomorphism mapping v

i

j

to j for all 0 � j < 
d

m�1

. We relabel v

i

j

by

jd + i. The node set V of G(
d

m

; d) is

S

0�i<d

V

i

, and its edge set E is

S

0�i<d

E

i

[ X , where

X = f(v; w) j v + 1 � w (mod 
d

m

)g. The 
onstru
tion of G(32; 4) on four 
opies of G(8; 4) is

illustrated in Figure 2.
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Figure 2: Constru
tion of G(32; 4) on 4 
opies of G(8; 4)

When 
 � 3, G(
d

0

; d) and G(
d

1

; d) are isomorphi
 to the 
y
le graph of length 
 and the 
 � d
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double loop network, respe
tively. We denote by Æ

m

the degree of G(
d

m

; d). Then, Æ

m

= Æ

m�1

+ 2,

m � 1. Æ

m

in a 
losed-form is shown below:

Æ

m

=

8

>

>

>

>

>

<

>

>

>

>

>

:

2m� 1 if 
 = 1 and d = 2;

2m if 
 = 1 and d 6= 2;

2m+ 1 if 
 = 2;

2m+ 2 if 
 > 2:

Depending on the restri
tion on N and d, we have interesting 
lasses of re
ursive 
ir
ulants. Their

in
lusion relationships are shown in Figure 3. Among them, G(2

m

; 2) is a supergraph of an m-

dimensional hyper
ube Q

m

, and G(2

m

; 4) has the same number of nodes and edges as Q

m

. G(2

m

; 4)

with m � 3 is not isomorphi
 to Q

m

sin
e G(2

m

; 4) has a 
y
le of odd length. In fa
t, G(2

m

; 2

k

) with

2 � k < m is known to be a tripartite graph.

G(cd ,d)
m

G(N,d)

G(2 ,2 )
m k

G(2 ,2)
m

G(2 ,4)
m

Figure 3: Classes of re
ursive 
ir
ulants

Re
ursive 
ir
ulants have some interesting hamiltonian properties. Obviously, G(N; d) has a hamil-

tonian 
y
le unless N � 2. Re
ursive 
ir
ulant G(
d

m

; d) is hamiltonian de
omposable [11,19,20℄, that

is, G(
d

m

; d) has bÆ

m

=2
 edge-disjoint hamiltonian 
y
les. Hamiltonian de
omposability of G(N; d)

remains open. In Se
tion 2 of this paper, we show that G(N; d) with degree three or more is either

hamiltonian 
onne
ted or bipartite and bihamiltonian 
onne
ted.

Network metri
s provide a framework for 
omparing various networks systemati
ally. They in
lude

not only node symmetry, edge symmetry, and hamiltonian property, but also 
onne
tivity, diameter,

mean internode distan
e, and visit ratio. We develop a shortest path routing algorithm in G(
d

m

; d)

in Se
tion 3, and analyze network metri
s of G(
d

m

; d) in Se
tion 4.

Compared with Q

m

, G(2

m

; 4) a
hieves noti
eable improvements in diameter, mean internode dis-

tan
e, and node visit ratio. The diameter, mean internode distan
e, and node visit ratio of G(2

m

; 4)

are d(3m� 1)=4e, approximately (9=20)m, and approximately ((9=20)m+ 1)=2

m

, while those of Q

m

are m, approximately (1=2)m, and approximately ((1=2)m+ 1)=2

m

, respe
tively.

The 
onne
tivity and edge 
onne
tivity of G(2

m

; 4) are m, whi
h is the best possible. The edge

visit ratio of G(2

m

; 4) is 1=(2

m

�1), whi
h is equal to that of Q

m

. G(2

m

; 4) has a simple shortest path

routing algorithm without routing table and a simple re
ursive broad
asting algorithm [21℄. Moreover,
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G(2

m

; 4) is known to be a minimum broad
ast (and gossip) graph, that is, G(2

m

; 4) is a graph with

the minimum number of edges su
h that a broad
ast (and gossip) from any node 
an be performed

in minimum time.

Understanding relationships among di�erent inter
onne
tion stru
tures plays an important role in

parallel pro
essing [8, 24℄. We investigate relationships among re
ursive 
ir
ulants and hyper
ubes in

terms of embedding. Many problems of interest 
an be modeled by embedding su
h as VLSI 
ir
uit

layout, simulating one inter
onne
tion stru
ture by another, and simulating one data stru
ture by

another [3℄.

G(2

m

; 4) 
ontains as subgraphs 
y
les of any length stri
tly greater than three, binomial trees with

2

m

nodes, and full binary trees with no more than 2

m

nodes [18℄. Pyramid of level m is known to

be embedded into re
ursive 
ir
ulant G(2

2m�1

; 4) with dilation two, 
ongestion two, and the optimal

expansion [17℄. Many of the embedding problems into re
ursive 
ir
ulants remain unsolved.

In Se
tion 5, we present expansion one embeddings among re
ursive 
ir
ulants G(2

m

; 2

k

) and

hyper
ubes Q

m

. The embedding of G(2

m

; 2

k

) into Q

m

is based on the binary re
e
ted Gray 
ode

and has dilation two and 
ongestion four. The dilation is the best possible when k < m. For the

reverse, we 
an always embed Q

m

into G(2

m

; 2

k

) with the same embedding 
osts as the embedding of

Q

k

into a path graph with 2

k

verti
es. Embedding of a graph into a path graph is known as a linear

arrangement. Employing the linear arrangements of hyper
ubes [12, 13℄, we 
an a
hieve embeddings

of Q

m

into G(2

m

; 2

k

) with either dilation 2

k�1

and 
ongestion b2

k+1

=3
 or dilation

P

k�1

i=0

�

i

bi=2


�

and


ongestion d

k

2

e

�

k

bk=2


�

.

2 Hamiltonian property of G(N; d)

A graph is hamiltonian 
onne
ted if there is a hamiltonian path joining every pair of verti
es. Hamil-

tonian 
onne
tedness as well as hamiltonian de
omposition is an interesting strong hamiltoni
ity, that

is, a hamiltonian property whi
h implies the existen
e of a hamiltonian 
y
le. Ne
essarily, a hamilto-

nian 
onne
ted graph is not bipartite. In this se
tion, we show that re
ursive 
ir
ulant G(N; d) with

degree three or more is either hamiltonian 
onne
ted or bipartite and bihamiltonian 
onne
ted. A

bipartite graph is bihamiltonian 
onne
ted if between every pair of verti
es with 
olors di�erent from

ea
h other, there is a hamiltonian path. Ea
h vertex in a bipartite graph has one of two 
olors, say

red and blue, in su
h a way that no two adja
ent verti
es are of the same 
olor.

We employ a theorem in [6℄ on hamiltonian 
onne
tedness of a Cayley graph over an abelian group.

Theorem 1 A Cayley graph over a �nite abelian group is hamiltonian 
onne
ted if and only if it is

neither a 
y
le graph nor a bipartite graph.
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Corollary 1 Every re
ursive 
ir
ulant G(N; d) with degree three or more is hamiltonian 
onne
ted if

it is not bipartite.

Now, let us 
on
entrate on bipartite re
ursive 
ir
ulant G(N; d).

Lemma 1 G(N; d) with degree three or more is bipartite if and only if N is even and d is odd.

Proof G(N; d) has a hamiltonian 
y
le of length N , and has a 
y
le (0; 1; � � � ; d) of length d + 1.

Thus, we have the ne
essity. For the suÆ
ien
y, we observe that every jump d

i

(in
luding jump d

0

)

in G(N; d) joins a pair of an even vertex and an odd vertex. This 
ompletes the proof. �

Again, we employ a lemma in [6℄. A p � q re
tangular grid is a produ
t of two path graphs with

p and q verti
es, respe
tively. A re
tangular grid is bipartite. We 
all a vertex in a re
tangular grid

a 
orner vertex if it is of degree two.

Lemma 2 Let G be a p� q re
tangular grid with p; q � 2.

(a) If pq is even, then G has a hamiltonian path from any 
orner vertex v to any other vertex with


olor di�erent from v.

(b) If pq is odd, then G has a hamiltonian path from any 
orner vertex v to any other vertex with the

same 
olor as v.

Theorem 2 Every bipartite re
ursive 
ir
ulant G(N; d) with degree three or more is bihamiltonian


onne
ted.

Proof A 
ir
ulant graph C

N

(1; d), the Cayley graph of a 
y
li
 group Z

N

with the generating set

f1; dg, is a spanning subgraph of G(N; d). We are suÆ
ient to show that C

N

(1; d) with N even

and d odd (d 6= 1; N � 1) is bihamiltonian 
onne
ted. We 
an assume that d � N=2 sin
e C

N

(1; d)

is isomorphi
 to C

N

(1; N � d). We let n = bN=d
 and d

0

= N mod d, that is, N = nd + d

0

,

0 � d

0

< d. We have that d � 3 by Lemma 1 and n � 2. A spanning subgraph of C

N

(1; d) is shown in

Figure 4 depending on the parity of n. We denote by G

0

the subgraph of C

N

(1; d) indu
ed by verti
es

f0; 1; 2; � � � ; nd � 1g. G

0


ontains a d � n re
tangular grid as a spanning subgraph. It is suÆ
ient to

show that C

N

(1; d) has a hamiltonian path joining an odd vertex N � 1 and every even vertex sin
e

C

N

(1; d) is node symmetri
.

Case 1 n is even.

When d

0

= 0, N � 1 is a 
orner vertex of G

0

, and thus, by Lemma 2 (a), there is a hamiltonian

path joining N � 1 and every even vertex. We let d

0

> 0. Note that nd is even and (n � 1)d

is an odd 
orner vertex. For even vertex v su
h that v < nd, we 
onstru
t a hamiltonian path

P = N � 1; N � 2; � � � ; nd; (n� 1)d; P

1

; v, where P

1

is a hamiltonian path in G

0

joining (n� 1)d and v

due to Lemma 2 (a). For v su
h that v � nd, we have a hamiltonian path P = N � 1; N � 2; � � � ; v +

6



1; v� d+1; P

2

; (n� 1)d; nd; nd+1; � � � ; v, where P

2

is a hamiltonian path in G

0

between v� d+1 and

(n� 1)d.

Case 2 n is odd.

In this 
ase, nd is odd and (n�1)d is an even 
orner vertex. For an even vertex v su
h that v < nd and

v 6= (n� 1)d, we 
onstru
t a hamiltonian path P = N � 1; N � 2; � � � ; nd; (n� 1)d; P

3

; v, where P

3

is a

hamiltonian path in G

0

joining (n�1)d and v due to Lemma 2 (b). For v = (n�1)d, we utilize another

even 
orner vertex nd�1 and 
onstru
t a hamiltonian path P = N�1; N�2; � � � ; nd; nd�1; P

4

; (n�1)d,

where P

4

is a hamiltonian path in G

0

between nd� 1 and (n� 1)d. For v � nd, there is a hamiltonian

path P = N � 1; N � 2; � � � ; v + 1; v � d+ 1; P

5

; (n� 1)d; nd; nd+ 1; � � � ; v, where P

5

is a hamiltonian

path in G

0

between v � d+ 1 and (n� 1)d. This 
ompletes the proof. �

d 2d0 (n-1)d

1

2

d-2

d+1

d+2

2d-2

2d-1d-1 3d-1 nd-1

nd

nd+1

N-1

(a) n is even

d 2d0 (n-1)d

1

2

d-2

d+1

d+2

2d-2

2d-1d-1 3d-1 nd-1

nd

nd+1

N-1

(b) n is odd

Figure 4: Illustration of the proof of Theorem 2

3 Routing algorithm in G(
d

m

; d)

In this se
tion, we develop a shortest path routing algorithm inG(
d

m

; d). From now on, all arithmeti
s

are done modulo 
d

m

using the appropriate residues. We des
ribe our routing algorithm brie
y as

follows. When a node v of G(
d

m

; d) has a message to w, v sends it along edges of jump d

0

to one

of the two nodes x and y su
h that x � y � w (mod d), x < v < y, v � x < d, and y � v < d, if

v �= w (mod d); otherwise, v does nothing. Then routing in the subgraph of G(
d

m

; d) indu
ed by

V

w

= fz j z � w (mod d)g is performed re
ursively. Note that the indu
ed subgraph is isomorphi
 to

G(
d

m�1

; d). The routing algorithm is based on the properties of a shortest path from node 0 to node

v.

A path from node 0 to node v is a sequen
e of nodes v

0

= 0; v

1

; v

2

; � � � ; v

t

= v. It also 
an be

7



represented by a

1

; a

2

; � � � ; a

t

, where a

i

= v

i

� v

i�1

, 1 � i � t. The ith node v

i

is

P

1�j�i

a

j

. Here

a

i

is either +d

j

or �d

j

for some j, that is, a jump with dire
tion either + or �. For example, the

path 0; 4; 5; 6; 10; 9; 8 of G(16; 4) in Figure 1 (b) 
an be represented by +4;+1;+1;+4;�1;�1. We

will represent a path from node 0 by a sequen
e of jumps with dire
tions. The destination node v

of a path P = a

1

; a

2

; � � � ; a

t

, from node 0 is

P

1�j�t

a

j

. Note that an arbitrary permutation of P

represents a path (may have a 
y
le) to the same destination of the same length.

Lemma 3 Let P = a

1

; a

2

; � � � ; a

t

, be a shortest path from 0 to v.

(a) P has no pair of +d

j

and �d

j

for any j.

(b) P has less than d \+d

j

's" and has less than d \�d

j

's" for any j.

Proof Suppose P has a pair of +d

j

and �d

j

for some j, we 
an 
onstru
t another path P

0

from 0 to

v shorter than P by removing the pair of +d

j

and �d

j

in P . This is 
ontradi
tion to the fa
t that P

is a shortest path. Suppose P has d or more \+d

j

's" (resp. \�d

j

's"). The d \+d

j

's" (resp. \�d

j

's")


an be repla
ed by one \+d

j+1

" (resp. \�d

j+1

"), resulting in a path shorter than P by d� 1, if +d

j

is not a jump of maximum size. If +d

j

is a jump of maximum size, the sum of d or less (d if 
 = 1, 


otherwise) +d

j

's (resp. �d

j

's) is zero, thus they 
an be removed to get a shorter path than P . This


ompletes the proof. �

A node v is 
alled a town if v is a multiple of d; otherwise, v is 
alled a village. For a village v,

there exists a unique i su
h that di < v < d(i+ 1). Here, di and d(i+ 1) are 
alled near towns of v.

Every village has two near towns.

Lemma 4 (a) No shortest path from 0 to a town passes through villages.

(b) There is a shortest path from 0 to a village v passing through one of the near towns of v.

Proof Let P = a

1

; a

2

; � � � ; a

t

, be a shortest path from 0 to v. To prove (a), we assume that v is a

town. Suppose P passes through some villages, then P has either +d

0

or �d

0

. By Lemma 3 (a) and

(b), v =

P

1�i�t

a

i

�= 0 (mod d), whi
h is a 
ontradi
tion to the fa
t that v is a town. To prove

(b), we assume that v is a village su
h that di < v < d(i + 1) for some i. By Lemma 3 (a) and (b),

we 
an see that P has either v � di \+d

0

's" or d(i + 1) � v \�d

0

's". When P has v � di \+d

0

's",

we let P

0

= a

0

1

; a

0

2

; � � � ; a

0

t

be a permutation of P su
h that a

0

j

= +d

0

for all j, t � (v � di) < j � t.

P

0

is a shortest path from 0 to v, and passes through di sin
e

P

1�j�t�(v�di)

a

0

j

= di. When P has

d(i + 1) � v \�d

0

's", in a similar way, we let P

00

= a

00

1

; a

00

2

; � � � ; a

00

t

be a permutation of P su
h that

a

00

j

= �d

0

for all j, t � (d(i + 1) � v) < j � t. P

00

is a shortest path from 0 to v passing through

d(i+ 1). This 
ompletes the proof. �

Lemma 4 (a) implies that a shortest path from 0 to a town 
an be found in the subgraph of

G(
d

m

; d) indu
ed by all towns. Note that the subgraph indu
ed by all towns is isomorphi
 to

G(
d

m�1

; d) by Property 1. We denote by dist

m

(v) the length of a shortest path from 0 to v in

8



G(
d

m

; d). The length of a shortest path from 0 to a village v su
h that di < v < d(i+1) is, by Lemma 4

(b), minf(v � di) + dist

m

(di); (d(i+ 1)� v) + dist

m

(d(i+ 1))g. Observe that dist

m

(di) = dist

m�1

(i)

and dist

m

(d(i+ 1)) = dist

m�1

(i+ 1).

A near town di (resp. d(i + 1)) of v is 
alled the nearest town of v if v � di < d(i + 1)� v (resp.

d(i+1)� v < v� di). When d is odd, every village has a unique nearest town. When d is even, every

village other than di+ d=2 has a nearest town; the node di+ d=2 has no nearest town.

Lemma 5 If a village v has a nearest town, there is a shortest path from 0 to v passing through the

nearest town.

Proof If di is the nearest town, we have dist

m

(v) = minf(v�di)+dist

m

(di); (d(i+1)�v)+dist

m

(d(i+

1))g = (v� di)+ dist

m

(di). Note that the di�eren
e between dist

m

(di) and dist

m

(d(i+1)) is at most

1 sin
e di and d(i + 1) are adja
ent. If d(i + 1) is the nearest town, we 
an see that dist

m

(v) =

(d(i+ 1)� v) + dist

m

(d(i+ 1)). Thus, we have the lemma. �

Lemma 6 (a) For odd d, dist

m

(di) < dist

m

(di+1) < � � � < dist

m

(di+bd=2
), and dist

m

(di+dd=2e) >

dist

m

(di+ (dd=2e+ 1)) > � � � > dist

m

(di+ d).

(b) For even d, dist

m

(di) < dist

m

(di + 1) < � � � < dist

m

(di + (d=2 � 1)) � dist

m

(di + d=2), and

dist

m

(di+ d=2) � dist

m

(di+ (d=2 + 1)) > dist

m

(di+ (d=2 + 2)) > � � � > dist

m

(di+ d).

Proof It is suÆ
ient to show, by Lemmas 3 and 5, that the two inequalities dist

m

(di+ (d=2� 1)) �

dist

m

(di+ d=2) and dist

m

(di+ d=2) � dist

m

(di+ (d=2+ 1)) hold for even d. For the �rst inequality,

by Lemmas 3, 4, and 5, we have dist

m

(di + d=2) = d=2 + minfdist

m

(di); dist

m

(d(i + 1))g � d=2 +

(dist

m

(di) � 1) = (d=2 � 1) + dist

m

(di) = dist

m

(di + (d=2 � 1)). We show the other inequality in

a similar way that dist

m

(di + d=2) � d=2 + (dist

m

(d(i + 1)) � 1) = (d=2 � 1) + dist

m

(d(i + 1)) =

d(i+ 1)� (di+ (d=2 + 1)) + dist

m

(d(i+ 1)) = dist

m

(di+ (d=2 + 1)). Thus, we have the lemma. �

For a village v without a nearest town (d is even and v = di+d=2), we know that there is a shortest

path from 0 to v passing through di if dist

m

(di) � dist

m

(d(i + 1)) and one passing through d(i + 1)

if dist

m

(d(i + 1)) � dist

m

(di). Let us 
onsider the question of determining whether dist

m

(di) �

dist

m

(d(i + 1)) or dist

m

(d(i + 1)) � dist

m

(di). Sin
e dist

m

(di) = dist

m�1

(i) and dist

m

(d(i + 1)) =

dist

m�1

(i+ 1), it is suÆ
ient to determine whether dist

m�1

(i) � dist

m�1

(i+ 1) or dist

m�1

(i+ 1) �

dist

m�1

(i). A simple solution for our question is given in the following lemma.

Lemma 7 Let d be even.

(a) When m = 1, dist

m�1

(i) � dist

m�1

(i+ 1) if i < 
=2; otherwise, dist

m�1

(i+ 1) � dist

m�1

(i).

(b) When m � 2, dist

m�1

(i) � dist

m�1

(i + 1) if i (mod d) < d=2; otherwise, dist

m�1

(i + 1) �

dist

m�1

(i).

9



Proof Whenm = 1, the subgraph of G(
d

1

; d) indu
ed by the towns is a 
y
le of length 
 (degenerated

or not). For the 
ase where i < 
=2 (or equivalently i � (
�1)=2), dist

m�1

(i+1) = minfi+1; 
� (i+

1)g = (
�1)=2 if i = (
�1)=2; otherwise (or equivalently i � 
=2�1), dist

m�1

(i+1) = i+1. Thus, we

have dist

m�1

(i+ 1) � i = dist

m�1

(i). For the other 
ase where i � 
=2, dist

m�1

(i+ 1) = 
� (i+ 1),

whi
h is less than dist

m�1

(i) = 
 � i. This proves (a). When m � 2, there exists i

0

su
h that

di

0

� i < d(i

0

+ 1). Now di

0

and d(i

0

+ 1) are towns in G(
d

m�1

; d). The statement (b) is immediate

from Lemma 6 (b), whi
h says that dist

m�1

(di

0

) < dist

m�1

(di

0

+1) < � � � < dist

m�1

(di

0

+(d=2�1)) �

dist

m�1

(di

0

+d=2), and that dist

m�1

(di

0

+d=2) � dist

m�1

(di

0

+(d=2+1)) > dist

m�1

(di

0

+(d=2+2)) >

� � � > dist

m�1

(di

0

+ d). �

Now, we are ready to give our routing algorithm in G(
d

m

; d). A message in a node v of G(
d

m

; d)

to node 0 is delivered along a shortest path from 0 to v in a reverse order. When v is a village of

G(
d

m

; d), v sends it to one of the near towns of v via edges of either a jump +d

0

or �d

0

. Between

the near towns, v prefers the nearest town, if any; otherwise, v 
hooses one a

ording to Lemma 7.

When v is a town, v does nothing. Then, routing in G(
d

m�1

; d) is performed re
ursively. For the

base 
ase of m = 0, routing in G(
d

0

; d) is performed a

ording to the following lemma.

Lemma 8 For v in G(
d

0

; d), dist

0

(v) � dist

0

(v + 1) if v < 
=2; otherwise, dist

0

(v + 1) � dist

0

(v).

Proof The lemma is a restatement of Lemma 7 (a). �

The routing from v to w 
an be a
hieved easily from the routing from v �w to 0, sin
e a shortest

path from v to w when it is represented by a sequen
e of jumps with dire
tions is a shortest path

from v �w to 0. The routing algorithm in G(
d

m

; d) shown below sends a message in a 
urrent node

to one of its neighbor nodes. Repeating this pro
ess, the message eventually rea
hes the destination.

We denote by v and w the 
urrent and destination node, respe
tively. We assume that v is di�erent

from w.

Theorem 3 The shortest path routing algorithm in G(
d

m

; d) is 
orre
t.

Proof The algorithm is performed on G(
d

m�r

; d), the subgraph of G(
d

m

; d) indu
ed by all multiple

of d

r

nodes. Let v

00

be b

m

� � � b

r+1

b

r

in the d-ary number representation. Now v

00

is a village of

G(
d

m�r

; d). When r = m, routing is performed a

ording to Lemma 8. When r < m, v

00

�nds its

nearest town, if any. If v

00

has no nearest town, v

00


hooses one between its near towns di and d(i+1)

a

ording to Lemma 7. Note that the d-ary representation of di is b

m

� � � b

r+1

0, and that b

r+1

= i for

r = m� 1, and b

r+1

= i (mod d) for r < m� 1. The theorem is immediate from Lemmas 3, 4, 5, 6,

7, and 8. �
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Shortest Path Routing Algorithm in G(
d

m

; d)

v

0

:= (v � w) mod 
d

m

;

Let b

m

� � � b

1

b

0

be the d-ary number representation of v

0

;

r := the least signi�
ant non-zero digit number of v

0

;

/* Now, we perform routing in G(
d

m�r

; d) */

if r < m then /* r is not the most signi�
ant digit number */


ase b

r

of

b

r

< d=2 : forward the message to v � d

r

; /* by Lemmas 5 and 6 */

b

r

> d=2 : forward the message to v + d

r

; /* by Lemmas 5 and 6 */

b

r

= d=2 : /* d even */

if r = m� 1 then /* by Lemma 7 (a) */

if b

r+1

< 
=2 then forward the message to v � d

r

else forward the message to v + d

r

;

else /* by Lemma 7 (b) */

if b

r+1

< d=2 then forward the message to v � d

r

else forward the message to v + d

r

;

end;

else /* r = m and 
 6= 1; by Lemma 8 */

if b

m

< 
=2 then forward the message to v � d

r

else forward the message to v + d

r

;

4 Network metri
s of G(
d

m

; d)

4.1 Conne
tivity and edge 
onne
tivity

Conne
tivity measures the resilien
y of a network and its ability to 
ontinue operation despite faulty

nodes and 
ommuni
ation links. Conne
tivity (resp. edge-
onne
tivity) is the minimum number of

nodes (resp. 
ommuni
ation links) that must fail to partition the network into two or more disjoint

subnetworks. We denote by �(G) and �(G) the 
onne
tivity and edge-
onne
tivity of a graph G,

respe
tively. It holds that �(G) � �(G) � Æ(G) for every graph G.

By employing a suÆ
ient 
ondition in [5℄ for a 
ir
ulant graph to have the maximum possible


onne
tivity, we 
an show that �

m

= �

m

= Æ

m

, where �

m

and �

m

are the 
onne
tivity and edge


onne
tivity of G(
d

m

; d), respe
tively.

Theorem 4 A 
ir
ulant graph G with n nodes and k jumps a

1

; a

2

; � � � ; a

k

su
h that a

1

< a

2

< � � � <

a

k

� n=2 has �(G) = Æ(G) if a

1

= 1 and a

i+1

� a

i

� a

i+2

� a

i+1

for all i, 1 � i � k � 2.

Corollary 2 �

m

= �

m

= Æ

m

.

Conne
tivity problems of re
ursive 
ir
ulants were 
onsidered in [15℄. It was shown that G(N; d)

also has the maximum possible 
onne
tivity, and that G(
d

m

; d) is super-� and super-� if it is not

isomorphi
 to C

n

, a 
y
le graph of length n. Here, a graph G is 
alled super-� if every vertex 
ut of

11



size �(G) is the set of verti
es adja
ent to a single vertex. A graph is super-� if every edge 
ut of size

�(G) is the set of edges in
ident to a single vertex.

4.2 Diameter

The diameter of a network is the maximum number of 
ommuni
ation links that must be traversed

to transmit a message from a node to another node along a shortest path between them. Sin
e

G(
d

m

; d) is node symmetri
, the diameter dia

m

of G(
d

m

; d) is the maximum of dist

m

(v) over all

nodes v, that is, dia

m

= max

0�v<
d

m

fdist

m

(v)g. We know that dia

0

= b
=2
. For m � 1, v


an be rewritten as di + j for some i and j, 0 � i < 
d

m�1

, 0 � j < d. Thus, we have that

dia

m

= max

0�i<
d

m�1
max

0�j<d

fdist

m

(di+ j)g. We let T

i

= max

0�j<d

fdist

m

(di+ j)g. To 
al
ulate

T

i

, we employ Lemma 6. There are two 
ases depending on the parity of d.

CASE A d is odd.

We have that T

i

= maxfdist

m

(di + bd=2
); dist

m

(di + dd=2e)g by Lemma 6 (a). It holds that

dist

m

(di+ bd=2
) = dist

m

(di) + bd=2
 and dist

m

(di+ dd=2e) = dist

m

(d(i+1)) + bd=2
 by Lemma 5.

Combining them with dist

m

(di) = dist

m�1

(i) and dist

m

(d(i + 1)) = dist

m�1

(i + 1), we have that

T

i

= maxfdist

m�1

(i); dist

m�1

(i + 1)g + bd=2
. Thus, we have that dia

m

= max

0�i<
d

m�1
T

i

=

max

0�i<
d

m�1
fmaxfdist

m�1

(i); dist

m�1

(i + 1)gg + bd=2
. The max-of-max term in the equation is

equal to max

0�i<
d

m�1
fdist

m�1

(i)g, whi
h is equal to dia

m�1

. At last we get a re
ursive formula for

dia

m

: dia

0

= b
=2
; dia

m

= dia

m�1

+ bd=2
, m � 1.

Theorem 5 For odd d, dia

m

= bd=2
m+ b
=2
.

Proof We prove the theorem by indu
tion on m. For m � 1, we have that dia

m

= dia

m�1

+ bd=2
 =

bd=2
(m� 1) + b
=2
+ bd=2
 = bd=2
m+ b
=2
. This 
ompletes the proof. �

CASE B d is even.

By Lemma 6 (b), we have that T

i

= dist

m

(di + d=2). Sin
e the node di + d=2 has no near-

est town, by Lemma 4 (b), we have that dist

m

(di + d=2) = minfdist

m

(di); dist

m

(d(i + 1))g +

d=2 = minfdist

m�1

(i); dist

m�1

(i + 1)g + d=2. Thus, we have that dia

m

= max

0�i<
d

m�1
T

i

=

max

0�i<
d

m�1
minfdist

m�1

(i); dist

m�1

(i + 1)g + d=2. Let S

m�1

be the max-of-min term in the last

equation, that is, S

m�1

= max

0�i<
d

m�1
minfdist

m�1

(i); dist

m�1

(i+ 1)g.

Lemma 9 S

m�1

= dia

m�1

� �

m�1

, where

�

m

=

8

<

:

0; if G(
d

m

; d) has a node pair (i; i+ 1) su
h that dist

m

(i) = dist

m

(i+ 1) = dia

m

;

1; otherwise.
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Proof We know that S

m�1

� dia

m�1

. We have that S

m�1

� dia

m�1

� 1 sin
e the di�eren
e

between dist

m�1

(i) and dist

m�1

(i + 1) is at most one for all i, 0 � i < 
d

m�1

. If �

m�1

= 0, there

exists a vertex v su
h that minfdist

m�1

(v); dist

m�1

(v + 1)g = dia

m�1

; otherwise, for every vertex i,

minfdist

m�1

(i); dist

m�1

(i+ 1)g � dia

m�1

� 1. Thus, we have the lemma. �

Now, we have a re
ursive formula for dia

m

: dia

0

= b
=2
; dia

m

= dia

m�1

+ d=2� �

m�1

, m � 1.

The term �

m�1

depends only on the parity of 
 and d as shown in the following lemma.

Lemma 10 �

m

= 1 if and only if both 
 and m are either odd or even.

Proof �

0

= 0 if 
 is odd; otherwise, �

0

= 1. It is suÆ
ient to show that �

m

= 1 � �

m�1

for

all m � 1. Firstly, we assume that �

m�1

= 0 and show that �

m

= 1. For every vertex v =

di + j su
h that 0 � i < 
d

m�1

, 0 � j 6= d=2 < d, we have that dist

m

(v) = minfdist

m

(di) +

j; dist

m

(d(i + 1)) + (d � j)g � dia

m�1

+ minfj; d � jg < dia

m�1

+ d=2 = dia

m

. Thus, there is no

vertex v su
h that dist

m

(v) = dist

m

(v + 1) = dia

m

, and we have �

m

= 1. Se
ondly, we assume

that �

m�1

= 1 and show that �

m

= 0. There is i su
h that dist

m�1

(i) = dia

m�1

. We know

that dist

m�1

(i + 1) = dia

m�1

� 1. We show that dist

m

(di + d=2 � 1) = dist

m

(di + d=2) = dia

m

.

We have that dist

m

(di + d=2 � 1) = dist

m

(di) + d=2 � 1 = dia

m�1

+ d=2 � 1 = dia

m

, and that

dist

m

(di + d=2) = dist

m

(d(i + 1)) + d=2 = dia

m�1

� 1 + d=2 = dia

m

. Thus, �

m

= 0. We have the

lemma. �

Theorem 6 For even d,

dia

m

=

8

<

:

b

d�1

2

m
+ b
=2
; if 
 is even;

d

d�1

2

me+ b
=2
; if 
 is odd.

Proof The proof is done by indu
tion on m for 
ases depending on the parities of 
 and m. We know

that dia

m

= dia

m�1

+ d=2� �

m�1

for m � 1.

Case 1 both 
 and m are even.

We have that dia

m

= dia

m�1

+ d=2 = b

d�1

2

(m� 1)
+ b
=2
+ d=2 = b

d�1

2

(m � 1) + d=2
+ b
=2
 =

b

d�1

2

m
+ b
=2
.

Case 2 
 is even and m is odd.

We have that dia

m

= dia

m�1

+ d=2� 1 = b

d�1

2

(m � 1)
 + b
=2
+ d=2 � 1 = b

d�1

2

(m � 1) + d=2 �

1
+ b
=2
 = b

d�1

2

m
+ b
=2
.

Case 3 both 
 and m are odd.

We have that dia

m

= dia

m�1

+ d=2 = d

d�1

2

(m� 1)e+ b
=2
+ d=2 = d

d�1

2

(m � 1) + d=2e+ b
=2
 =

d

d�1

2

me+ b
=2
.

Case 4 
 is odd and m is even.

We have that dia

m

= dia

m�1

+ d=2� 1 = d

d�1

2

(m � 1)e + b
=2
+ d=2 � 1 = d

d�1

2

(m � 1) + d=2 �

1e+ b
=2
 = d

d�1

2

me+ b
=2
. �
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Fault diameter of a graph G is the maximum diameter of any graph obtained from G by removing

�(G) � 1 or less verti
es. It was shown that the fault diameter of G(2

m

; 2

k

) with k � 2 (resp. with

k = 1) is no more than the diameter of G(2

m

; 2

k

) plus 2

k�1

(resp. 2) [22℄, and that the fault diameter

of G(2

m

; 4) is no more than the diameter of G(2

m

; 4) plus 1 for m � 5 [16℄. The fault diameter of

G(
d

m

; d) is not known in the literature.

4.3 Mean internode distan
e

Mean internode distan
e is the average distan
e between two distin
t nodes, whi
h is an indi
ator of

average message delay under the uniform message distribution. The total distan
e td

m

from node 0 to

all other nodes in G(
d

m

; d) is de�ned to be

P

0�v<
d

m

dist

m

(v). The mean internode distan
e mid

m

of G(
d

m

; d) is td

m

=(
d

m

� 1) sin
e G(
d

m

; d) is node symmetri
. The rest of this se
tion is devoted

to 
al
ulating td

m

.

Lemma 11 td

0

= b


2

=4
.

Proof Let td

k

0

be the total distan
e when 
 = k. It holds that td

1

0

= 0 and td

2

0

= 1. Let � = td

k

0

�td

k�2

0

for k � 3. We have that � =

k�1

2

+

k�1

2

= k � 1 for odd k, and that � =

k

2

+

k�2

2

= k � 1 for even

k. Thus, td

k

0

= td

k�2

0

+� = b(k � 2)

2

=4
+ (k � 1) = bk

2

=4
. �

For m � 1, we have that td

m

=

P

0�v<
d

m

dist

m

(v) =

P

0�i<
d

m�1

P

0�j<d

dist

m

(di + j) =

P

0�j<d

P

0�i<
d

m�1

dist

m

(di+ j). Let U

j

=

P

0�i<
d

m�1

dist

m

(di+ j), and thus td

m

=

P

0�j<d

U

j

.

We have two 
ases depending on the parity of d.

CASE A d is odd.

By Lemma 5, it holds that U

j

=

P

0�i<
d

m�1

fdist

m�1

(i) + jg = td

m�1

+ j � 
d

m�1

for 0 � j � bd=2
,

and that U

j

=

P

0�i<
d

m�1

fdist

m�1

(i + 1) + (d � j)g = td

m�1

+ (d � j) � 
d

m�1

for dd=2e � j <

d. Thus, the total distan
e td

m


an be expressed in a re
ursive formula: td

m

=

P

0�j<d

U

j

=

P

0�j�bd=2


U

j

+

P

dd=2e�j<d

U

j

= f(bd=2
+1) � td

m�1

+ 
d

m�1

P

0�j�bd=2


jg+f(d�dd=2e) � td

m�1

+


d

m�1

P

dd=2e�j<d

(d� j)g = d � td

m�1

+ 2
d

m�1

P

1�j�bd=2


j = d � td

m�1

+

d

2

�1

4


d

m�1

.

Theorem 7 For odd d, td

m

= 
d

m

(

d

2

�1

4d

m+ b


2

=4
=
).

Proof We prove the theorem by indu
tion on m. By Lemma 11, td

0

= b


2

=4
. For m � 1, td

m

=

d � td

m�1

+

d

2

�1

4


d

m�1

= df
d

m�1

(

d

2

�1

4d

(m� 1)+ b


2

=4
=
)g+

d

2

�1

4


d

m�1

= 
d

m

(

d

2

�1

4d

m+ b


2

=4
=
).

�

CASE B d is even.

We analyze U

j

based on Lemmas 4 (b) and 5. Note that node di + j has a nearest town ex
ept

only when j = d=2. Thus, we have that U

j

=

P

0�i<
d

m�1

fdist

m�1

(i) + jg = td

m�1

+ j � 
d

m�1

for

14



0 � j � d=2 � 1, and that U

j

=

P

0�i<
d

m�1

fdist

m�1

(i + 1) + (d � j)g = td

m�1

+ (d � j) � 
d

m�1

for d=2 � 1 � j < d. When j = d=2, U

j

=

P

0�i<
d

m�1

fminfdist

m�1

(i); dist

m�1

(i + 1)g + d=2g =

P

0�i<
d

m�1

minfdist

m�1

(i); dist

m�1

(i + 1)g + (d=2) � 
d

m�1

. Let S

0

m�1

be the sum-of-min term in

the last equation, that is, S

0

m�1

=

P

0�i<
d

m�1

minfdist

m�1

(i); dist

m�1

(i+ 1)g.

We introdu
e �

m

whi
h is the number of node pairs (v; v + 1) in G(
d

m

; d) su
h that dist

m

(v) =

dist

m

(v+1), and dis
uss relationship between S

0

m�1

and �

m

later. We 
an see, by Lemmas 5 and 6 (b),

that the equality dist

m

(di+(d=2�1)) = dist

m

(di+d=2) holds only when dist

m

(di)+1 = dist

m

(d(i+1)),

and that dist

m

(di+ d=2) = dist

m

(di+ (d=2+1)) only when dist

m

(di) = dist

m

(d(i+1))+ 1. That is,

a pair of towns di and d(i + 1) su
h that dist

m

(di) 6= dist

m

(d(i + 1)) 
ontributes one to �

m

. Thus,

we have that �

m

= 
d

m�1

� �

m�1

for m � 1; �

0

= 0 for even 
, and �

0

= 1 for odd 
.

Lemma 12 S

0

m�1

= td

m�1

� �

m

=2.

Proof We let S

00

m�1

=

P

0�i<
d

m�1

maxfdist

m�1

(i); dist

m�1

(i + 1)g. To the sum S

0

m�1

+ S

00

m�1

, i

and i + 1 
ontribute dist

m�1

(i) and dist

m�1

(i + 1), for all i, 0 � i < 
d

m�1

. Thus, we have that

S

0

m�1

+S

00

m�1

=

P

0�i<
d

m�1

fdist

m�1

(i)+dist

m�1

(i+1)g = 2 �td

m�1

. To the di�eren
e S

00

m�1

�S

0

m�1

,

i and i+1 
ontribute one only when dist

m�1

(i) 6= dist

m�1

(i+1). Thus, S

00

m�1

�S

0

m�1

= 
d

m�1

��

m�1

,

whi
h is equal to �

m

. Combining them, we have that S

0

m�1

= td

m�1

� �

m

=2. �

Lemma 13 �

m

=

1

d+1


d

m

� (�1)

m

(




d+1

� �

0

).

Proof By indu
tion on m. The equation holds for m = 0. Sin
e �

m

= 
d

m�1

� �

m�1

for m � 1, we

have that �

m

= 
d

m�1

�f

1

d+1


d

m�1

� (�1)

m�1

(




d+1

��

0

)g = (1�

1

d+1

)
d

m�1

+(�1)

m�1

(




d+1

��

0

) =

1

d+1


d

m

� (�1)

m

(




d+1

� �

0

). �

We return to the total distan
e td

m

. We have that td

m

=

P

0�j<d

U

j

=

P

0�j�d=2�1

U

j

+

P

d=2+1�j<d

U

j

+U

d=2

=

P

0�j�d=2�1

ftd

m�1

+ j � 
d

m�1

g+

P

d=2+1�j<d

ftd

m�1

+ (d� j) � 
d

m�1

g+

fS

0

m�1

+(d=2)�
d

m�1

g = d�td

m�1

+(2

P

1�j�d=2�1

j+d=2)�
d

m�1

��

m

=2 = d�td

m�1

+(d

2

=4)
d

m�1

�

�

m

=2. Thus, we get a re
ursive formula for td

m

: td

m

= d � td

m�1

+ (d

2

=4)
d

m�1

�

1

2

f

1

d+1


d

m

�

(�1)

m

(




d+1

� �

0

)g = d � td

m�1

+ d

m




2

(

d

2

�

1

d+1

) + (�1)

m

1

2

(




d+1

� �

0

).

Theorem 8 For even d, td

m

= d

m

f




2

(

d

2

�

1

d+1

)m+b


2

=4
�

1

2(d+1)

(




d+1

��

0

)g+(�1)

m

1

2(d+1)

(




d+1

��

0

).

Proof The proof is by indu
tion on m. td

0

= b


2

=4
 as we want. For m � 1, we have that

td

m

= d � td

m�1

+ d

m




2

(

d

2

�

1

d+1

) + (�1)

m

1

2

(




d+1

� �

0

)

= d[d

m�1

f




2

(

d

2

�

1

d+1

)(m� 1) + b


2

=4
 �

1

2(d+1)

(




d+1

� �

0

)g+ (�1)

m�1

1

2(d+1)

(




d+1

� �

0

)℄

+d

m




2

(

d

2

�

1

d+1

) + (�1)

m

1

2

(




d+1

� �

0

)

= d

m

f




2

(

d

2

�

1

d+1

)m+ b


2

=4
 �

1

2(d+1)

(




d+1

� �

0

)g+ (�1)

m�1

d

2(d+1)

(




d+1

� �

0

) + (�1)

m

1

2

(




d+1

� �

0

)

= d

m

f




2

(

d

2

�

1

d+1

)m+ b


2

=4
 �

1

2(d+1)

(




d+1

� �

0

)g+ (�1)

m

(




d+1

� �

0

)(

1

2

�

d

2(d+1)

)

= d

m

f




2

(

d

2

�

1

d+1

)m+ b


2

=4
 �

1

2(d+1)

(




d+1

� �

0

)g+ (�1)

m

1

2(d+1)

(




d+1

� �

0

).

This 
ompletes the proof. �
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4.4 Node visit ratio and edge visit ratio

Ea
h time a node sends a message to another node in a network, the message must 
ross some


ommuni
ation links and pass through intermediate nodes before rea
hing its destination. If the

probability that all possible sour
e-destination pairs ex
hange messages is known, the number of

visits to ea
h node and 
ommuni
ation link by an average message 
an be 
al
ulated. The number of

visits to a node (resp. an edge) by an average message is 
alled visit ratio of the node (resp. the edge).

Node visit ratio (resp. edge visit ratio) is the maximum of the visit ratios over all nodes (resp. edges) in

the network, and 
an be used to lo
ate the bottlene
k nodes (resp. edges) that limit the performan
e

of the network. Under the uniform message distribution, we analyze node visit ratio nvr

m

and edge

visit ratio evr

m

of the shortest path routing algorithm in G(
d

m

; d) presented in Se
tion 3.

Node visit ratio nvr

m


an be 
al
ulated easily using the fa
t that G(
d

m

; d) is node symmetri
.

A message from v to w 
ontributes one to the visit 
ount of ea
h node in the path between v and w

(in
luding v and w), and thus we have that nvr

m

is (mid

m

+ 1)=
d

m

.

Theorem 9 nvr

m

= ftd

m

=(
d

m

� 1) + 1g=
d

m

.

Now, we 
onsider edge visit ratio evr

m

. We denote by tv

m

(e) the number of messages visiting the

edge e among 
d

m

�1 messages to 0 from all nodes other than 0, and by tv

m

(d

i

) the sum of tv

m

(e) for

every edge e of jump d

i

. Employing the fa
t that every edge pair (v; v+ d

i

) and (w;w+ d

i

) is similar,

we 
an see that evr

m

is the maximum of tv

m

(d

i

)=(
d

m

� 1), where tv

m

(d

i

) is the average number of

messages 
rossing edge e of jump d

i

, that is, tv

m

(d

i

) = tv

m

(d

i

)=E

i

, where E

i

is the number of edges

of jump d

i

. E

i

= 
d

m

=2 if and only if d

i

= 
d

m

=2.

E

i

=

8

>

>

<

>

>

:

0 if 
 = 1 and i = m;


d

m

=2 if either 
 = 1, d = 2, and i = m� 1 or 
 = 2 and i = m;


d

m

otherwise:

To analyze tv

m

(d

i

), we assume that every node (in
luding node 0) has one message to 0 in

G(
d

m

; d). The message on 0 does not a�e
t the edge visit ratio. Remember that the routing al-

gorithm sends messages along the smallest jump �rst. Consider the situation that every message is

sent via all edges of jump d

j

su
h that 0 � j < i, and waits for delivery in a node whi
h is a multiple of

d

i

. We denote by �(kd

i

; i�1) the number of messages waiting for delivery in node kd

i

, 0 � k < 
d

m�i

.

Here,

P

0�k<
d

m�i

�(kd

i

; i� 1) is always 
d

m

. We 
onsider �(kd

i

; i� 1), and then dis
uss tv

m

(d

i

). By

assumption, �(kd

0

;�1) = 1 for all 0 � k < 
d

m

. To 
ompute �(kd

i

; i � 1), routing is 
onsidered on

the subgraph indu
ed by the multiples of d

i�1

whi
h is isomorphi
 to G(
d

m�(i�1)

; d).

Lemma 14 For odd d, �(kd

i

; i� 1) = d

i

for all 0 � i � m, 0 � k < 
d

m�i

.
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Proof We show the lemma by indu
tion on i. For i = 0, �(kd

0

;�1) = d

0

. The node kd

i

re-


eives messages from (kd + j)d

i�1

for all �bd=2
 � j � bd=2
. Thus, we have that �(kd

i

; i � 1) =

P

�bd=2
�j�bd=2


�((kd+ j)d

i�1

; i� 2) =

P

�bd=2
�j�bd=2


d

i�1

= d

i

. �

Lemma 15 For even d and 0 � i < m,

�(kd

i

; i� 1) =

8

>

>

<

>

>

:

d

i

+D

i�1

if k mod d = 0;

d

i

�D

i�1

if k mod d = d=2;

d

i

otherwise:

where D

j

= d

j

�D

j�1

; D

�1

= 0.

Proof D

j


an be rewritten as d

j

� d

j�1

+ d

j�2

� � �+ (�1)

j

d

0

. We prove the lemma by indu
tion on

i. For i = 0, �(kd

0

;�1) = d

0

. The node kd

i

re
eives messages from (kd+ j)d

i�1

for all �(d=2� 1) �

j � d=2� 1. kd

i

may re
eive messages from (kd� d=2)d

i�1

or (kd+ d=2)d

i�1

a

ording to Lemma 7

(b). We have the following:

�(kd

i

; i� 1) =

8

>

>

>

>

>

<

>

>

>

>

>

:

P

�d=2�j�d=2

�((kd + j)d

i�1

; i� 2) if k mod d = 0;

P

�d=2<j<d=2

�((kd + j)d

i�1

; i� 2) if k mod d = d=2;

P

�d=2<j�d=2

�((kd + j)d

i�1

; i� 2) if 1 � k mod d � d=2� 1;

P

�d=2�j<d=2

�((kd + j)d

i�1

; i� 2) if d=2 + 1 � k mod d � d� 1:

When k mod d = 0, we have that �(kd

i

; i�1) =

P

�d=2�j�d=2

�(jd

i�1

; i�2) = d�d

i�1

+(d

i�1

�D

i�2

) =

d

i

+D

i�1

. For k = d=2, �(kd

i

; i � 1) = d � d

i�1

� (d

i�1

�D

i�2

) = d

i

�D

i�1

. When k 6= 0; d=2, we

have that �(kd

i

; i� 1) = d

i

. Thus, we have the theorem. �

Lemma 16 For even d, �(kd

m

;m� 1) = d

m

if 
 = 1. When 
 � 2,

�(kd

m

;m� 1) =

8

>

>

<

>

>

:

d

m

+D

m�1

if k = 0;

d

m

�D

m�1

if k = d
=2e;

d

m

otherwise:

Proof When 
 = 1, k must be 0 and �(kd

m

;m� 1) = d

m

. For 
 � 2, we have the following based on

Lemma 7 (a). Here, we have no assumption on the parity of 
.

�(kd

m

;m� 1) =

8

>

>

>

>

>

<

>

>

>

>

>

:

P

�d=2�j�d=2

�((kd+ j)d

m�1

;m� 2) if k = 0;

P

�d=2<j<d=2

�((kd+ j)d

m�1

;m� 2) if k = d
=2e;

P

�d=2<j�d=2

�((kd+ j)d

m�1

;m� 2) if 1 � k � d
=2e � 1;

P

�d=2�j<d=2

�((kd+ j)d

m�1

;m� 2) if d
=2e+ 1 � k � 
� 1:

For k = 0, �(kd

m

;m� 1) =

P

�d=2�j�d=2

�(jd

m�1

;m� 2) = d � d

m�1

+(d

m�1

�D

m�2

) = d

m

+D

m�1

by Lemma 15. For k = d
=2e, we have that �(kd

m

;m�1) = d �d

m�1

� (d

m�1

�D

m�2

) = d

m

�D

m�1

.

For the rest 
ases, �(kd

m

;m� 1) = d

m

. This 
ompletes the proof. �
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Let us 
onsider tv

m

(d

i

). Note that tv

m

(d

m

) is not de�ned when 
 = 1, sin
e there is no edge of

jump d

m

. It holds that 0 < D

j

=d

j

� 1 and D

j

=d

j

=

d

d+1

f1� (�

1

d

)

j+1

g for all j � 0.

Lemma 17

tv

m

(d

i

) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

b


2

=4
 if i = 0 and m = 0;


d

m�1

bd

2

=4
 if i = 0 and m � 1;


d

m�1

bd

2

=4
 if 1 � i < m and d odd;


d

m�1

fbd

2

=4
 � (1=2)D

i�1

=d

i�1

g if 1 � i < m and d even;

d

m

b


2

=4
 if i = m and d odd:

d

m

b


2

=4
 � b
=2
D

m�1

if i = m and d even:

Proof We have that tv

0

(d

0

) =

P

0<j<


minfj; 
 � jg. It holds that

P

0<j<


minfj; 
 � jg =

2

P

1�j�(
�1)=2

j = b


2

=4
 for odd 
, and that

P

0<j<


minfj; 
�jg = 2

P

1�j�(
=2�1)

j+
=2 = b


2

=4


for even 
. Thus, tv

0

(d

0

) = b


2

=4
. For m � 1, we have that td

m

(d

0

) =

P

0�k<
d

m�1

P

0<j<d

�((kd+

j);�1) � minfj; d � jg = 
d

m�1

P

0<j<d

minfj; d � jg = 
d

m�1

bd

2

=4
. Now, we 
onsider the 
ase of

1 � i < m. We have that td

m

(d

i

) =

P

0�k<
d

m�i�1

P

0<j<d

�((kd + j)d

i

; i � 1) � minfj; d � jg =


d

m�i�1

P

0<j<d

�(jd

i

; i � 1) � minfj; d � jg. For odd d, by Lemma 14, we have that td

m

(d

i

) =


d

m�i�1

P

0<j<d

d

i

�minfj; d� jg = 
d

m�1

bd

2

=4
. For even d, by Lemma 15, we have that tv

m

(d

i

) =


d

m�i�1

f2

P

1�j�d=2�1

d

i

� j + (d

i

� D

i�1

) � d=2g = 
d

m�1

fbd

2

=4
 � (1=2)D

i�1

=d

i�1

g. For the last


ase of i = m(
 � 2), we have that tv

m

(d

m

) =

P

0<k<


�(kd

m

;m � 1) � minfk; 
 � kg. For odd

d, by Lemma 14, tv

m

(d

m

) =

P

0<k<


d

m

� minfk; 
 � kg = d

m

b


2

=4
. For even d, by Lemma 16,

tv

m

(d

m

) =

P

0<k<
;k 6=d
=2e

d

m

�minfj; 
� jg+ (d

m

�D

m�1

) � b
=2
 = d

m

b


2

=4
 � b
=2
D

m�1

. �

Lemma 18 (a) For 1 � i < m, tv

m

(d

i

) � tv

m

(d

0

).

(b) For m � 1 and 
 � 2, tv

m

(d

m

) � tv

m

(d

0

).

(
) For even d and 1 � i < m, tv

m

(d

i

)� tv

m

(d

i�1

) = (�1)

i


d

m�i

=2.

Proof A proof of (a) is immediate from Lemma 17 sin
e D

i�1

=d

i�1

is always positive. We have that

td

m

(d

0

)�td

m

(d

m

) = d

m�1

f
bd

2

=4
�db


2

=4
g > 0 for odd d and td

m

(d

0

)�td

m

(d

m

) = d

m�1

f
bd

2

=4
�

db


2

=4
g + b
=2
D

m�1

> 0 for even d, sin
e 
bd

2

=4
 � db


2

=4
 � 
(d

2

� 1)=4 � d(


2

=4) = f
d(d �


) � 
g=4 � (
d � 
)=4 > 0. For (
), we have that tv

m

(d

i

) � tv

m

(d

i�1

) = �(1=2)
d

m�1

(D

i�1

=d

i�1

�

D

i�2

=d

i�2

). Here, D

i�1

=d

i�1

�D

i�2

=d

i�2

= (D

i�1

� dD

i�2

)=d

i�1

= (�1)

i�1

=d

i�1

. This 
ompletes

the proof. �

By using Lemmas 17 and 18, we 
an 
al
ulate edge visit ratio evr

m

.

Theorem 10

evr

m

=

8

>

>

>

>

>

<

>

>

>

>

>

:

fb


2

=4
=
g=(
d

m

� 1) if m = 0;

1

3

f2 + (�

1

2

)

m�1

g=(
d

m

� 1) if 
 = 1, d = 2, and m � 2;

1=(
d

m

� 1) if either 
 = 1, d = 2, and m = 1 or 
 = 2 and d = 3;

fbd

2

=4
=dg=(
d

m

� 1) otherwise:

18



Proof Let T be the maximum of tv

m

(d

i

) = tv

m

(d

i

)=E

i

over all possible i. Then we have that

evr

m

= T=(
d

m

� 1). When m = 0, we have that T = tv

m

(d

0

)=
d

0

= b


2

=4
=
. We assume that

m � 1. Note that E

i

= 0 if 
 = 1 and i = m; E

i

= 
d

m

=2 if either 
 = 1, d = 2, and i = m � 1 or


 = 2 and i = m; otherwise, E

i

= 
d

m

.

Case 1 
 = 1: We have no edge of jump d

m

.

Case 1.1 d odd:

By Lemma 18 (a), T = max

0�i�m�1

tv

m

(d

i

)=
d

m

= tv

m

(d

0

)=
d

m

= 
d

m�1

bd

2

=4
=
d

m

= bd

2

=4
=d.

Case 1.2 d even:

Case 1.2.1 d = 2: E

m�1

= 
d

m

=2.

Whenm = 1, T = tv

m

(d

0

)=E

0

= 
d

m�1

bd

2

=4
=(
d

m

=2) = 1. Form � 2, we have that max

0�i�m�2

tv

m

(d

i

)=
d

m

=

tv

m

(d

0

)=
d

m

= bd

2

=4
=d = 1=2, and that tv

m

(d

m�1

)=E

m�1

= 
d

m�1

fbd

2

=4
�(1=2)D

m�2

=d

m�2

g=(
d

m

=2) =

1 � (1=2)D

m�2

=d

m�2

� 1=2 sin
e it holds that 0 � D

m�2

=d

m�2

� 1. Thus, we have that T =

1� (1=2)D

m�2

=d

m�2

and 
an show that T = f2 + (�1=2)

m�1

g=3.

Case 1.2.2 d 6= 2:

We have that T = max

0�i�m�1

tv

m

(d

i

)=
d

m

= tv

m

(d

0

)=
d

m

= bd

2

=4
=d.

Case 2 
 = 2: E

m

= 
d

m

=2.

Case 2.1 d odd:

We have that max

0�i�m�1

tv

m

(d

i

)=
d

m

= tv

m

(d

0

)=
d

m

= bd

2

=4
=d, and that tv

m

(d

m

)=(
d

m

=2) =

d

m

b


2

=4
=(
d

m

=2) = (2=
)b


2

=4
 = 1. Thus, T = maxfbd

2

=4
=d; 1g. T = 1 if d = 3; otherwise,

T = bd

2

=4
=d.

Case 2.2 d even:

We have that max

0�i�m�1

tv

m

(d

i

)=
d

m

= tv

m

(d

0

)=
d

m

= bd

2

=4
=d, and that tv

m

(d

m

)=(
d

m

=2) =

fd

m

b


2

=4
� b
=2
D

m�1

g=(
d

m

=2) = (2=
)b


2

=4
� (2=
d)b
=2
D

m�1

=d

m�1

= 1� (1=d)D

m�1

=d

m�1

.

We 
an see that bd

2

=4
=d = d=4 � 1, and that 1�(1=d)D

m�1

=d

m�1

= 1�

1

d+1

f1�(�

1

d

)

m

g � 1�

1

d

sin
e

0 < 1� (�

1

d

)

m

�

d+1

d

for all m � 1. Thus, we have that T = maxfbd

2

=4
=d; 1� (1=d)D

m�1

=d

m�1

g

= bd

2

=4
=d.

Case 3 
 � 3:

We have that T = max

0�i�m

tv

m

(d

i

)=
d

m

= tv

m

(d

0

)=
d

m

= bd

2

=4
=d. This 
ompletes the proof. �

5 Embeddings among G(2

m

; 2

k

) and Q

m

An embedding of a (guest) graph G into a (host) graph H is a one-to-one mapping � of the verti
es

of G into the verti
es of H , 
ombined with a mapping of an edge e = (v; w) of G to a path �(e) of H

between �(v) and �(w). The 
ost of an embedding � is measured in terms of dilation, 
ongestion, and

expansion. The dilation of an edge e in G under the embedding � is the length of the path �(e), and

the dilation of � is the maximum dilation over all edges in G. The 
ongestion of an edge e

0

in H is the

19



number of edges e in G with �(e) in
luding e

0

, and the 
ongestion of � is the maximum 
ongestion

over all edges in H . The expansion of � is the ratio of the size of G to the size of H .

5.1 Embedding of G(2

m

; 2

k

) into Q

m

We present an expansion one embedding �

m

of re
ursive 
ir
ulant G(2

m

; 2

k

) into hyper
ube Q

m

.

The embedding �

m

is simple and re
ursively de�ned. The node �

m

(v) of Q

m

to whi
h a node v of

G(2

m

; 2

k

) is mapped is a vth m-bit binary re
e
ted Gray 
ode, whi
h is de�ned as follows: �

1

(0) = 0

and �

1

(1) = 1; �

m

(v) = �

m�1

(bv=2
) b, where b = 0 if v mod 4 is either 0 or 3, b = 1 otherwise. The

sequen
e of �

3

(v)'s, for example, is (000; 001; 011; 010; 110; 111; 101; 100). The sequen
e of �

m

(v)'s

forms a hamiltonian 
y
le of Q

m

, and we 
all it the 
anoni
al 
y
le of Q

m

.

Let us restri
t our attention to the embedding of G(2

m

; 2) into Q

m

. The embedding of G(2

m

; 2

k

)

into Q

m


an be obtained dire
tly from the embedding of G(2

m

; 2) into Q

m

with the same embedding


osts sin
e G(2

m

; 2

k

) is a subgraph of G(2

m

; 2). To de�ne the path �

m

(e) of Q

m

for an edge e of

G(2

m

; 2), it is 
onvenient to represent the embedding �

m

in a graphi
al way.

In the graphi
al representation of �

m

, Q

m

is drawn in a usual way (see Figure 5 (a) and (b)):

small 
ir
les for verti
es and solid lines for edges of Q

m

. A node v of G(2

m

; 2) mapped to the node

�

m

(v) of Q

m

is parenthesized and shown next to �

m

(v). An edge e = (v; w) of G(2

m

; 2) mapped to

the path �

m

(e) of Q

m

is drawn in dotted line between �

m

(v) and �

m

(w).

The embedding �

m

of G(2

m

; 2) into Q

m


an be 
onstru
ted re
ursively (see also Figure 5). We

denote by �

0

m

the embedding �

m

ex
luding all the dotted paths mapped from the edges of jump

one. That is, �

0

m

is an embedding of G(2

m

; 2) without edges of jump one into Q

m

. We make two


opies �

0

m�1

and 
on
atenate \0" and \1" at the end of verti
es in the �rst and se
ond 
opy of Q

m�1

,

respe
tively. Now they are the verti
es of Q

m

. Join by a solid edge between nodes di�ering only in

the last bit position, and rename the parenthesized nodes of G(2

m

; 2) a

ording to �

m

(v).

Observe that the dotted path mapped from an edge of jump 2

j

(j � 1) in �

m�1

is now the path

for an edge of jump 2

j+1

in �

m

. The dotted paths �

m

(e) for edges of jump one are drawn on the


anoni
al 
y
le of Q

m

, and the dotted paths �

m

(e) for edges of jump two are drawn in su
h a way

that the 
ongestions of edges on the 
anoni
al 
y
le of ea
h Q

m�1

are in
reased by no more than two

and the 
ongestions of edges joining nodes di�ering in the last bit position are three.

We are ready to de�ne the path �

m

(e) of Q

m

to whi
h an edge e = (v; w) of G(2

m

; 2) is mapped.

The path is represented by a sequen
e of verti
es. Assume v + 2

i

� w (mod 2

m

).

Case 1 i � 2

�

m

(e) is obtained by 
on
atenating b at the end of ea
h vertex in the path �

m�1

(e

0

) of Q

m�1

,

where e

0

= (bv=2
; bw=2
), b = 0 if v mod 4 is either 0 or 3, and b = 1 otherwise.
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(a) �

2

(b) �

3

0000 (0)

0110
(4)0100

(7)

1100 (8)

1000 (15)

0001 (1)

0011 (2)

0111 (5)0101 (6)

1101 (9)

1011
(13)

1001
(14)

0010
(3)

1110 (11)

1010 (12)

1111
(10)

(
) �

4

Figure 5: Graphi
al representation of �

m
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Case 2 i = 1

�

m

(e) is the path of length two passing through the vertex �

m

((v + 3) mod 2

m

) if v mod 4 is

either 0 or 2, and passing through the vertex �

m

((v � 1) mod 2

m

) otherwise.

Case 3 i = 0

�

m

(e) is the path �

m

(v); �

m

(w) of length one.

Now, we 
onsider the 
osts, dilation and 
ongestion, of the embedding �

m

of G(2

m

; 2) into Q

m

.

To analyze the 
osts, we 
onsider the 
osts of �

0

m

�rst.

Lemma 19 The embedding �

0

m

satis�es the two 
onditions for all m.

(a) The dilation of an edge of jump greater than one is two.

(b) The 
ongestion of an edge on the 
anoni
al 
y
le of Q

m

is no more than two, and the 
ongestions

of the other edges are no more than four.

Proof We prove the lemma by indu
tion on m. Observe that two 
onditions (a) and (b) hold for

m = 2; 3 as shown in Figure 5. Assume that the embedding �

0

m�1

satis�es the 
onditions. The dilation

of an edge of jump two is two by the de�nition of �

m

. The dilation of an edge of jump greater than

two in �

0

m

is equal to that of an edge of half jump in �

0

m�1

, thus two. Thus, we have (a). An edge

on the 
anoni
al 
y
le of Q

m

is either an edge joining nodes di�ering in the last bit position (we 
all

it type A edge) or on an 
anoni
al 
y
le of Q

m�1

(we 
all it type B edge). The 
ongestion of type

A edge is two by the 
onstru
tion of �

m

, and the 
ongestion of type B edge remains two sin
e every

dotted path from an edge of jump two passes through no type B edge. The 
ongestion of an edge not

on the 
anoni
al 
y
le of Q

m

but on an 
anoni
al 
y
le of Q

m�1

is in
reased by two, still no more

than four. The 
ongestions of the other edges remain un
hanged. This 
ompletes the proof. �

Theorem 11 G(2

m

; 2) 
an be embedded into Q

m

with dilation two and 
ongestion four.

Proof The dotted paths �

m

(e) for edges of jump one are of length one and drawn on the 
anoni
al


y
le of Q

m

. The dilation of an edge of jump one in G(2

m

; 2) is one, and the 
ongestion of an edge on

the 
anoni
al 
y
le is in
reased by one. Thus, by Lemma 19, �

m

is an embedding with dilation two

and 
ongestion four. �

Corollary 3 G(2

m

; 2

k

) 
an be embedded into Q

m

with dilation two and 
ongestion four.

Dilation of the embedding is the best possible for k < m, sin
e G(2

m

; 2

k

) is not a subgraph of Q

m

.

G(2

m

; 2

k

) has a 
y
le 0; 1; � � � ; 2

k

of length 2

k

+ 1, while Q

m

has no odd length 
y
le.
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5.2 Embedding of Q

m

into G(2

m

; 2

k

)

We present the embeddings of Q

m

into G(2

m

; 2

k

) based on the embeddings of Q

k

into a path graph

P

2

k , whi
h has verti
es f0; 1; :::; 2

k

� 1g and edges f(v; w) j v+1 = wg. One of the embeddings of Q

m

into G(2

m

; 2

k

), denoted by  

k

m

, is an identity mapping. Re
all that Q

m

and G(2

m

; 2

k

) have the same

vertex set. We also employ graphi
al representations for embedding  

k

m

. Here small 
ir
les and solid

lines are used for representing verti
es and edges of G(2

m

; 2

k

), and dotted lines for paths of G(2

m

; 2

k

)

mapped from edges of Q

m

. For example, see Figure 6.

Under the embedding  

k

m

, the verti
es of Q

m

with the same least signi�
ant k bits are mapped

to the verti
es of G(2

m

; 2

k

) with the same remainder when divided by 2

k

. The dotted path  

k

m

(e)

in G(2

m

; 2

k

) for an edge e = (v; w) is drawn on the line between  

k

m

(v) and  

k

m

(w) if v and w di�er

in one of the least signi�
ant k bits; otherwise, the path  

k

m

(e) 
omes from the path  

k

m�k

(e

0

) in

G(2

m�k

; 2

k

), where e

0

= (bv=2

k


; bw=2

k


).

(a)  

2

2

0 (0000)

1 (0001)

2 (0010)

3 (0011)

4
(0100)

8 (1000)

12 (1100)

5
(0101)

9 (1001)

6
(0110)

10 (1010)

7 (0111)
11 (1011)

15
(1111)

13
(1101)

14
(1110)

(b)  

2

4

Figure 6: Graphi
al representation of  

2

m

The path  

k

m

(e) of G(2

m

; 2

k

) for an edge e = (v; w) of Q

m

is de�ned in the following. We

assume that v = b

m�1

� � � b

i+1

0b

i�1

� � � b

0

and w = b

m�1

� � � b

i+1

1b

i�1

� � � b

0

, b

j

2 f0; 1g. The path is

represented by a sequen
e of verti
es.

Case 1 0 � i � k � 1
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k

m

(e) is the dotted path  

k

m

(v);  

k

m

(v + 1); � � � ;  

k

m

(w) of length 2

i

.

Case 2 k + 1 � i � m

 

k

m

(e) is the path obtained by multiplying 2

k

and adding  

k

m

(v) mod 2

k

for ea
h vertex in the

path  

k

m�k

(e

0

), where e

0

= (v

0

; w

0

), and v

0

and w

0

are m � k bit binary numbers obtained by

deleting the least signi�
ant k bits of v and w, respe
tively.

Let us 
onsider the 
osts of embedding  

k

m

. The identity embedding of Q

k

into P

2

k was studied

in [12℄. It was proved that the embedding has dilation 2

k�1

and 
ongestion b2

k+1

=3
, and that both


ongestion and the sum 2

2k�1

� 2

k�1

of dilations over all edges are the minimum possible.

Lemma 20 The identity embedding of Q

k

into P

2

k
has dilation 2

k�1

and 
ongestion b2

k+1

=3
.

Theorem 12 Q

m


an be embedded into G(2

m

; 2

k

) with dilation 2

k�1

and 
ongestion b2

k+1

=3
.

Proof The dilation (resp. 
ongestion) of  

k

m

is the maximum of the dilation (resp. 
ongestion) of

 

k

m�k

and the dilation (resp. 
ongestion) of identity embedding of Q

k

into P

2

k . For m

0

� k, both

dilation and 
ongestion of  

k

m

0

are less than or equal to those of the identity embedding of Q

k

into P

2

k ,

respe
tively. Thus, the dilation and 
ongestion of  

k

m

are equal to those of the identity embedding of

Q

k

into P

2

k , respe
tively. �

Insisting on embeddings of Q

m

into G(2

m

; 2

k

) su
h that verti
es of Q

m

with the same last k bits

are mapped to verti
es of G(2

m

; 2

k

) with the same remainder when divided by 2

k

, we 
an redu
e

dilation of the embedding by employing the optimal dilation embedding of Q

k

into P

2

k
in [13℄. We


an de�ne another embedding  

0k

m

of Q

m

into G(2

m

; 2

k

) in a very similar way to  

k

m

. An edge (v; w)

is mapped to the path  

0k

m

(e) a

ording to the embedding of Q

k

into P

2

k
if v and w di�er in one of

the least signi�
ant k bits; otherwise, the path  

0k

m

(e) 
omes from the path  

0k

m�k

(e

0

) in G(2

m�k

; 2

k

),

where e

0

= (bv=2

k


; bw=2

k


). Detailed des
ription of the embedding  

0k

m

is omitted.

Lemma 21 Q

k


an be embedded into P

2

k with dilation

P

k�1

i=0

�

i

bi=2


�

and 
ongestion d

k

2

e

�

k

bk=2


�

.

Proof We employ the algorithm in [13℄ for embedding Q

k

into P

2

k with the optimal dilation

P

k�1

i=0

�

i

bi=2


�

to analyze the 
ongestion of the embedding. The algorithm 
hooses any vertex and

maps it to 0; having l verti
es mapped to f0; 1; � � � ; l�1g, it maps to l from any vertex adja
ent to the

earliest mapped vertex as possible. For our purpose, we assume that in the �rst step, the algorithm


hooses the vertex 0 in Q

k

. We denote byW

i

the subset of verti
es in Q

k

whose binary representation

has i 1's. We observe that every vertex in W

i

is 
hosen before any vertex in W

i+1

, and that the

verti
es in W

i

are mapped to W

0

i

= fv

i

; v

i

+ 1; � � � ; v

i

+ jW

i

j � 1g where v

i

=

P

0�j<i

jW

j

j. Among

k edges in
ident to a vertex mapped to v

i

+ j, i edges have endverti
es in W

i�1

and the remaining

k � i edges have endverti
es in W

i+1

. Thus, the 
ongestion of the edge (v

i

+ j � 1; v

i

+ j) is equal
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to i(jW

i

j � j) + (k � i)j. The maximum 
ongestion C

i

over all edges in
ident to a vertex in W

0

i

is

max

0�j�jW

i

j

fi(jW

i

j � j) + (k � i)jg = maxfi; k � igjW

i

j. Note that C

i

= maxfi; k � ig

�

k

i

�

= C

k�i

.

The 
ongestion of the embedding is C

max

= max

0�i�k

C

i

= max

0�i�bk=2


C

i

. We 
laim that C

max

=

C

bk=2


= d

k

2

e

�

k

bk=2


�

. For every i � bk=2
 � 1, it holds that C

i+1

=C

i

= (k � (i+ 1))=(i+ 1) � 1 sin
e

maxfi+1; k� (i+1)g = k� (i+1), maxfi; k� ig = k� i, and

�

k

i+1

�

=

�

k

i

�

= (k� i)=(i+1). Thus, we

have the 
laim. This 
ompletes the proof. �

Theorem 13 Q

m


an be embedded into G(2

m

; 2

k

) with dilation

P

k�1

i=0

�

i

bi=2


�

and 
ongestion d

k

2

e

�

k

bk=2


�

.

Proof We 
an observe that the dilation (resp. 
ongestion) of  

0k

m

is the maximum of the dilation

(resp. 
ongestion) of  

0k

m�k

and the dilation (resp. 
ongestion) of the embedding of Q

k

into P

2

k , and

thus we have the theorem by Lemma 21. �

5.3 Embedding of G(2

m

; 2) into G(2

m

; 2

k

)

We present an embedding of G(2

m

; 2) into G(2

m

; 2

k

). The embedding is an identity mapping, that is,

a vertex v of G(2

m

; 2) is mapped to the same vertex v of G(2

m

; 2

k

). An edge e = (v; w) of G(2

m

; 2)

satisfying v + 2

i

� w (mod 2

m

) is mapped to the dotted path v; v + 1; v + 2; � � � ; w between v and w

on the hamiltonian 
y
le 
onsisting of edges of jump one if i < k. Here, the additions are performed

modulo 2

m

. Otherwise, the path 
omes from the embedding of G(2

m�k

; 2) into G(2

m�k

; 2

k

). Detailed

des
ription of the embedding is omitted.

Theorem 14 G(2

m

; 2) 
an be embedded into G(2

m

; 2

k

) with dilation 2

k�1

and 
ongestion 2

k

� 1.

Proof Let us 
onsider the embedding of all edges of jump less than 2

k

into the hamiltonian 
y
le of

length 2

m

. The dilation of the embedding is obviously 2

k�1

. All edges of jump 2

i


ontribute 2

i

to

the 
ongestion of an edge, and thus the 
ongestion of the embedding is

P

0�j�k�1

2

j

= 2

k

� 1. We


an observe that the dilation (resp. 
ongestion) of the embedding of G(2

m

; 2) into G(2

m

; 2

k

) is the

maximum of 2

k�1

(resp. 2

k

� 1) and the dilation (resp. 
ongestion) of the embedding of G(2

m�k

; 2)

into G(2

m�k

; 2

k

). Combining this with the fa
t that the dilation (resp. 
ongestion) of the embedding

of G(2

m

0

; 2) into G(2

m

0

; 2

k

) with m

0

� k is less than or equal to 2

k�1

(resp. 2

k

� 1), we 
an prove the

theorem. �

5.4 Relationship among G(2

m

; 2), G(2

m

; 4), and Q

m

Let us dis
uss some interesting relationships between re
ursive 
ir
ulants and hyper
ubes, espe
ially

among G(2

m

; 2), G(2

m

; 4), and Q

m

. The relationships are presented in Figure 7. Here an arrow with

weights from a graph G to H is an embedding of G into H and their asso
iated 
osts: dilation and


ongestion in sequen
e. Both G(2

m

; 4) and Q

m

are subgraphs of G(2

m

; 2). G(2

m

; 2) 
an be embedded
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into Q

m

with dilation two and 
ongestion four by Theorem 11. G(2

m

; 4) also 
an be embedded into

Q

m

with the same 
osts. And Q

m


an be embedded into G(2

m

; 4) with dilation two and 
ongestion

two by Theorem 12. The embedding of G(2

m

; 2) into G(2

m

; 4) is due to the Theorem 14.

G(2 ,2)
m

Qm

G(2 ,4)
m

2,3

2,4

1,1

2,2
1,1

2,4

Figure 7: Relationship among G(2

m

; 2), G(2

m

; 4), and Q

m

in their embeddings

Now, let us 
onsider optimality of the embedding 
osts given in Figure 7. It is easy to 
he
k that

dilations of all the given embeddings are optimal. Congestion of the embedding of Q

m

into G(2

m

; 4) is

optimal for m � 3 sin
e they are non-isomorphi
 graphs with the same number of verti
es and edges.

Optimality of 
ongestion of the embedding of G(2

m

; 2) into G(2

m

; 4) 
an be shown by a simple


ounting argument. Among (2m � 1)2

m�1

edges of G(2

m

; 2), at most m2

m�1

edges are mapped to

dotted paths of length one and at least (m�1)2

m�1

edges are mapped to paths of length two or more.

The sum of lengths of the dotted paths is at least (3m�2)2

m�1

. Even though they are distributed over

all edges of G(2

m

; 4), 
ongestion of the embedding is at least d(3m�2)2

m�1

=m2

m�1

e = d(3m�2)=me,

whi
h is greater than or equal to three for all m � 3. Thus, the embedding of G(2

m

; 2) into G(2

m

; 4)

has an optimal 
ongestion for m � 3.

It is not known whether or not 
ongestions of the embedding of G(2

m

; 2) and G(2

m

; 4) into Q

m

are optimal. If we insist on embeddings by the binary re
e
ted Gray 
ode, 
ongestion four is not

avoidable by a 
ounting argument.

6 Con
luding Remarks

In this paper, re
ursive 
ir
ulants were proposed as an inter
onne
tion stru
ture for multi
omputer

networks. Re
ursive 
ir
ulants are node symmetri
 and have some strong hamiltonian properties:

G(N; d) is either hamiltonian 
onne
ted or bipartite and bihamiltonian 
onne
ted, and G(
d

m

; d) is

hamiltonian de
omposable. We developed a shortest path routing algorithm without routing table

in G(
d

m

; d), and analyzed several important network metri
s of G(
d

m

; d) su
h as 
onne
tivity,

diameter, mean internode distan
e, and visit ratio (under the uniform message distribution). As shown

in Table 1, G(2

m

; 4) a
hieves noti
eable improvements 
ompared with hyper
ube Q

m

in diameter,

mean internode distan
e, and node visit ratio. Conne
tivity and edge 
onne
tivity, edge visit ratio of

G(2

m

; 4) are equal to those of Q

m

, respe
tively. G(2

m

; 4) has a simple shortest path routing algorithm
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and a simple re
ursive broad
asting algorithm.

Table 1: Comparison of G(2

m

; 4) with Q

m

G(2

m

; 4) Q

m

number of nodes 2

m

2

m

degree m m

symmetry node- yes yes

edge- no yes

hamiltoni
ity hamiltonian 
onne
ted yes bihamiltonian 
onne
ted

hamiltonian de
omposition yes yes


onne
tivity node- m m

edge- m m

distan
e diameter d(3m� 1)=4e m

mean internode distan
e approx. (9=20)m approx. (1=2)m

visit ratio node- approx. f(9=20)m+ 1g=2

m

approx. f(1=2)m+ 1g=2

m

edge- 1=(2

m

� 1) 1=(2

m

� 1)


y
le of length l every l � 4 every even l � 4

subgraph 
omplete binary tree yes no

binomial tree yes yes

graph invariant 
hromati
 number, m � 3 3 2

independen
e number, m � 3 (3=8)2

m

(1=2)2

m

We presented an embedding of G(2

m

; 2

k

) into Q

m

based on the binary re
e
ted Gray 
ode with

dilation two and 
ongestion four, and also gave embeddings of Q

m

into G(2

m

; 2

k

) based on embed-

dings of Q

k

into P

2

k with either dilation 2

k�1

and 
ongestion b2

k+1

=3
 or dilation

P

k�1

i=0

�

i

bi=2


�

and


ongestion d

k

2

e

�

k

bk=2


�

. All of the embeddings presented in this paper have an optimal expansion. To

study embeddings into Q

m

and G(2

m

; 2

k

), it is worthwhile investigating embeddings into G(2

m

; 2).

Embedding of an arbitrary binary tree into Q

m

with dilation two is one of the long standing open

questions [4, 26, 27℄. Related to the open question, we pose an open problem whether or not every

binary tree with 2

m

nodes or less is a subtree of G(2

m

; 2). If our open problem has a positive answer,

the question also has a positive one, but the 
onverse is not true in general.
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