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We consider two definitions of the even-dimensional hypercube given in the literature. The labeled
graphs obtained by two definitions are not same, but one is isomorphic to the other. By interconnecting
two labeled graphs in such a way that each pair of vertices with the same label are joined by an edge,
we construct a vertex-symmetric graph with the diameter about half that of a comparable hypercube.
We extend the result to a general scheme for interconnecting two hypercubes to produce a network
topology called the bicube. We show that the bicube preserves the vertex-symmetry, bipartiteness,
hamiltonian and bipancyclic properties of the hypercube, and is highly edge-symmetric.
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1. Introduction

Many interconnection network topologies have been proposed in the literature for con-
necting a large number of processors efficiently, for example, [3–7, 9, 12, 14]. The topology
of an interconnection network can be represented as a graph in which vertices and edges
correspond to nodes and communication links, respectively. In this paper, we will use
standard terminology in graphs (see [2]). One popular topology is the hypercube graph
which has 2m vertices and each vertex has m edges incident to it. The hypercube is
scalable, symmetric and has a logarithmic diameter, simple routing and broadcasting
algorithms.

The diameter is an important measure for an interconnection network, because it is
concerned with the maximum routing steps in transmitting a message. The hypercube
does not have the smallest diameter that is possible with the degree of a vertex it has.
To achieve the lower diameter than that of hypercube, a variety of hypercube variants
appeared. There have been two major approaches taken so far in designing hypercube
variants. In one approach, the degree of a vertex is increased by adding extra edges to
create “shortcuts” between vertices, e.g. the folded hypercube [8], the enhanced hyper-
cube [26] whose diameters are about half that of a comparable hypercube. In the other
approach, the degree of a vertex is kept the same by just rearranging the hypercube
edges, and the diameter can be reduced to about half, e.g. the twisted cube [12], crossed
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cube [7], Möbius cube [4], Mcube [25], and multiply twisted cube [6]. Also, there were
some theoretical works [5, 11, 29] that achieve even smaller diameters than the above
networks, but the connection rules and routing algorithms are more complicated.

Another important measure for an interconnection network is symmetry of the net-
work. Informally speaking, a vertex-symmetric (resp. edge-symmetric) graph looks the
same from any vertex (resp. edge). The hypercube is both vertex-symmetric and edge-
symmetric graph. In a symmetric network, it is easy to design parallel and communication
algorithms, since it is irrelevant where the computation and/or communication starts or
in which directions it will evolve. Unfortunately, the rearrangement or “twist” of the
edges in the hypercube variants lose the high degree of symmetry of the hypercube, and
may deteriorate the performance of the network as pointed in [1, 25]; asymmetry in a
network affects message delays under heavy traffic, and may offset the advantage of lower
diameter. It is easy to find that all the above twisted cube, crossed cube, Möbius cube,
Mcube, and multiply twisted cube are not vertex-symmetric.

In this paper, we present hypercube variants using two definitions of the even-
dimensional hypercube given in the literature. We show that two hypercubes obtained
by different definitions can be combined to produce a graph with the diameter about
half that of a comparable hypercube. The combined graph preserves the nice properties
of the hypercube such as vertex-symmetry, bipartiteness, hamiltonian and bipancyclic
properties. Also, the graph is highly edge-symmetric. We extend the result to a general
scheme for interconnecting two m-dimensional hypercubes of every m ≥ 2.

The organization of this paper is as follows. In the next section, we introduce some
definitions and notation. In Section 3, we consider a network topology using two defini-
tions of hypercube. In Section 4, we will give a construction scheme for interconnecting
two hypercubes. Finally, in Section 5, concluding remarks of this paper will be given.

2. Preliminaries

We introduce definitions, notation, and some of hypercube variants concerned with this
paper.

The usual definition of hypercube is as follows: An m-dimensional hypercube Qm is
an m-regular labeled graph on 2m vertices. Each vertex u of Qm is labeled by a distinct
binary number umum−1 · · ·u1, and two vertices are connected by an edge if and only
if their binary labels differ in exactly one bit position. An edge (u, v) of Qm is called
a dimension-d edge if the labels of u and v differ in dth bit position. The dimension
d-edges in Qm form a perfect matching for each d, 1 ≤ d ≤ m. Moreover, removal of all
the dimension d-edges in Qm leaves two disjoint copies of Qm−1. Conversely, Qm can be
constructed from two Qm−1’s by adding a perfect matching.

For two vertices v and w in a graph, the distance between v and w is the length of the
shortest path between v and w. The diameter of a graph G is the maximum distance
between any two vertices of G.

Many interconnection networks can be constructed by connecting two lower dimen-
sional networks. We represent the construction as follows. We are given two graphs
G0 and G1 with n vertices each. We denote by Vi and Ei the vertex set and edge set
of Gi, i = 0, 1, respectively. We let V0 = {v1, v2, . . . , vn} and V1 = {w1, w2, . . . , wn}.
With respect to a permutation M = (i1, i2, . . . , in) of {1, 2, . . . , n}, we can “merge” the
two graphs into a graph G0 ⊕M G1 with 2n vertices in such a way that the vertex set
V = V0 ∪ V1 and the edge set E = E0 ∪ E1 ∪ E2, where E2 = {(vj , wij ) : 1 ≤ j ≤ n}.
We denote by G0 ⊕ G1 a graph obtained by merging G0 and G1 w.r.t. an arbitrary
permutation M . Obviously, E2 is a perfect matching in G0 ⊕G1.
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Vaidya et al. [27] introduced a class of hypercube-like interconnection networks, called
HL-graphs which can be defined by applying the ⊕ operation repeatedly as follows:
HL0 = {K1}; for m ≥ 1, HLm = {G0 ⊕ G1 : G0, G1 ∈ HLm−1}. Then, HL1 = {K2};
HL2 = {C4}; HL3 = {Q3, G(8, 4)}. Here, C4 is a cycle graph with 4 vertices, Q3

is a 3-dimensional hypercube, and G(8, 4) is a recursive circulant which is isomorphic
to twisted cube TQ3 and Möbius ladder. An arbitrary graph which belongs to HLm

is called an m-dimensional HL-graph. Note that each graph in HLm is m-regular and
has 2m vertices. Many well-known interconnection networks are members of HL-graphs
including hypercube [17], twisted cube [12], twisted m-cube [9], crossed cube [7], Möbius
cube [4], Mcube [25], multiply twisted cube [6], locally twisted cube [28], generalized
twisted cube [3], and recursive circulant G(2m, 4) [20]. There have been many works
on the fundamental properties of the above networks such as diameter, connectivity,
hamiltonicity, and the embedding of other networks. Also, some literature [16, 19, 21–24]
presented the generalized results on HL-graphs. Most of the interconnection networks in
HL-graphs having smaller diameters than that of the hypercube are based on G(8, 4).
That is, using G(8, 4) as a base case, those networks can be constructed inductively by
the ⊕ operation specified in their definitions.

The m-dimensional folded hypercube, FHm, is constructed by adding a complemen-
tary edge to Qm between every pair of vertices with complementary labels. Due to the
complementary edge, FHm is an (m + 1)-regular graph and its diameter is dm/2e.

Two graphs G and H are isomorphic if there exists an isomorphism f : V (G)→ V (H)
such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v)
are adjacent in H.

3. Interconnection of Two Even-Dimensional Hypercubes

In this section, we introduce an equivalent definition of hypercube in [13] that is different
from the usual one given in Section 2. Then, we consider the symmetry of the graph
constructed by combining two hypercubes obtained by mutually different definitions.

We can think of a graph with 2m vertices whose vertices are labeled by m-bit binary
numbers and two vertices are joined by an edge if their binary labels differ in exactly
k bit positions. It becomes a regular graph of degree

(
m
k

)
. Of course, when k = 1, the

graph is the very m-dimensional hypercube. For k = m− 1, the graph is m-regular, too.
Such a graph was considered in [13] as follows:

Definition 3.1 An m-dimensional graph Q′m is an m-regular labeled graph on 2m ver-
tices. Each vertex u of Q′m is labeled by a distinct binary number umum−1 · · ·u1, and two
vertices are connected by an edge if and only if their binary labels differ in exactly m− 1
bit positions.

An edge (u, v) of Q′m is called a dimension-d edge if the labels of u and v are the same
in dth bit position. If m is an odd integer, every edge of Q′m joins two vertices whose
labels have the same parity. A binary label has even parity if it contains an even number
of 1’s and odd parity if it contains an odd number of 1’s. Thus, the graph Q′m for odd m is
disconnected. It has two connected components of the same size. If m is an even integer,
every edge of Q′m joins two vertices whose labels are different in parity. The graph Q′m
is bipartite and its vertex set is partitioned into two partite sets: the set of vertices with
even-parity labels and set of vertices with odd-parity labels.

Interestingly, it was shown in [13] that Q′m is isomorphic to Qm for every even m
and Q′m is isomorphic to two copies of FHm−1 for every odd m, m ≥ 2. Although the
isomorphic result on Qm and Q′m of even m is already known, we give a simple and
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intuitive proof in the following for later use.

Lemma 3.2 ([13]) Q′m is isomorphic to Qm for any even m ≥ 2.

Proof. Let f : V (Q′m)→ V (Qm) be a function such that

f(x) =

{
x′ if the label of x has even parity,
xc if the label of x has odd parity,

where x′ is the vertex with the same label as x, and xc is the vertex with a label com-
plemented to the label of x. Obviously, f is a bijection. We claim that (x, y) ∈ E(Q′m) if
and only if (f(x), f(y)) ∈ E(Qm). It suffices to show the ‘only if’ part since both graphs
have the same number of edges. Let (x, y) be an edge of Q′m and assume that the label
of x has even parity and the label of y has odd parity. The fact that labels of x and y
differ in m − 1 bit positions implies that labels of x′ and yc differ in one bit position.
Thus, (x′, yc) is an edge of Qm. This completes the proof. �

The graph with 2m vertices obtained from Qm−1 and Q′m−1 by simply joining each pair
of vertices of the same label via an edge, denoted by Gm, possesses interesting properties
in symmetry and diameter.

Definition 3.3 For an odd integer m ≥ 3, the graph Gm is defined as follows: V (Gm) =
V (Qm−1) ∪ V (Q′m−1) and E(Gm) = E(Qm−1) ∪ E(Q′m−1) ∪ E′ where E′ = {(u, v) : u ∈
V (Qm−1), v ∈ V (Q′m−1), and the labels of u and v are the same}.

We let dimension-d edges of Gm be the dimension-d edges of Qm−1 and Q′m−1, 1 ≤ d ≤
m − 1. And let dimension-m edges of Gm be the edges in E′. The label of each vertex
in Gm is denoted by prefixing a bit 0 to each vertex label in Qm−1 and prefixing a bit
1 to each vertex label in Q′m−1 so that each vertex of Gm is labeled by a distinct m-bit
binary number. The graph Gm is bipartite and consists of two partite sets, the set of
vertices with even-parity labels and the set of vertices with odd-parity labels. Further,
it is equitable, that is, the two partite sets are of the same size.

We say that a graph G is vertex-symmetric if any two vertices of G are similar, that is,
if for any u, v in V (G), there is an automorphism g of G such that g(u) = v. Informally
speaking, every vertex of a vertex-symmetric graph looks exactly the same as every other
vertex.

Theorem 3.4 Gm is vertex-symmetric for odd m ≥ 3.

Proof. Within this proof, we denote by xmxm−1 · · ·x1 the label of vertex x in Gm, and
the label and the vertex itself are used interchangeably. Let u, v be any pair of vertices of
Gm. We will show that there exists a bijection g : V (Gm)→ V (Gm) such that g(u) = v
and for any edge (x, y) of Gm, (g(x), g(y)) is also an edge of Gm. Define an m-bit mask
M := MmMm−1 · · ·M1 = u xor v, that is, M = umum−1 · · ·u1 xor vmvm−1 · · · v1. Here,
xor denotes the bitwise exclusive-or operation. Notice that two labels x and y differ in
k bit positions if and only if x xor M and y xor M differ in k bit positions. This is
because xi = yi if and only if xi xor Mi = yi xor Mi. There are two cases depending
on whether um = vm or not.

Case 1: um = vm.
Remember Mm = 0 in this case. We define g as follows:

g(x) = x xor M.

It is straightforward to check that g is bijective and g(u) = u xor M =
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u xor (u xor v) = v. Let (x, y) be an arbitrary edge of Gm. When (x, y) is an edge
of subgraph Qm−1 (resp. Q′m−1), we have xm = ym = 0 (resp. xm = ym = 1). Let-
ting g(x) = x′mx′m−1 · · ·x′1 and g(y) = y′my′m−1 · · · y′1, we have x′m = y′m = 0 (resp.
x′m = y′m = 1), and x′m−1 · · ·x′1 and y′m−1 · · · y′1 differ in 1 (resp. m−2) bit position. Thus,
(g(x), g(y)) is an edge of Gm. When (x, y) is a dimension-m edge, we have xm 6= ym and
xm−1xm−2 · · ·x1 = ym−1ym−2 · · · y1. Then, g(x) and g(y) differ in mth bit position and
are the same in all the other bit positions, thus (g(x), g(y)) is also a dimension-m edge
of Gm.

Case 2: um 6= vm.
In this case, Mm = 1. The function g is defined as follows:

g(x) =

xmxm−1xm−2 · · ·x1 xor M
if xm−1xm−2 · · ·x1 has the same parity as um−1um−2 · · ·u1;

xmxm−1xm−2 · · ·x1 xor M otherwise.

Here, xm−1xm−2 · · ·x1 denotes the complement of xm−1xm−2 · · ·x1. Obviously, g is bijec-
tive. It holds true that g(u) = u xorM = u xor (u xor v) = v. Let (x, y) be an arbitrary
edge of Gm. When xm = ym, we assume w.l.o.g. xm−1xm−2 · · ·x1 has the same parity
as um−1um−2 · · ·u1. Of course, ym−1ym−2 · · · y1 differs from um−1um−2 · · ·u1 in parity. If
xm = ym = 0 (resp. xm = ym = 1), and xm−1xm−2 · · ·x1 and ym−1ym−2 · · · y1 differ in
1 (resp. m − 2) bit position, then xm−1xm−2 · · ·x1 and ym−1ym−2 · · · y1 differ in m − 2
(resp. 1) bit positions. Then, we have x′m = y′m = 1 (resp. x′m = y′m = 0), and x′m−1 · · ·x′1
and y′m−1 · · · y′1 differ in m − 2 (resp. 1) bit positions, where g(x) = x′mx′m−1 · · ·x′1 and
g(y) = y′my′m−1 · · · y′1. This implies (g(x), g(y)) is an edge of Gm. Finally, let xm 6= ym.
Then, (x, y) is a dimension-m edge. We have xm−1xm−2 · · ·x1 = ym−1ym−2 · · · y1.
Whether xm−1xm−2 · · ·x1 has the same parity as um−1um−2 · · ·u1 or not, we can see
that x′m 6= y′m and x′m−1x

′
m−2 · · ·x′1 = y′m−1y

′
m−2 · · · y′1. Thus, (g(x), g(y)) is an edge of

Gm. This completes the proof. �

Remark 1 The automorphism g of Gm given in the proof of Theorem 3.4 preserves the
partition V (Qm−1) and V (Q′m−1) of V (Gm), that is, either {g(x) : x ∈ V (Qm−1)} =
V (Qm−1) and {g(y) : y ∈ V (Q′m−1)} = V (Q′m−1) or {g(x) : x ∈ V (Qm−1)} = V (Q′m−1)
and {g(y) : y ∈ V (Q′m−1)} = V (Qm−1).

Associated with any automorphism, there is an induced mapping on the edges obtained
by considering the image of two end-vertices of any edge. Two edges (u, v) and (x, y) are
similar if there exists an automorphism h of G such that maps (u, v) to (x, y), i.e.,
h(u) = x & h(v) = y or h(u) = y & h(v) = x. Notice that the ‘similarity’ relation
on the set of edges is an equivalence relation. The graph Gm keeps high degree of edge
symmetry, precisely speaking, its edge set can be partitioned into two equivalence classes
as follows.

Theorem 3.5 Any two dimension-m edges in Gm with odd m ≥ 3 are similar, and any
two edges which are not dimension-m edges are also similar.

Proof. We first show that two dimension-m edges (u, v) and (a, b) are similar. Assume
um = 0 and am = 0. Thus, vm = 1 and bm = 1. Letting an m-bit mask M = u xor a,
we define automorphism h of Gm as follows:

h(x) = x xor M.

Then, h(u) = u xor M = u xor (u xor a) = a. Furthermore, since M = u xor a =
v xor b, we have h(v) = v xor M = v xor (v xor b) = b. Here, Mm = 0. In exactly the
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same way to Case 1 of the proof of Theorem 3.4, we can show that if (x, y) is an edge of
Gm, then (h(x), h(y)) is also an edge of Gm.

Now, we are to show two edges (u, v) and (a, b) with um = vm = am = bm = 0 are
similar. Here, (u, v) and (a, b) are edges of subgraph Qm−1. We assume ui = 0 and vi = 1
for some i < m, and assume aj = 0 and bj = 1 for some j < m. Let xi,j be the m-bit
binary number obtained from x by swapping ith bit and jth bit of x, possibly i = j
where 1 ≤ i, j < m. That is, xi,j = xm · · ·xi+1xjxi−1 · · ·xj+1xixj−1 · · ·x1. Define m-bit
mask M = ui,j xor a. Then, we have M = ui,j xor a
= um · · ·ui+1ujui−1 · · ·uj+1uiuj−1 · · ·u1 xor am · · · ai+1aiai−1 · · · aj+1ajaj−1 · · · a1

= um · · ·ui+1ujui−1 · · ·uj+1uiuj−1 · · ·u1 xor am · · · ai+1aiai−1 · · · aj+1ajaj−1 · · · a1

= vi,j xor b. An automorphism h of Gm is defined as follows:

h(x) = xi,j xor M.

Then, we have h(u) = ui,j xor M = ui,j xor (ui,j xor a) = a and h(v) = vi,j xor M
= vi,j xor (vi,j xor b) = b. Observe that x and y differ in k bit positions if and only if
xi,j and yi,j differ in k bit positions. Remembering the observation and Mm = 0, we can
show in a very similar way to Case 1 of proof of Theorem 3.4 that for any edge (x, y) of
Gm, (h(x), h(y)) is also an edge of Gm.

Recall that the ‘similarity’ relation on the set of edges is an equivalence relation. It
suffices to show that for any edge (x, y) with xm = ym = 1, there is an edge of Qm−1

which is similar to (x, y). Let u be an arbitrary vertex with um = 0. By Theorem 3.4,
there exists an automorphism g of Gm such that g(x) = u. Let v = g(y). Since g is an
automorphism, (u, v) is an edge of Gm. Furthermore, by Remark 1, v is also a vertex with
vm = 0. Thus, (x, y) is similar to the edge (u, v) of Qm−1. This completes the proof. �

Remark 2 A graph is edge-symmetric if every pair of edges are similar. Gm is not edge-
symmetric for all odd m ≥ 5. There is a cycle of length 4 passing through an arbitrary
dimension-p edge, p < m. We claim that there is no cycle of length 4 passing through
a dimension-m edge (u, v). We assume u ∈ V (Qm−1) and v ∈ V (Q′m−1). The labels of
u and any vertex u′ ∈ V (Qm−1) adjacent to u differ in 1 bit position, and the labels of
v and any vertex v′ ∈ V (Q′m−1) adjacent v differ in (m − 1) − 1 bit positions. Due to
m− 2 6= 1, u′ is not adjacent to v′ and thus there is no such cycle.

Among the diameters of m-dimensional HL-graphs, the diameter of Qm, that is m,
is the largest. But, to our surprise, the diameter of Gm is reduced to (m + 1)/2 which
is about half that of the component graph Qm−1 (or Q′m−1) for all odd m ≥ 7. The
diameter and other nice properties of Gm will be dealt with the generalized topology in
the following section.

4. Bicubes

The result in Section 3 suggests that two hypercubes can be combined to produce an
interesting network topology. In this section, we present a scheme for interconnecting
two (not necessarily even-dimensional) hypercubes and the properties of the resulting
topology, called bicube.

We are to utilize the structure Qm−1⊕Q′m−1 considered in Section 3. For convenience
of description, we introduce some notation. Let l(u) be the binary label of a hypercube
vertex u and c(u) be the complement of l(u). We will let p() be the parity function that
maps binary labels of the hypercube vertices to 0 or 1. For a vertex u in Qm with even
m, p(u) is defined to be 0 if the number of 1’s in l(u) is even, and 1 otherwise. We call
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two vertices u and v are lp-related if either l(u) = l(v) & p(u) = p(v) = 0 or l(u) = c(v)
& p(u) = p(v) = 1.

Interconnecting Scheme for Bicube BQm

/* two (m− 1)-dimensional hypercubes are interconnected to produce BQm, m ≥ 3 */

(1) Make two copies of Qm−1, and let the copies be Q0
m−1 and Q1

m−1.
Case 1: m odd.

Connect each lp-related pair u ∈ V (Q0
m−1) and v ∈ V (Q1

m−1) by an edge.
Case 2: m even.
(a) Partition V (Qi

m−1) into V (Qi0
m−2) and V (Qi1

m−2); vertex v ∈ V (Qi
m−1) belongs

to V(Qij
m−2) where j is the first bit of l(v), i, j ∈ {0, 1}. Hereafter, exclude the

first bit of every vertex label within this case.
(b) Connect each lp-related pair x ∈ V (Q00

m−2) and y ∈ V (Q10
m−2) by an edge.

(c) Connect each lp-related pair w ∈ V (Q01
m−2) and z ∈ V (Q11

m−2) by an edge.
(2) Prefix a bit 0 to each vertex label in Q0

m−1, and prefix a bit 1 to each vertex label in
Q1

m−1 to produce BQm.

We let the dimension d-edges of the BQm be the dimension d-edges in two Qm−1’s,
1 ≤ d ≤ m − 1, and let the dimension m-edge of the BQm be the edges connected
between two Qm−1’s. In Fig. 1, BQ3, BQ4, and BQ5 are shown. As shown in Fig. 1,
BQ3 and BQ4 are isomorphic to Q3 and Q4, respectively, but BQ5 is not isomorphic to
Q5. In fact, BQm is not isomorphic to Qm for every m ≥ 5, which will be clear later in
Theorem 4.8.

Lemma 4.1 BQm is isomorphic to Gm for odd m ≥ 3.

Proof. Similar to the proof of Lemma 3.2, if we complement all the vertex labels having
odd parity (excluding the first bit) in the subgraph Q1

m−1 of BQm, we can observe the
labeled graph is same as Gm. �

We note that BQm with even m is isomorphic to BQm−1 ×K2. In the scheme, each
of Q00

m−2 ⊕Q10
m−2 and Q01

m−2 ⊕Q11
m−2 is interconnected to be isomorphic to BQm−1. So,

BQm with even m is of structure BQm−1⊕I BQm−1 where I is an identity permutation.
Thus we have:

Lemma 4.2 BQm with even m ≥ 4 is isomorphic to BQm−1 ×K2.

We already know Gm of odd m is bipartite. By lemma 4.1 and Lemma 4.2 we have the
following.

Lemma 4.3 BQm is bipartite for m ≥ 3.

In the next, we will discuss the symmetry and diameter of BQm.

Theorem 4.4 BQm is vertex-symmetric for m ≥ 3.

Proof. By Theorem 3.4 and Lemma 4.1, BQm with odd m is vertex-symmetric. BQm

with even m is isomorphic to BQm−1 ×K2, which is vertex-symmetric obviously. �

Theorem 4.5 (a) In BQm with odd m ≥ 3, any two dimension-m edges are similar,
and any two edges which are not dimension-m edges are also similar.
(b) In BQm with even m ≥ 4, any two dimension-m edges are similar, any two
dimension-(m− 1) edges are similar, and any two edges which are neither dimension-m
edges nor dimension-(m− 1) edges are also similar.
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(a) BQ3 (b) BQ4

(c) BQ5

Figure 1. Illustration of the interconnecting scheme for BQm

Proof. Due to Theorem 3.5 and Lemma 4.1, the statement (a) holds true. To prove
(b), we let m be even and denote by BQ0

m−1 (resp. BQ1
m−1) the subgraph of BQm

induced by vertices in Q00
m−2 or Q10

m−2 (resp. Q01
m−2 or Q11

m−2). Since BQm is isomorphic
to BQm−1 × K2, for each edge in BQ1

m−1 there exists an edge in BQ0
m−1 similar to

the edge, and vice versa. Recall that the ‘similarity’ relation on the set of edges is an
equivalence relation.

We first show that any two dimension-m edges are similar. Two dimension-(m − 1)
edges in BQ0

m−1 are similar within BQ0
m−1 by Theorem 3.5. It is not difficult to see that

they are also similar in BQm. Moreover, for any dimension-(m−1) edge in BQ1
m−1, there

is a dimension-(m − 1) edge in BQ0
m−1 which is similar to the edge. Thus, dimension-

(m − 1) edges in BQ0
m−1 or BQ1

m−1, which comprise dimension-m edges in BQm, are
similar each other. In the same way, we can show that any two edges which are neither
dimension-m edges nor dimension-(m− 1) edges are similar. The proof is omitted here.

It remains to show that any two dimension-(m− 1) edges (u, v) and (x, y) are similar.
We assume that u and x are contained in BQ0

m−1, and v and y are contained in BQ1
m−1.

8
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Since BQm−1 is vertex-symmetric, there is an automorphism g0 of BQ0
m−1 mapping u

to x. Furthermore, there exists an automorphism g1 of BQ1
m−1 such that g1(w) = z if

and only if g0(w′) = z′, where w′ and z′ are the vertices in BQ0
m−1 adjacent to w and z,

respectively. Thus, an automorphism g of BQm can be defined such that g(w) = g0(w) for
w in BQ0

m−1 and g(w) = g1(w) for w in BQ1
m−1. Then, we have g(u) = x and g(v) = y.

Therefore, (u, v) and (x, y) are similar in BQm. This completes the proof. �

Remark 3 In BQm with even m ≥ 6, a dimension-(m − 1) edge is not similar to any
dimension-k edge with k < m − 1. The number of length 4 cycles passing through a
dimension-(m− 1) edge is m− 1 while that number for a dimension-k edge is m− 2 for
any k < m− 1 .

Lemma 4.6 BQm of odd m ≥ 3 is a spanning subgraph of m-dimensional folded hyper-
cube, FHm.

Proof. In FHm, there are two sets of edges E1 and E2 between two copies of Qm−1

where E1 is a set of edges joining each pair of vertices of the same label and E2 is a set
of complementary edges. In BQm of odd m, any edge between two Qm−1’s either joins
two vertices of the same label, or joins two vertices with complementary labels. So, the
lemma holds. �

Now we consider the diameter of BQm. Let 0k represent a series of k 0’s. In the
next, the label of a vertex and the vertex itself are used interchangeably. By virtue of
the vertex-symmetry of BQm, it suffices to consider the distance between 0m and other
vertices. For two vertices v and w in BQm, the distance between v and w is denoted by
d(v, w), and the Hamming distance between v and w is denoted by dH(v, w).

Lemma 4.7 For v = 0m and w with dH(v, w) = k in BQm of odd m ≥ 3, the following
distance expressions hold:
(a) For k = m, d(v, w) = 3.
(b) For k = m− 1 and w 6= 01m−1, d(v, w) = 2.
(c) For k = m− 1 and w = 01m−1, d(v, w) = min{k, 4}.
(d) For k ≤ m− 2, d(v, w) = min{k,m− k + 1}.

Proof. Proof for (a). The label of w is 1m. The path (0m, 0m−11, 1m−10, 1m) of length 3
is the shortest path between v and w.
Proof for (b). When k = m− 1 and w 6= 01m−1, then w is a vertex of Q1

m−1. Therefore,
the label of w is 1p01q for some p, q such that p ≥ 1 and p + q = m − 1. The path
(0m, 0p10q, 1p01q) of length 2 is the shortest path between v and w.
Proof for (c). Since dH(v, w) = k, it is obvious that there is a path of length k be-
tween v and w. The distance between v and w is k when k ≤ 4. There is a path
(0m, 0m−11, 1m−10, 1m, 01m−1) of length 4, which is the shortest path between v and
w when k ≥ 5.
Proof for (d). If m = 3, then k ≤ 1; if m = 5, then k ≤ 3. Thus, if m = 3 or m = 5, it is
easy to see that d(v, w) = k and k ≤ m−k+1. We consider m with m ≥ 7. For each i with
0 ≤ i ≤ m − 1, let S0

i = {u ∈ V (Q0
m−1) : dH(0m, u) = i}, and let S1

i = {u ∈ V (Q1
m−1)

: dH(10m−1, u) = i}. Let Vi(v) = {u : d(v, u) = i}. That is, Vi(v) is the set of vertices
which are at distance i from v. Note that for each a ∈ S0

i (resp. S1
i ), if i is even there

is an edge (a, b) such that b is in S1
i (resp. S0

i ); otherwise there is an edge (a, b) such
that b is in S1

m−i−1(resp. S0
m−i−1). In Q0

m−1 (resp. Q1
m−1), the set of vertices adjacent to

vertices in S0
i (resp. S1

i ) is S0
i−1 ∪ S0

i+1 (resp. S1
i−1 ∪ S1

i+1) for each i with 1 ≤ i ≤ m− 2.
For 1 ≤ i ≤ 4, Vi(v) is obtained as follows:

V1(v) = S0
1 ∪ S1

0 ,
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V2(v) = S0
2 ∪ S1

1 ∪ S1
m−2,

V3(v) = S0
3 ∪ S0

m−2 ∪ S1
2 ∪ S1

m−3 ∪ S1
m−1, and

V4(v) = S0
4 ∪ S0

m−3 ∪ S0
m−1 ∪ S1

3 ∪ S1
m−4.

We first consider the case of m = 7. In this case, we observe that V1(v), V2(v), V3(v),
and V4(v) are mutually disjoint, and {v}∪V1(v)∪V2(v)∪V3(v)∪V4(v) is equal to the set
of vertices in BQm. From the condition of k ≤ m−2, we have k ≤ 5. Since dH(v, w) = k,
w is in S0

k or S1
k−1. If k ≤ 4, w is in Vk(v) from the fact that each of S0

k and S1
k−1 is a

subset of Vk(v). Therefore we have d(v, w) = k. Note that m − k + 1 = 8 − k ≥ k. If
k = 5, then w is in S0

5 (= S0
m−2) or S1

4 (= S1
m−3). Since each of S0

5 and S1
4 is a subset of

V3(v), we have d(v, w) = 3, which is equal to m− k + 1.
We next consider the case of m ≥ 9. In this case, we claim that for each n with

5 ≤ n ≤ (m + 1)/2, Vn(v) = S0
n ∪ S0

m−n+1 ∪ S1
n−1 ∪ S1

m−n. We prove the claim by
induction on n. If n = 5, it is easy to see that the claim holds. Assuming that for each n
with 5 ≤ n < p ≤ (m+1)/2 the claim holds, we will show that the claim holds for n = p.

Let T = {u : d(v, u) ≥ p}. Then from the assumption, T =
⋃m−p+1

i=p S0
i ∪
⋃m−p

i=p−1 S
1
i . Since

Vp(v) = {u ∈ T : u is adjacent to a vertex in Vp−1(v)} and Vp−1(v) = S0
p−1 ∪ S0

m−p+2 ∪
S1
p−2 ∪ S1

m−p+1, we have Vp(v) = S0
p ∪ S0

m−p+1 ∪ S1
p−1 ∪ S1

m−p. Thus, the claim is proved.

By using the claim, we will show d(v, w) = min{k,m− k + 1}. Note that w 6∈ S0
m−1 ∪

S1
m−1 ∪ S1

m−2 since k ≤ m − 2. If k ≤ 4, as in the case of m = 7, it can be shown that
d(v, w) = k, which is less than or equal to m − k + 1. From now on, it is assumed that
k ≥ 5. If w is a vertex of Q0

m−1, then w is in S0
k . From the claim, if k ≤ m − k + 1

(that is, k ≤ (m + 1)/2), w is in Vk(v) since S0
k is a subset of Vk(v), which means

d(v, w) = k; otherwise, S0
k is a subset of Vp(v) such that m − p + 1 = k, which means

d(v, w) = p = m − k + 1. If w is a vertex of Q1
m−1, w is in S1

k−1. From the claim,

if k − 1 ≤ m − k (that is, k ≤ (m + 1)/2), d(v, w) = k since S1
k−1 is a subset of

Vk(v); otherwise, S1
k−1 is a subset of Vp(v) such that m − p = k − 1, which implies

d(v, w) = p = m− k + 1. The proof is completed. �

Theorem 4.8 The diameter of BQm is d(m+1)/2e for m ≥ 7. The diameters of BQ3,
BQ4, BQ5 and BQ6 are 3, 4, 4 and 5, respectively.

Proof. BQ3 and BQ4 are isomorphic to Q3 and Q4, respectively. And, it is easy to check
the diameter of BQ5 is 4. For BQm of m ≥ 7 and odd, the maximum value in distance
expression min{k,m− k + 1} in Lemma 4.7 is obtained when k = (m + 1)/2. For BQm

of m ≥ 6 and even, the diameter of BQm is one more than the diameter of BQm−1 from
Lemma 4.2. Together with the above facts, the theorem holds. �

We note that the diameter of BQm is the same as that of FHm for odd m ≥ 7, even
though BQm is a spanning subgraph of FHm and the degree of BQm is one less than
that of FHm.

Next, we will consider hamiltonicity and pancyclicity of the BQm. Linear arrays and
rings are two of the most important computational structures in interconnection net-
works. The embedding of linear arrays and rings into interconnection network has been
studied in terms of paths and cycles in graphs. A graph is called hamiltonian if it has a
cycle which contains all the vertices. An s-t hamiltonian path is a path which contains all
the vertices joining a pair of vertices s and t. If a graph has an s-t hamiltonian path for
all pairs of vertices s and t, the graph is called hamiltonian-connected. A bipartite graph
is called hamiltonian-laceable if there is an s-t hamiltonian path for all pairs of vertices s
and t, where s belongs to one set of the bipartition, and t belongs to the other. A graph
G is called pancyclic if it contains a cycle of length l for every l such that 3 ≤ l ≤ |V (G)|.
And a graph G is called bipancyclic if it contains a cycle of length l for every even l,
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4 ≤ l ≤ |V (G)|. Necessarily, a hamiltonian-connected graph and pancyclic graph is not
bipartite. The hamiltonicity and pancyclicity of HL-graphs were considered in [19] as
follows. For more discussion on hamiltonicity and its generalization, refer to [15, 18].

Theorem 4.9 ([19]) Every m-dimensional bipartite HL-graph is hamiltonian-laceable,
and bipancyclic for m ≥ 2.

It is obvious that BQm is a bipartite HL-graph, so the lemma follows:

Lemma 4.10 BQm is hamiltonian-laceable and bipancyclic for m ≥ 3.

5. Concluding remarks

In this paper, we considered two definitions of hypercube and their application to inter-
connecting hypercubes. It was shown that we can obtain a graph with diameter about
half that of a comparable hypercube by just interconnecting two hypercubes. Also, the
graph preserves desirable properties of the hypercube. Based on the above observation, we
presented an interconnection network topology called the bicube. The diameter, vertex-
symmetry, edge-symmetry, hamiltonicity, and bipancyclicity of the bicube are investi-
gated. In further research of the bicube, we expect other nice properties can be found
and many algorithms developed for hypercubes can be easily adapted to bicubes.
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[4] P. Cull and S. Larson, The Möbius cubes, IEEE Trans. Computers 44(5) (1995), pp. 647–659.
[5] P. Cull and S. Larson, Smaller diameters in hypercube-variant networks, Telecommunication Systems

10 (1998), pp. 175–184.
[6] K. Efe, A variation on the hypercube with lower diameter, IEEE Trans. on Computers 40(11) (1991),

pp. 1312–1316.
[7] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. on Parallel and Dis-

tributed Systems 3(5) (1992), pp. 513–524.
[8] A. El-Amawy and S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. on Parallel

and Distributed Systems 2(1) (1991), pp. 31–42.
[9] A.-H. Esfahanian, L.M. Ni, and B.E. Sagan, The twisted n-cube with application to multiprocessing,

IEEE Trans. Computers 40(1) (1991), pp. 88–93.
[10] J. Fang, The bipanconnectivity and m-panconnectivity of the folded hypercube, Theoretical Computer

Science 385 (2007), pp. 286–300.
[11] C.M. Hartman, Extremal problems in graph theory, Ph.D. Thesis, Dept. of Mathematics, Univ. of

Illinois at Urbana-Champaign, 1997.
[12] P.A.J. Hilbers, M.R.J. Koopman, and J.L.A. van de Snepscheut, The Twisted Cube, in J. Bakker, A.

Nijman, P. Treleaven, eds., PARLE: Parallel Architectures and Languages Europe, Vol. I: Parallel
Architectures, Springer (1987), pp. 152–159.

[13] C.-T. Ho, An observation on the bisectional interconnection networks, IEEE Trans. Computers 41(7)
(1992), pp. 873–877.

[14] S.-Y. Hsieh and T.-T. Hsiao, The k-degree Cayley graph and its topological properties, Networks
47(1) (2006), pp. 26–36.

[15] S. Jo, J.-H. Park, and K.Y. Chwa, Paired 2-disjoint path covers and strongly hamiltonian laceability
of bipartite hypercube-like graphs, Information Sciences 242 (2013), pp. 102–112.

[16] J.-H. Lee and J.-H. Park, General-demand disjoint path covers in a graph with faulty elements,
International Journal of Computer Mathematics 89(5) (2012), pp. 606–617.

11



January 26, 2014 International Journal of Computer Mathematics Bicube

[17] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufman, California, 1992.

[18] C.-K. Lin, Y.-H. Teng, J.M. Tan, L.-H. Hsu, and D. Marusic, The spanning laceability on the faulty
bipartite hypercube-like graphs, Applied Mathematics and Computation 219(15) (2013), pp. 8095–
8103.

[19] C.-D. Park and K.Y. Chwa, Hamiltonian properties on the class of hypercube-like networks, Inform.
Proc. Lett. 91 (2004), pp. 11–17.

[20] J.-H. Park and K.Y. Chwa, Recursive circulants and their embeddings among hypercubes, Theoretical
Computer Science 244 (2000), pp. 35–62.

[21] J.-H. Park, H.-C. Kim, and H.-S. Lim, Fault-hamiltonicity of hypercube-like interconnection networks,
in 19th IEEE International Parallel and Distributed Processing Symposium, Denver, USA, 4-8 Apr.
2005.

[22] J.-H. Park, H.-C. Kim, and H.-S. Lim, Many-to-many disjoint path covers in hypercube-like inter-
connection networks with faulty elements, IEEE Trans. on Parallel and Distributed Systems 17(3)
(2006), pp. 227–240.

[23] J.-H. Park, H.-C. Kim, and H.-S. Lim, Many-to-many disjoint path covers in hypercube-like inter-
connection networks, IEEE Trans. on Computers 58(4) (2009), pp. 528-540.

[24] J.-H. Park, H.-S. Lim, and H.-C. Kim, Panconnectivity and pancyclicity of hypercube-like intercon-
nection networks with faulty elements, Theoretical Computer Science 377(1-3) (2007), pp. 170–180.

[25] N.K. Singhvi and K. Ghose, The Mcube: a symmetrical cube based network with twisted links, in
9th IEEE International Parallel Processing Symposium Santa Barbara, USA, 25-28 Apr. 1995, pp.
11–16.

[26] N. Tzeng and S. Wei, Enhanced hypercubes, IEEE Trans. Computers 40(3) (1991), pp. 284–294.
[27] A.S. Vaidya, P.S.N. Rao, and S.R. Shankar, A class of hypercube-like networks, in 5th IEEE Sym-

posium on Parallel and Distributed Processing, Dallas, USA, 1-4 Dec. 1993, pp. 800–803.
[28] X. Yang, D. J. Evans, and G. M. Megson, The locally twisted cubes, International Journal of Com-

puter Mathematics 82(4) (2005), pp. 402–413.
[29] W. Zhou, J. Fan, X. Jia, and S. Zhang, The Spined cube: A new hypercube variant with smaller

diameter, Inform. Proc. Lett. 111 (2011), pp. 561–567.

12


