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Abstract. We investigate hamiltonian properties of Pm × Cn, m ≥ 2
and even n ≥ 4, which is bipartite, in the presence of faulty vertices
and/or edges. We show that Pm×Cn with n even is strongly hamiltonian-
laceable if the number of faulty elements is one or less. When the number
of faulty elements is two, it has a fault-free cycle of length at least mn−2
unless both faulty elements are contained in the same partite vertex set;
otherwise, it has a fault-free cycle of length mn−4. A sufficient condition
is derived for the graph with two faulty edges to have a hamiltonian
cycle. By applying fault-hamiltonicity of Pm × Cn to a two-dimensional
torus Cm × Cn, we obtain interesting hamiltonian properties of a faulty
Cm × Cn.

1 Introduction

Embedding of linear arrays and rings into a faulty interconnection graph is one
of the central issues in parallel processing. The problem is modeled as finding
as long fault-free paths and cycles as possible in the graph with some faulty
vertices and/or edges. Fault-hamiltonicity of various interconnection graphs were
investigated in the literature. Among them, hamiltonian properties of faulty
Pm × Cn and Cm × Cn were considered in [4–6, 8]. Here, Pm is a path with m
vertices and Cn is a cycle with n vertices. Many interconnection graphs such
as tori, hypercubes, recursive circulants[7], and double loop networks have a
spanning subgraph isomorphic to Pm × Cn for some m and n. Hamiltonian
properties of Pm×Cn with faulty elements play an important role in discovering
fault-hamiltonicity of such interconnection graphs.

A graph G is called k-fault hamiltonian (resp. k-fault hamiltonian-connected)
if G−F has a hamiltonian cycle (resp. a hamiltonian path joining every pair of
vertices) for any set F of faulty elements such that |F | ≤ k. It was proved in [4,
8] that Pm × Cn, n ≥ 3 odd, is hamiltonian-connected and 1-fault hamiltonian.
Throughout this paper, a hamiltonian path (resp. cycle) in a graph G with faulty
elements F means a hamiltonian path (resp. cycle) in G− F .
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We let G be a bipartite graph with N vertices such that |B| = |W |, where
B and W are the sets of black and white vertices in G, respectively. We denote
by Fv and Fe the sets of faulty vertices and edges in G, respectively. We let
F = Fv ∪ Fe, fw

v = |Fv ∩ W |, f b
v = |Fv ∩ B|, fe = |Fe|, fv = fw

v + f b
v , and

f = fv +fe. When f b
v = fw

v , a fault-free path of length N−2f b
v−1 joining a pair

of vertices with different colors is called an Lopt-path. For a pair of vertices with
the same color, a fault-free path of length N −2f b

v −2 between them is called an
Lopt-path. When f b

v < fw
v , fault-free paths of length N − 2fw

v for a pair of black
vertices, of length N − 2fw

v − 1 for a pair of vertices with different colors, and of
length N − 2fw

v − 2 for a pair of white vertices, are called Lopt-paths. Similarly,
we can define an Lopt-path for a bipartite graph with fw

v < f b
v . A fault-free cycle

of length N −2max{f b
v , fw

v } is called an Lopt-cycle. The lengths of an Lopt-path
and an Lopt-cycle are the longest possible. In other words, there are no fault-free
path and cycle longer than an Lopt-path and an Lopt-cycle, respectively.

A bipartite graph with |B| = |W | (resp. |B| = |W |+1) is called hamiltonian-
laceable if it has a hamiltonian path joining every pair of vertices with different
colors (resp. joining every pair of black vertices). Strong hamiltonian-laceability
of a bipartite graph with |B| = |W | was defined in [2]. We extend the notion
of strong hamiltonian-laceability to a bipartite graph with faulty elements as
follows. For any faulty set F such that |F | ≤ k, a bipartite graph G which has
an Lopt-path between every pair of fault-free vertices is called k-fault strongly
hamiltonian-laceable.

Pm×Pn, m,n ≥ 4, is hamiltonian-laceable[3], and Pm×Pn with f = fv ≤ 2
has an Lopt-cycle when both m and n are multiples of four[5]. It has been known
in [6, 8] that Pm×Cn, n ≥ 4 even, with one or less faulty element is hamiltonian-
laceable. We will show in Section 3 that Pm×Cn, n ≥ 4 even, is 1-fault strongly
hamiltonian-laceable, which is an extension of the work in [6, 8]. Moreover, we
will show that Pm × Cn, n ≥ 4 even, has an Lopt-cycle if f = 2 and fv ≥ 1.
When f = fe = 2, it has a fault-free cycle of length at least mn− 2, and has a
hamiltonian cycle if m ≥ 3, n ≥ 6 even and two faulty edges are not incident to
a common vertex of degree three.

It has been known in [4] that a non-bipartite Cm×Cn is 1-fault hamiltonian-
connected and 2-fault hamiltonian, and that a bipartite Cm × Cn with one or
less faulty element is hamiltonian-laceable. Cm × Cn with f = fv ≤ 4 has an
Lopt-cycle when both m and n are multiples of four[5]. We will show in Section 4,
by utilizing hamiltonian properties of faulty Pm×Cn, that a bipartite Cm×Cn

is 1-fault strongly hamiltonian-laceable and has an Lopt-cycle when f ≤ 2.

2 Preliminaries

The vertex set V of Pm×Cn is {vi
j |1 ≤ i ≤ m, 1 ≤ j ≤ n}, and the edge set E =

Er ∪ Ec, where Er = {(vi
j , v

i
j+1)|1 ≤ i ≤ m, 1 ≤ j < n} ∪ {(vi

n, vi
1)|1 ≤ i ≤ m}

and Ec = {(vi
j , v

i+1
j )|1 ≤ i < m, 1 ≤ j ≤ n}. An edge contained in Er is called a

row edge, and an edge in Ec is called a column edge. We denote by R(i) and C(j)
the vertices in row i and column j, respectively. That is, R(i) = {vi

j |1 ≤ j ≤ n}



and C(j) = {vi
j |1 ≤ i ≤ m}. We let R(i, i′) =

⋃
i≤k≤i′ R(k) if i ≤ i′; otherwise,

R(i, i′) = ∅. Similarly, we let C(j, j′) =
⋃

j≤k≤j′ C(k) if j ≤ j′; otherwise,
C(j, j′) = ∅. vi

j is a black vertex if i + j is even; otherwise, it is a white vertex.
In Pm ×Cn, every pair of vertices v and w in R(i)∪R(m− i + 1) for each i,

1 ≤ i ≤ m, are similar, that is, there is an automorphism φ such that φ(v) = w.
A pair of edges (v, w) and (v′, w′) are called similar if there is an automorphism
ψ such that ψ(v) = v′ and ψ(w) = w′. Any two row edges in {(v, w)| either v, w ∈
R(i) or v, w ∈ R(m−i+1)} are similar for each i, 1 ≤ i ≤ m, and any two column
edges in {(v, w)| either v ∈ R(i), w ∈ R(i+1) or v ∈ R(m− i+1), w ∈ R(m− i)}
are also similar for each i, 1 ≤ i ≤ m.

We employ lemmas on hamiltonian properties of Pm ×Pn and Pm ×Cn. We
call a vertex in Pm × Pn a corner vertex if it is of degree two.

Lemma 1. [1] Let G be a rectangular grid Pm×Pn, m,n ≥ 2. (a) If mn is even,
then G has a hamiltonian path from any corner vertex v to any other vertex with
color different from v. (b) If mn is odd, then G has a hamiltonian path from any
corner vertex v to any other vertex with the same color as v.

Lemma 2. [8] (a) Pm × Cn, n ≥ 3 odd, is hamiltonian-connected and 1-fault
hamiltonian. (b) Pm × Cn, n ≥ 4 even, is 1-fault hamiltonian-laceable.

We denote by H[v, w|X] a hamiltonian path in G〈X〉 − F joining a pair of
vertices v and w, if any, where G〈X〉 is the subgraph of G induced by a vertex
subset X. A path is represented as a sequence of vertices. If G〈X〉 −F is empty
or has no hamiltonian path between v and w, H[v, w|X] is an empty sequence.

We let P and Q be two vertex-disjoint paths (a1, a2, · · · , ak) and (b1, b2, · · · , bl)
on a graph G, respectively, such that (ai, b1) and (ai+1, bl) are edges in G. If we
replace (ai, ai+1) with (ai, b1) and (ai+1, bl), then P and Q are merged into a
single path (a1, a2, · · · , ai, b1, b2, · · · , bl, ai+1, · · · , ak). We call such a replacement
a merge of P and Q w.r.t. (ai, b1) and (ai+1, bl). If P is a closed path (that is, a
cycle), the merge operation results in a single cycle. We denote by V (P ) the set
of vertices on a path P .

3 Pm × Cn with Even n ≥ 4

3.1 Pm × Cn with One or Less Faulty Element

We will show, in this section, that Pm × Cn, n ≥ 4 even, is 1-fault strongly
hamiltonian-laceable. First of all, we are going to show that Pm × Cn with a
single faulty vertex is strongly hamiltonian-laceable by constructing an Lopt-
path P joining every pair of fault-free vertices s and t.

Lemma 3. P2×Cn, n even, with a single faulty vertex is strongly hamiltonian-
laceable. Furthermore, there is an Lopt-path joining every pair of vertices which
passes through both an edge in G〈R(1)〉 and an edge in G〈R(2)〉.



Proof. W.l.o.g., we assume that the faulty vertex is v1
n. We let s = vx

i and t = vy
j ,

1 ≤ x, y ≤ 2, and assume w.l.o.g. that i ≤ j.
Case 1 s, t ∈ B (see Fig. 1 (a)). P = (H[s, v2

1 |C(1, j−1)], v2
n,H[v2

n−1, t|C(j,
n−1)]). Note that when j = n, H[v2

n−1, t|C(j, n−1)] is an empty sequence. The
existence of a nonempty H[s, v2

1 |C(1, j − 1)] is due to Lemma 1 (a).
Case 2 s, t ∈ W . First, let us consider the case that i 6= 1. If j = i + 1

(see Fig. 1 (b)), P = (s, H[vx
i−1, v

2
1 |C(1, i − 1)], v2

n,H[v2
n−1, v

y
j+1|C(j + 1, n −

1)], t); otherwise (see Fig. 1 (c)), P = (H[s, v3−x
i |C(i, j− 1)],H[v3−x

i−1 , v2
2 |C(2, i−

1)], v2
1 , v2

n,H[v2
n−1, v

y
j+1|C(j+1, n−1)], t). For the case that i = 1, P = (s, H[v2

2 , t|
C(2, n− 1)]).

Case 3 Either s ∈ B, t ∈ W or s ∈ W , t ∈ B.
Case 3.1 i 6= j. Let us consider the case that j 6= n (see Fig. 1 (d)). Let

P ′ be a hamiltonian path joining s and t in G〈C(i, j)〉. P ′ passes through both
edges (v1

i , v2
i ) and (v1

j , v2
j ) since P ′ passes through one of the two vertices v1

i

and v2
i (resp. v1

j and v2
j ) of degree 2 in G〈C(i, j)〉 as an intermediate vertex. Let

Q′ = H[v1
i−1, v

2
i−1|C(1, i − 1)] and Q′′ = H[v1

j+1, v
2
j+1|C(j + 1, n − 1)]. We let

P ′′ be a resulting path by a merge of P ′ and Q′ w.r.t. (v1
i , v1

i−1) and (v2
i , v2

i−1)
if Q′ is not empty; otherwise, let P ′′ = P ′. If Q′′ is empty, P ′′ is an Lopt-path;
otherwise, by applying a merge of P ′′ and Q′′ w.r.t. (v1

j , v1
j+1) and (v2

j , v2
j+1),

we can get an Lopt-path. Now, we consider the case that j = n. If i 6= n − 1
(see Fig. 1 (e)), P = (H[s, v2

n−2|C(1, n− 2)], v2
n−1, t); otherwise (see Fig. 1 (f)),

P = (H[s, v2
2 |C(2, n− 1)], v2

1 , t).
Case 3.2 i = j. We first let i be odd. When i 6= 1, n − 1 (see Fig. 1 (g)),

P = (v1
i ,H[v1

i−1, v
2
2 |C(2, i − 1)], v2

1 , v2
n,H[v2

n−1, v
2
i+1|C(i + 1, n − 1)], v2

i ). When
i = 1, P = H[v1

1 , v2
1 |C(1, n−1)]. When i = n−1, P = H[v1

n−1, v
2
n−1|C(1, n−1)].

For the case that i is even (see Fig. 1 (h)), P = (v1
i ,H[v1

i+1, v
2
n−1|C(i + 1, n −

1)], v2
n, v2

1 ,H[v2
2 , v2

i−1|C(2, i− 1)], v2
i ).

Unless either (i) n = 4 and s, t ∈ W , or (ii) n = 4 and s ∈ R(1) has a color
different from t ∈ R(1), any Lopt-path passes through a vertex in R(1) and a
vertex in R(2) as intermediate vertices, and thus it passes through both an edge
in G〈R(1)〉 and an edge in G〈R(2)〉. For the cases (i) and (ii), it is easy to see
that the Lopt-paths constructed here (Case 2 and Case 3.1) always satisfy the
condition. ut

Lemma 4. Pm×Cn, n even, with a single faulty vertex is strongly hamiltonian-
laceable. Furthermore, there is an Lopt-path joining every pair of vertices which
passes through both an edge in G〈R(1)〉 and an edge in G〈R(m)〉.

Proof. The proof is by induction on m. We consider the case m ≥ 3 by Lemma 3.
We assume w.l.o.g. that the faulty vertex vf is white and contained in G〈R(1,m−
1)〉 due to the similarity of Pm × Cn discussed in Section 2.

Case 1 s, t ∈ R(1,m − 1). We let P ′ be an Lopt-path joining s and t in
G〈R(1, m−1)〉 which passes through both an edge in G〈R(1)〉 and an edge (x, y)
in G〈R(m− 1)〉. A merge of P ′ and G〈R(m)〉 − (x′, y′) w.r.t. (x, x′) and (y, y′)
results in an Lopt-path P , where x′ and y′ are the vertices in R(m) adjacent to
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Fig. 1. Illustration of the proof of Lemma 3

x and y, respectively. Obviously, P passes through an edge in G〈R(m)〉 as well
as an edge in G〈R(1)〉.

Case 2 s, t ∈ R(m). When s, t ∈ B (see Fig. 2 (a)) or s has a color different
from t (see Fig. 2 (b)), we choose s′ and t′ in R(m) which are not adjacent to vf

such that there are two paths P ′ joining s and s′ and P ′′ joining t′ and t which
satisfy V (P ′) ∩ V (P ′′) = ∅ and V (P ′) ∪ V (P ′′) = R(m). When s, t ∈ W (see
Fig. 2 (c)), we choose s′ and t′ in R(m) which are not adjacent to vf such that
there are two paths P ′ joining s and s′ and P ′′ joining t′ and t which satisfy
V (P ′)∩V (P ′′) = ∅, V (P ′)∪V (P ′′) ⊆ R(m), and |V (P ′)∪V (P ′′)| = n−1. We let
s′′ and t′′ be the vertices in R(m−1) which are adjacent to s′ and t′, respectively.
Observe that s′′, t′′ ∈ B if s, t ∈ B; otherwise, s′′ has a color different from t′′.
P = (P ′, Q, P ′′) is a desired Lopt-path, where Q is an Lopt-path in G〈R(1,m−1)〉
joining s′′ and t′′ which satisfies the condition.

Case 3 s ∈ R(1,m − 1) and t ∈ R(m). When s, t ∈ B or s has a color
different from t (see Fig. 2 (d)), we choose t′ in R(m) which is not adjacent to s
and vf such that there is a path P ′ joining t′ and t which satisfies V (P ′) = R(m).
When s, t ∈ W , we choose t′ in R(m) such that there is a path P ′ joining t′ and
t which satisfies V (P ′) ⊆ R(m) and |V (P ′)| = n− 1. We let t′′ be the vertex in
R(m− 1) which is adjacent to t′. P = (Q,P ′) is a desired Lopt-path, where Q is
an Lopt-path in G〈R(1, m− 1)〉 between s and t′′ which satisfies the condition.

ut
Strong hamiltonian-laceability of Pm × Cn, n ≥ 4 even, with a single faulty

edge can be shown by utilizing Lemma 4 as follows.

Lemma 5. Pm ×Cn, n even, with a single faulty edge is strongly hamiltonian-
laceable.

Proof. By Lemma 2 (b), Pm × Cn has a hamiltonian path between any two
vertices with different colors. It remains to show that there is an Lopt-path (of
length mn − 2) joining every pair of vertices s and t with the same color. Let
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Fig. 2. Illustration of the proof of Lemma 4

(x, y) be the faulty edge. We assume w.l.o.g. that x is black and y is white. When
s and t are black, we find an Lopt-path P between s and t regarding y as a faulty
vertex by using Lemma 4. P does not pass through (x, y) as well as y, and the
length of P is mn− 2. Thus, P is a desired Lopt-path. In a similar way, we can
construct an Lopt-path for a pair of white vertices. ut

We know, by Lemma 4 and Lemma 5, that Pm × Cn, n ≥ 4 even, with a
single faulty element is strongly hamiltonian-laceable, which implies that Pm×Cn

without faulty elements is also strongly hamiltonian-laceable. Thus, we have the
following theorem.

Theorem 1. Pm × Cn, n ≥ 4 even, is 1-fault strongly hamiltonian-laceable.

Corollary 1. Pm × Cn, n ≥ 4 even, has a hamiltonian cycle passing through
any arbitrary edge when f = fe ≤ 1.

An m-dimensional hypercube Qm has a spanning subgraph isomorphic to
P2 × C2m−1 . A recursive circulant G(cdm, d) with degree four or more has a
spanning subgraph isomorphic to Pd × Ccdm−1 . G(cdm, d) with degree four or
more is bipartite if and only if c is even and d is odd[7].

Corollary 2. (a) An m-dimensional hypercube Qm, m ≥ 3, is 1-fault strongly
hamiltonian-laceable. (b) A bipartite recursive circulant G(cdm, d) with degree
four or more is 1-fault strongly hamiltonian-laceable.

3.2 Pm × Cn with Two Faulty Elements

A bipartite graph is called 2-vertex-fault Lopt-cyclic if it has an Lopt-cycle when
f = fv ≤ 2.

Lemma 6. P2 × Cn, n ≥ 4 even, is 2-vertex-fault Lopt-cyclic.

Proof. It is sufficient to show that P2×Cn has an Lopt-cycle C when f = fv = 2
by Theorem 1. We assume w.l.o.g. that v1

n is faulty, and let vf be the faulty vertex
other than v1

n. Let us consider the case that vf ∈ B first. When vf = v1
i and i 6= 1

(see Fig. 3 (a)), C = (H[v2
1 , v2

i−1|C(1, i−1)], v2
i ,H[v2

i+1, v
2
n−1|C(i+1, n−1)], v2

n).



When vf = v1
1 , C = (v2

1 ,H[v2
2 , v2

n−1|C(2, n − 1)], v2
n). When vf = v2

i and i 6= n
(see Fig. 3 (b)), C = (H[v2

1 , v1
i−1|C(1, i−1)], v1

i ,H[v1
i+1, v

2
n−1|C(i+1, n−1)], v2

n).
When vf = v2

n, C = H[v1
1 , v2

1 |C(1, n − 1)] + (v1
1 , v2

1). Now, we consider the case
that vf ∈ W . When vf = v1

i (see Fig. 3 (c)), C = (v2
1 ,H[v2

2 , v2
i−1|C(2, i −

1)], v2
i ,H[v2

i+1, v
2
n−2|C(i + 1, n − 2)], v2

n−1, v
2
n). When vf = v2

i and i 6= 1, n − 1
(see Fig. 3 (d)), C = (v2

1 ,H[v2
2 , v1

i−1|C(2, i − 1)], v1
i ,H[v1

i+1, v
2
n−2|C(i + 1, n −

2)], v2
n−1, v

2
n). When vf = v2

1 , C = H[v1
2 , v2

2 |C(2, n − 1)] + (v1
2 , v2

2). When vf =
v2

n−1, C = H[v1
1 , v2

1 |C(1, n− 2)] + (v1
1 , v2

1). ut

(a) (b) (c) (d)

Fig. 3. Illustration of the proof of Lemma 6

Theorem 2. Pm × Cn, n ≥ 4 even, is 2-vertex-fault Lopt-cyclic.

Proof. The proof is by induction on m. We are sufficient to construct an Lopt-
cycle C for the case that m ≥ 3 and f = fv = 2. We assume w.l.o.g. that at
most one faulty vertex is contained in R(1) due to the similarity of Pm × Cn.

Case 1 There is one faulty vertex in R(1). We assume w.l.o.g. that v1
n

is faulty, and let vf be the faulty vertex other than v1
n. When vf ∈ B (see

Fig. 4 (a)), C = (v1
1 , v1

2 , · · · , v1
n−1, P

′), where P ′ is an Lopt-path between v2
n−1

and v2
1 in G〈R(2, m)〉. The existence of P ′ is due to Theorem 1. When vf ∈

W and vf 6= v2
1 (see Fig. 4 (b)), C = (v1

1 , v1
2 , · · · , v1

n−2, P
′), where P ′ is an

Lopt-path between v2
n−2 and v2

1 in G〈R(2,m)〉. When vf = v2
1 (see Fig. 4 (c)),

C = (v1
2 , v1

3 , · · · , v1
n−1, P

′), where P ′ is an Lopt-path between v2
n−1 and v2

2 in
G〈R(2, m)〉.

Case 2 There is no faulty vertex in R(1). We let C ′ be an Lopt-cycle in
G〈R(2, m)〉. If C ′ passes through an edge (x, y) in G〈R(2)〉, a merge of C ′ and
G〈R(1)〉 − (x′, y′) w.r.t. (x, x′) and (y, y′) results in an Lopt-cycle, where x′ and
y′ are the vertices in R(1) adjacent to x and y, respectively. No such an edge
(x, y) exists only when n = 4 and a pair of vertices with the same color in R(2)
are faulty. We consider the case that n = 4 and two white vertices are faulty.
For m ≥ 4 (see Fig. 4 (d)), C = (v2

2 , v1
2 , v1

3 , v1
4 , v2

4 , P ′), where P ′ is an Lopt-path
in G〈R(3,m)〉 between v3

4 and v3
2 . For m = 3, C = (v2

2 , v1
2 , v1

3 , v1
4 , v2

4 , v3
4 , v3

3 , v3
2).

Similarly, we can construct an Lopt-cycle for the case that two black vertices are
faulty. ut

A bipartite graph is called 1-vertex and 1-edge-fault Lopt-cyclic if it has an
Lopt-cycle when fv ≤ 1 and fe ≤ 1.
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Fig. 4. Illustration of the proof of Theorem 2

Theorem 3. Pm × Cn, n ≥ 4 even, is 1-vertex and 1-edge-fault Lopt-cyclic.

Proof. We consider the case that fv = 1 and fe = 1 by Theorem 1. We let vf

and (x, y) be the faulty vertex and edge, respectively. We assume w.l.o.g. that
x has a color different from vf . We find an Lopt-cycle C regarding x (as well as
vf ) as a faulty vertex by using Theorem 2. C does not pass through (x, y) and
vf , and the length of C is mn− 2. Thus, C is a desired Lopt-cycle. ut

Contrary to Theorem 2 and 3, Pm × Cn, n ≥ 4 even, with two faulty edges
does not always have an Lopt-cycle since both faulty edges may be incident to
a common vertex of degree 3. Note that, when there are no faulty vertices, an
Lopt-cycle means a hamiltonian cycle. There are some other fault patterns which
prevent Pm×Cn from having a hamiltonian cycle. For example, P2×Cn has no
hamiltonian cycle if (v1

n, v1
1) and (v2

2 , v2
3) are faulty (see Fig. 5 (a)): supposing that

there is a hamiltonian cycle, a faulty edge (v1
n, v1

1) (resp. (v2
2 , v2

3)) forces (v1
1 , v1

2)
and (v1

1 , v2
1) (resp. (v2

2 , v2
1) and (v2

2 , v1
2)) to be included in the hamiltonian cycle,

which is impossible. Similarly, we can see that Pm×C4 has no hamiltonian cycle
if (v1

2 , v2
2) and (v1

4 , v2
4) are faulty (see Fig. 5 (b)).

(a) (b)

Fig. 5. Nonhamiltonian Pm × Cn with f = fe = 2

Theorem 4. Pm × Cn, n ≥ 4 even, with two faulty edges has a fault-free cycle
of length at least mn− 2.



Proof. We let (x, y) and (x′, y′) be the faulty edges, and assume w.l.o.g. that x
and x′ are black. We find an Lopt-cycle C regarding x and y′ as faulty vertices
by using Theorem 2. C does not pass through (x, y) and (x′, y′) as well as x and
y′, and the length of C is mn− 2, as required by the theorem. ut

Theorem 5. Pm × Cn, m ≥ 3 and even n ≥ 6, with two faulty edges has a
hamiltonian cycle if both faulty edges are not incident to a common vertex of
degree 3.

Proof. The proof is by induction on m. We let ef and e′f be the faulty edges,
and will construct a hamiltonian cycle C.

Case 1 ef , e′f ∈ G〈R(1)〉. We assume w.l.o.g. that ef = (v1
n, v1

1) and
e′f = (v1

i , v1
i+1). By assumption, we have i 6= 1, n − 1. When i is even, C =

(H[vm
1 , vm

i |C(1, i)],H[vm
i+1, v

m
n |C(i + 1, n)]). When both i and m are odd, C =

(H[vm
1 , vm

i |C(1, i)],H[vm
i+1, v

m
n |C(i + 1, n)]). The existence of hamiltonian paths

in G〈C(1, i)〉 and in G〈C(i + 1, n)〉 is due to Lemma 1 (b). When i is odd and
m is even, C = (H[vm

1 , vm−1
i |C(1, i)],H[vm−1

i+1 , vm
n |C(i + 1, n)]).

Case 2 ef ∈ G〈R(1)〉 and e′f 6∈ G〈R(1)〉. W.l.o.g., we let ef = (v1
n, v1

1).
By assumption, both (v1

1 , v2
1) and (v1

n, v2
n) are fault-free. C = (v1

1 , v1
2 , · · · , v1

n, P ′),
where P ′ is a hamiltonian path in G〈R(2,m)〉 between v2

n and v2
1 due to Theo-

rem 1.
Case 3 ef , e′f 6∈ G〈R(1)〉.
Case 3.1 There is a faulty column edge joining a vertex in R(1) and a vertex

in R(2). There exists i such that both (v1
i , v2

i ) and (v1
i+1, v

2
i+1) are fault-free since

fe = 2 and n ≥ 6. C = (H[v1
i , v1

i+1|R(1)], P ′), where P ′ is a hamiltonian path in
G〈R(2, m)〉 between v2

i+1 and v2
i .

Case 3.2 There is no faulty column edge joining a vertex in R(1) and
a vertex in R(2). First, we consider the case that there is a faulty edge in
G〈R(2)〉. We assume w.l.o.g. that ef = (v2

n, v2
1). We find a hamiltonian path

P ′ in G〈R(2, m)〉 between v2
n and v2

1 regarding ef as a fault-free edge by using
Theorem 1. Obviously, P ′ does not pass through ef . Thus, we have a hamilto-
nian cycle C = (H[v1

1 , v1
n|R(1)], P ′). The construction of a hamiltonian cycle for

the base case m = 3 is completed since the case that there is a faulty edge in
G〈R(3)〉 is reduced to Case 1 and 2, and the case that there is a faulty edge
joining a vertex in R(2) and a vertex in R(3) is reduced to Case 3.1.

The remaining case is that m ≥ 4 and there is no faulty edge in G〈R(1, 2)〉.
The faulty edges are contained in G〈R(2,m)〉, and both of them are not inci-
dent to a common vertex in R(2). That is, we have G〈R(2, m)〉 isomorphic to
Pm−1 × Cn such that both faulty edges are not incident to a common vertex of
degree 3. Thus, we have a hamiltonian cycle C ′ in G〈R(2,m)〉 by the induction
hypothesis. A merge of C ′ and G〈R(1)〉− (x′, y′) w.r.t. (x, x′) and (y, y′) results
in a hamiltonian cycle in Pm × Cn, where x and y are the vertices in R(2) such
that (x, y) is an edge on C ′, and x′ and y′ are the vertices in R(1) adjacent to x
and y, respectively. This completes the proof. ut



4 Cm × Cn with Even m and n

Let us consider fault-hamiltonicity of a bipartite Cm×Cn with m,n ≥ 4. Cm×Cn

is bipartite if and only if both m and n are even.

Theorem 6. (a) Cm × Cn, m and n even, is 1-fault strongly hamiltonian-
laceable. (b) Cm × Cn, m and n even, is 2-fault Lopt-cyclic.

Proof. The statement (a) is due to Theorem 1. It is sufficient to show that
Cm × Cn with two faulty edges has a hamiltonian cycle by Theorem 2 and
Theorem 3. Cm×Cn has a spanning subgraph isomorphic to Pm×Cn or Pn×Cm

which has at most one faulty edge. Thus, Cm × Cn has a hamiltonian cycle by
Corollary 1. ut

5 Concluding Remarks

We proved that Pm × Cn, n ≥ 4 even, is 1-fault strongly hamiltonian-laceable,
2-vertex-fault Lopt-cyclic, 1-vertex and 1-edge-fault Lopt-cyclic. If there are two
faulty edges, Pm × Cn has a fault-free cycle of length at least mn − 2. It was
also proved that Pm × Cn, m ≥ 3 and even n ≥ 6, is hamiltonian if both faulty
edges are not incident to a common vertex of degree 3. By employing fault-
hamiltonicity of Pm×Cn, we found that a bipartite Cm×Cn is 1-fault strongly
hamiltonian-laceable and 2-fault Lopt-cyclic.
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