Fault-Hamiltonicity of Product Graph of Path and Cycle^{*}

Jung-Heum Park¹ and Hee-Chul Kim²

¹ The Catholic University of Korea, Puchon, Kyonggi-do 420-743, Korea j.h.park@catholic.ac.kr

² Hankuk University of Foreign Studies, Yongin, Kyonggi-do 449-791, Korea hckim@hufs.ac.kr

Abstract. We investigate hamiltonian properties of $P_m \times C_n$, $m \ge 2$ and even $n \ge 4$, which is bipartite, in the presence of faulty vertices and/or edges. We show that $P_m \times C_n$ with n even is strongly hamiltonianlaceable if the number of faulty elements is one or less. When the number of faulty elements is two, it has a fault-free cycle of length at least mn-2unless both faulty elements are contained in the same partite vertex set; otherwise, it has a fault-free cycle of length mn-4. A sufficient condition is derived for the graph with two faulty edges to have a hamiltonian cycle. By applying fault-hamiltonicity of $P_m \times C_n$ to a two-dimensional torus $C_m \times C_n$, we obtain interesting hamiltonian properties of a faulty $C_m \times C_n$.

1 Introduction

Embedding of linear arrays and rings into a faulty interconnection graph is one of the central issues in parallel processing. The problem is modeled as finding as long fault-free paths and cycles as possible in the graph with some faulty vertices and/or edges. Fault-hamiltonicity of various interconnection graphs were investigated in the literature. Among them, hamiltonian properties of faulty $P_m \times C_n$ and $C_m \times C_n$ were considered in [4–6, 8]. Here, P_m is a path with mvertices and C_n is a cycle with n vertices. Many interconnection graphs such as tori, hypercubes, recursive circulants[7], and double loop networks have a spanning subgraph isomorphic to $P_m \times C_n$ for some m and n. Hamiltonian properties of $P_m \times C_n$ with faulty elements play an important role in discovering fault-hamiltonicity of such interconnection graphs.

A graph G is called k-fault hamiltonian (resp. k-fault hamiltonian-connected) if G - F has a hamiltonian cycle (resp. a hamiltonian path joining every pair of vertices) for any set F of faulty elements such that $|F| \leq k$. It was proved in [4, 8] that $P_m \times C_n$, $n \geq 3$ odd, is hamiltonian-connected and 1-fault hamiltonian. Throughout this paper, a hamiltonian path (resp. cycle) in a graph G with faulty elements F means a hamiltonian path (resp. cycle) in G - F.

^{*} This work was supported by grant No. 98-0102-07-01-3 from the Basic Research Program of the KOSEF.

We let G be a bipartite graph with N vertices such that |B| = |W|, where B and W are the sets of black and white vertices in G, respectively. We denote by F_v and F_e the sets of faulty vertices and edges in G, respectively. We let $F = F_v \cup F_e$, $f_v^w = |F_v \cap W|$, $f_v^b = |F_v \cap B|$, $f_e = |F_e|$, $f_v = f_v^w + f_v^b$, and $f = f_v + f_e$. When $f_v^b = f_v^w$, a fault-free path of length $N - 2f_v^b - 1$ joining a pair of vertices with different colors is called an L^{opt} -path. For a pair of vertices with the same color, a fault-free path of length $N - 2f_v^b - 2$ between them is called an L^{opt} -path. When $f_v^b < f_v^w$, fault-free paths of length $N - 2f_v^w$ for a pair of black vertices, of length $N - 2f_v^w - 1$ for a pair of vertices with different colors, and of length $N - 2f_v^w - 2$ for a pair of white vertices, are called L^{opt} -paths. Similarly, we can define an L^{opt} -path for a bipartite graph with $f_v^w < f_v^b$. A fault-free cycle of length $N - 2 \max\{f_v^b, f_v^w\}$ is called an L^{opt} -cycle. The lengths of an L^{opt} -path and an L^{opt} -cycle are the longest possible. In other words, there are no fault-free path and cycle longer than an L^{opt} -path and an L^{opt} -cycle, respectively.

A bipartite graph with |B| = |W| (resp. |B| = |W| + 1) is called *hamiltonian-laceable* if it has a hamiltonian path joining every pair of vertices with different colors (resp. joining every pair of black vertices). Strong hamiltonian-laceability of a bipartite graph with |B| = |W| was defined in [2]. We extend the notion of strong hamiltonian-laceability to a bipartite graph with faulty elements as follows. For any faulty set F such that $|F| \leq k$, a bipartite graph G which has an L^{opt} -path between every pair of fault-free vertices is called *k-fault strongly hamiltonian-laceable*.

 $P_m \times P_n$, $m, n \ge 4$, is hamiltonian-laceable[3], and $P_m \times P_n$ with $f = f_v \le 2$ has an L^{opt} -cycle when both m and n are multiples of four[5]. It has been known in [6, 8] that $P_m \times C_n$, $n \ge 4$ even, with one or less faulty element is hamiltonianlaceable. We will show in Section 3 that $P_m \times C_n$, $n \ge 4$ even, is 1-fault strongly hamiltonian-laceable, which is an extension of the work in [6, 8]. Moreover, we will show that $P_m \times C_n$, $n \ge 4$ even, has an L^{opt} -cycle if f = 2 and $f_v \ge 1$. When $f = f_e = 2$, it has a fault-free cycle of length at least mn - 2, and has a hamiltonian cycle if $m \ge 3$, $n \ge 6$ even and two faulty edges are not incident to a common vertex of degree three.

It has been known in [4] that a non-bipartite $C_m \times C_n$ is 1-fault hamiltonianconnected and 2-fault hamiltonian, and that a bipartite $C_m \times C_n$ with one or less faulty element is hamiltonian-laceable. $C_m \times C_n$ with $f = f_v \leq 4$ has an L^{opt} -cycle when both m and n are multiples of four[5]. We will show in Section 4, by utilizing hamiltonian properties of faulty $P_m \times C_n$, that a bipartite $C_m \times C_n$ is 1-fault strongly hamiltonian-laceable and has an L^{opt} -cycle when $f \leq 2$.

2 Preliminaries

The vertex set V of $P_m \times C_n$ is $\{v_j^i | 1 \le i \le m, 1 \le j \le n\}$, and the edge set $E = E_r \cup E_c$, where $E_r = \{(v_j^i, v_{j+1}^i) | 1 \le i \le m, 1 \le j < n\} \cup \{(v_n^i, v_1^i) | 1 \le i \le m\}$ and $E_c = \{(v_j^i, v_j^{i+1}) | 1 \le i < m, 1 \le j \le n\}$. An edge contained in E_r is called a *row edge*, and an edge in E_c is called a *column edge*. We denote by R(i) and C(j) the vertices in row i and column j, respectively. That is, $R(i) = \{v_j^i | 1 \le j \le n\}$ and $C(j) = \{v_j^i | 1 \le i \le m\}$. We let $R(i, i') = \bigcup_{i \le k \le i'} R(k)$ if $i \le i'$; otherwise, $R(i, i') = \emptyset$. Similarly, we let $C(j, j') = \bigcup_{j \le k \le j'} C(k)$ if $j \le j'$; otherwise, $C(j, j') = \emptyset$. v_j^i is a *black* vertex if i + j is even; otherwise, it is a *white* vertex.

In $P_m \times C_n$, every pair of vertices v and w in $R(i) \cup R(m-i+1)$ for each i, $1 \leq i \leq m$, are similar, that is, there is an automorphism ϕ such that $\phi(v) = w$. A pair of edges (v, w) and (v', w') are called similar if there is an automorphism ψ such that $\psi(v) = v'$ and $\psi(w) = w'$. Any two row edges in $\{(v, w)|$ either $v, w \in R(i)$ or $v, w \in R(m-i+1)$ are similar for each $i, 1 \leq i \leq m$, and any two column edges in $\{(v, w)|$ either $v \in R(i), w \in R(i+1)$ or $v \in R(m-i+1), w \in R(m-i)$ are also similar for each $i, 1 \leq i \leq m$.

We employ lemmas on hamiltonian properties of $P_m \times P_n$ and $P_m \times C_n$. We call a vertex in $P_m \times P_n$ a *corner vertex* if it is of degree two.

Lemma 1. [1] Let G be a rectangular grid $P_m \times P_n$, $m, n \ge 2$. (a) If mn is even, then G has a hamiltonian path from any corner vertex v to any other vertex with color different from v. (b) If mn is odd, then G has a hamiltonian path from any corner vertex v to any other vertex with the same color as v.

Lemma 2. [8] (a) $P_m \times C_n$, $n \ge 3$ odd, is hamiltonian-connected and 1-fault hamiltonian. (b) $P_m \times C_n$, $n \ge 4$ even, is 1-fault hamiltonian-laceable.

We denote by H[v, w|X] a hamiltonian path in $G\langle X \rangle - F$ joining a pair of vertices v and w, if any, where $G\langle X \rangle$ is the subgraph of G induced by a vertex subset X. A path is represented as a sequence of vertices. If $G\langle X \rangle - F$ is empty or has no hamiltonian path between v and w, H[v, w|X] is an empty sequence.

We let P and Q be two vertex-disjoint paths (a_1, a_2, \dots, a_k) and (b_1, b_2, \dots, b_l) on a graph G, respectively, such that (a_i, b_1) and (a_{i+1}, b_l) are edges in G. If we replace (a_i, a_{i+1}) with (a_i, b_1) and (a_{i+1}, b_l) , then P and Q are merged into a single path $(a_1, a_2, \dots, a_i, b_1, b_2, \dots, b_l, a_{i+1}, \dots, a_k)$. We call such a replacement a *merge* of P and Q w.r.t. (a_i, b_1) and (a_{i+1}, b_l) . If P is a closed path (that is, a cycle), the merge operation results in a single cycle. We denote by V(P) the set of vertices on a path P.

3 $P_m \times C_n$ with Even $n \ge 4$

3.1 $P_m \times C_n$ with One or Less Faulty Element

We will show, in this section, that $P_m \times C_n$, $n \ge 4$ even, is 1-fault strongly hamiltonian-laceable. First of all, we are going to show that $P_m \times C_n$ with a single faulty vertex is strongly hamiltonian-laceable by constructing an L^{opt} path P joining every pair of fault-free vertices s and t.

Lemma 3. $P_2 \times C_n$, *n* even, with a single faulty vertex is strongly hamiltonianlaceable. Furthermore, there is an L^{opt} -path joining every pair of vertices which passes through both an edge in $G\langle R(1) \rangle$ and an edge in $G\langle R(2) \rangle$. *Proof.* W.l.o.g., we assume that the faulty vertex is v_n^1 . We let $s = v_i^x$ and $t = v_j^y$, $1 \le x, y \le 2$, and assume w.l.o.g. that $i \le j$.

 $\begin{array}{ll} Case \ 1 & s,t \in B \ (\text{see Fig. 1 (a)}). \ P = (H[s,v_1^2|C(1,j-1)],v_n^2, H[v_{n-1}^2,t|C(j,n-1)]). \\ \text{Note that when } j = n, \ H[v_{n-1}^2,t|C(j,n-1)] \ \text{is an empty sequence. The existence of a nonempty } H[s,v_1^2|C(1,j-1)] \ \text{is due to Lemma 1 (a)}. \end{array}$

 $\begin{array}{ll} Case \ 2 & s,t \in W. \ \text{First, let us consider the case that} \ i \neq 1. \ \text{If} \ j = i+1 \\ (\text{see Fig. 1 (b)}), \ P = (s, H[v_{i-1}^x, v_1^2|C(1, i-1)], v_n^2, H[v_{n-1}^2, v_{j+1}^y|C(j+1, n-1)], t); \ \text{otherwise (see Fig. 1 (c)}), \ P = (H[s, v_i^{3-x}|C(i, j-1)], H[v_{i-1}^{3-x}, v_2^2|C(2, i-1)], v_1^2, v_n^2, H[v_{n-1}^2, v_{j+1}^y|C(j+1, n-1)], t). \ \text{For the case that} \ i = 1, \ P = (s, H[v_2^2, t| C(2, n-1)]). \end{array}$

Case 3 Either $s \in B, t \in W$ or $s \in W, t \in B$.

Case 3.1 $i \neq j$. Let us consider the case that $j \neq n$ (see Fig. 1 (d)). Let P' be a hamiltonian path joining s and t in $G\langle C(i,j)\rangle$. P' passes through both edges (v_i^1, v_i^2) and (v_j^1, v_j^2) since P' passes through one of the two vertices v_i^1 and v_i^2 (resp. v_j^1 and v_j^2) of degree 2 in $G\langle C(i,j)\rangle$ as an intermediate vertex. Let $Q' = H[v_{i-1}^1, v_{i-1}^2|C(1, i-1)]$ and $Q'' = H[v_{j+1}^1, v_{j+1}^2|C(j+1, n-1)]$. We let P'' be a resulting path by a merge of P' and Q' w.r.t. (v_i^1, v_{i-1}^1) and (v_i^2, v_{i-1}^2) if Q' is not empty; otherwise, let P'' = P'. If Q'' is empty, P'' is an L^{opt} -path; otherwise, by applying a merge of P'' and Q'' w.r.t. (v_j^1, v_{j+1}^1) and (v_j^2, v_{j+1}^2) , we can get an L^{opt} -path. Now, we consider the case that j = n. If $i \neq n - 1$ (see Fig. 1 (e)), $P = (H[s, v_{n-2}^2|C(1, n-2)], v_{n-1}^2, t)$; otherwise (see Fig. 1 (f)), $P = (H[s, v_2^2|C(2, n-1)], v_1^2, t)$.

 $\begin{array}{ll} Case \ 3.2 \quad i=j. \mbox{ We first let } i \mbox{ be odd. When } i\neq 1,n-1 \ (\text{see Fig. 1 (g)}), \\ P=(v_i^1,H[v_{i-1}^1,v_2^2|C(2,i-1)],v_1^2,v_n^2,H[v_{n-1}^2,v_{i+1}^2|C(i+1,n-1)],v_i^2). \mbox{ When } i=1, P=H[v_1^1,v_1^2|C(1,n-1)]. \mbox{ When } i=n-1, P=H[v_{n-1}^1,v_{n-1}^2|C(1,n-1)]. \\ \mbox{ For the case that } i \mbox{ is even (see Fig. 1 (h)), } P=(v_i^1,H[v_{i+1}^1,v_{n-1}^2|C(i+1,n-1)],v_i^2). \end{array}$

Unless either (i) n = 4 and $s, t \in W$, or (ii) n = 4 and $s \in R(1)$ has a color different from $t \in R(1)$, any L^{opt} -path passes through a vertex in R(1) and a vertex in R(2) as intermediate vertices, and thus it passes through both an edge in $G\langle R(1) \rangle$ and an edge in $G\langle R(2) \rangle$. For the cases (i) and (ii), it is easy to see that the L^{opt} -paths constructed here (Case 2 and Case 3.1) always satisfy the condition.

Lemma 4. $P_m \times C_n$, *n* even, with a single faulty vertex is strongly hamiltonianlaceable. Furthermore, there is an L^{opt} -path joining every pair of vertices which passes through both an edge in $G\langle R(1) \rangle$ and an edge in $G\langle R(m) \rangle$.

Proof. The proof is by induction on m. We consider the case $m \ge 3$ by Lemma 3. We assume w.l.o.g. that the faulty vertex v_f is white and contained in $G\langle R(1, m-1)\rangle$ due to the similarity of $P_m \times C_n$ discussed in Section 2.

Case 1 $s,t \in R(1,m-1)$. We let P' be an L^{opt} -path joining s and t in $G\langle R(1,m-1)\rangle$ which passes through both an edge in $G\langle R(1)\rangle$ and an edge (x,y) in $G\langle R(m-1)\rangle$. A merge of P' and $G\langle R(m)\rangle - (x',y')$ w.r.t. (x,x') and (y,y') results in an L^{opt} -path P, where x' and y' are the vertices in R(m) adjacent to

Fig. 1. Illustration of the proof of Lemma 3

x and y, respectively. Obviously, P passes through an edge in $G\langle R(m) \rangle$ as well as an edge in $G\langle R(1) \rangle$.

Case 2 $s, t \in R(m)$. When $s, t \in B$ (see Fig. 2 (a)) or s has a color different from t (see Fig. 2 (b)), we choose s' and t' in R(m) which are not adjacent to v_f such that there are two paths P' joining s and s' and P'' joining t' and t which satisfy $V(P') \cap V(P'') = \emptyset$ and $V(P') \cup V(P'') = R(m)$. When $s, t \in W$ (see Fig. 2 (c)), we choose s' and t' in R(m) which are not adjacent to v_f such that there are two paths P' joining s and s' and P'' joining t' and t which satisfy $V(P') \cap V(P'') = \emptyset, V(P') \cup V(P'') \subseteq R(m)$, and $|V(P') \cup V(P'')| = n-1$. We let s'' and t'' be the vertices in R(m-1) which are adjacent to s' and t', respectively. Observe that $s'', t'' \in B$ if $s, t \in B$; otherwise, s'' has a color different from t''. P = (P', Q, P'') is a desired L^{opt} -path, where Q is an L^{opt} -path in $G\langle R(1, m-1) \rangle$ joining s'' and t'' which satisfies the condition.

Case 3 $s \in R(1, m - 1)$ and $t \in R(m)$. When $s, t \in B$ or s has a color different from t (see Fig. 2 (d)), we choose t' in R(m) which is not adjacent to s and v_f such that there is a path P' joining t' and t which satisfies V(P') = R(m). When $s, t \in W$, we choose t' in R(m) such that there is a path P' joining t' and t which satisfies $V(P') \subseteq R(m)$ and |V(P')| = n - 1. We let t'' be the vertex in R(m-1) which is adjacent to t'. P = (Q, P') is a desired L^{opt} -path, where Q is an L^{opt} -path in $G\langle R(1, m - 1) \rangle$ between s and t'' which satisfies the condition.

Strong hamiltonian-laceability of $P_m \times C_n$, $n \ge 4$ even, with a single faulty edge can be shown by utilizing Lemma 4 as follows.

Lemma 5. $P_m \times C_n$, n even, with a single faulty edge is strongly hamiltonianlaceable.

Proof. By Lemma 2 (b), $P_m \times C_n$ has a hamiltonian path between any two vertices with different colors. It remains to show that there is an L^{opt} -path (of length mn - 2) joining every pair of vertices s and t with the same color. Let

Fig. 2. Illustration of the proof of Lemma 4

(x, y) be the faulty edge. We assume w.l.o.g. that x is black and y is white. When s and t are black, we find an L^{opt} -path P between s and t regarding y as a faulty vertex by using Lemma 4. P does not pass through (x, y) as well as y, and the length of P is mn - 2. Thus, P is a desired L^{opt} -path. In a similar way, we can construct an L^{opt} -path for a pair of white vertices.

We know, by Lemma 4 and Lemma 5, that $P_m \times C_n$, $n \ge 4$ even, with a single faulty element is strongly hamiltonian-laceable, which implies that $P_m \times C_n$ without faulty elements is also strongly hamiltonian-laceable. Thus, we have the following theorem.

Theorem 1. $P_m \times C_n$, $n \ge 4$ even, is 1-fault strongly hamiltonian-laceable.

Corollary 1. $P_m \times C_n$, $n \ge 4$ even, has a hamiltonian cycle passing through any arbitrary edge when $f = f_e \le 1$.

An *m*-dimensional hypercube Q_m has a spanning subgraph isomorphic to $P_2 \times C_{2^{m-1}}$. A recursive circulant $G(cd^m, d)$ with degree four or more has a spanning subgraph isomorphic to $P_d \times C_{cd^{m-1}}$. $G(cd^m, d)$ with degree four or more is bipartite if and only if c is even and d is odd[7].

Corollary 2. (a) An m-dimensional hypercube Q_m , $m \ge 3$, is 1-fault strongly hamiltonian-laceable. (b) A bipartite recursive circulant $G(cd^m, d)$ with degree four or more is 1-fault strongly hamiltonian-laceable.

3.2 $P_m \times C_n$ with Two Faulty Elements

A bipartite graph is called 2-vertex-fault L^{opt} -cyclic if it has an L^{opt} -cycle when $f = f_v \leq 2$.

Lemma 6. $P_2 \times C_n$, $n \ge 4$ even, is 2-vertex-fault L^{opt} -cyclic.

Proof. It is sufficient to show that $P_2 \times C_n$ has an L^{opt} -cycle C when $f = f_v = 2$ by Theorem 1. We assume w.l.o.g. that v_n^1 is faulty, and let v_f be the faulty vertex other than v_n^1 . Let us consider the case that $v_f \in B$ first. When $v_f = v_i^1$ and $i \neq 1$ (see Fig. 3 (a)), $C = (H[v_1^2, v_{i-1}^2 | C(1, i-1)], v_i^2, H[v_{i+1}^2, v_{n-1}^2 | C(i+1, n-1)], v_n^2)$.

 $\begin{array}{ll} \text{When } v_f = v_1^1, \ C = (v_1^2, H[v_2^2, v_{n-1}^2 | C(2, n-1)], v_n^2). \ \text{When } v_f = v_i^2 \ \text{and} \ i \neq n \\ (\text{see Fig. 3 (b)}), \ C = (H[v_1^2, v_{i-1}^1 | C(1, i-1)], v_i^1, H[v_{i+1}^1, v_{n-1}^2 | C(i+1, n-1)], v_n^2). \\ \text{When } v_f = v_n^2, \ C = H[v_1^1, v_1^2 | C(1, n-1)] + (v_1^1, v_1^2). \ \text{Now, we consider the case} \\ \text{that } v_f \in W. \ \text{When } v_f = v_i^1 \ (\text{see Fig. 3 (c)}), \ C = (v_1^2, H[v_2^2, v_{i-1}^2 | C(2, i-1)], v_i^2, H[v_{i+1}^2, v_{n-2}^2 | C(i+1, n-2)], v_{n-1}^2, v_n^2). \ \text{When } v_f = v_i^2 \ \text{and} \ i \neq 1, n-1 \\ (\text{see Fig. 3 (d)}), \ C = (v_1^2, H[v_2^2, v_{i-1}^1 | C(2, i-1)], v_i^1, H[v_{i+1}^1, v_{n-2}^2 | C(i+1, n-2)], v_{n-1}^2, v_n^2). \ \text{When } v_f = v_i^2 \ \text{Mhen } v_f = v_i^2, \ C = H[v_1^1, v_2^2 | C(2, n-1)] + (v_2^1, v_2^2). \ \text{When } v_f = v_{n-1}^2, \ C = H[v_1^1, v_1^2| C(1, n-2)] + (v_1^1, v_1^2). \end{array}$

Fig. 3. Illustration of the proof of Lemma 6

Theorem 2. $P_m \times C_n$, $n \ge 4$ even, is 2-vertex-fault L^{opt} -cyclic.

Proof. The proof is by induction on m. We are sufficient to construct an L^{opt} -cycle C for the case that $m \geq 3$ and $f = f_v = 2$. We assume w.l.o.g. that at most one faulty vertex is contained in R(1) due to the similarity of $P_m \times C_n$.

Case 1 There is one faulty vertex in R(1). We assume w.l.o.g. that v_n^1 is faulty, and let v_f be the faulty vertex other than v_n^1 . When $v_f \in B$ (see Fig. 4 (a)), $C = (v_1^1, v_2^1, \cdots, v_{n-1}^1, P')$, where P' is an L^{opt} -path between v_{n-1}^2 and v_1^2 in $G\langle R(2,m) \rangle$. The existence of P' is due to Theorem 1. When $v_f \in W$ and $v_f \neq v_1^2$ (see Fig. 4 (b)), $C = (v_1^1, v_2^1, \cdots, v_{n-2}^1, P')$, where P' is an L^{opt} -path between v_{n-2}^2 and v_1^2 in $G\langle R(2,m) \rangle$. When $v_f = v_1^2$ (see Fig. 4 (c)), $C = (v_2^1, v_3^1, \cdots, v_{n-1}^1, P')$, where P' is an L^{opt} -path between v_{n-1}^2 and v_2^2 in $G\langle R(2,m) \rangle$.

Case 2 There is no faulty vertex in R(1). We let C' be an L^{opt} -cycle in $G\langle R(2,m)\rangle$. If C' passes through an edge (x,y) in $G\langle R(2)\rangle$, a merge of C' and $G\langle R(1)\rangle - (x',y')$ w.r.t. (x,x') and (y,y') results in an L^{opt} -cycle, where x' and y' are the vertices in R(1) adjacent to x and y, respectively. No such an edge (x,y) exists only when n = 4 and a pair of vertices with the same color in R(2) are faulty. We consider the case that n = 4 and two white vertices are faulty. For $m \ge 4$ (see Fig. 4 (d)), $C = (v_2^2, v_2^1, v_3^1, v_4^1, v_4^2, P')$, where P' is an L^{opt} -path in $G\langle R(3,m)\rangle$ between v_4^3 and v_2^3 . For m = 3, $C = (v_2^2, v_2^1, v_3^1, v_4^1, v_4^2, v_4^2, v_3^3, v_3^2)$. Similarly, we can construct an L^{opt} -cycle for the case that two black vertices are faulty.

A bipartite graph is called 1-vertex and 1-edge-fault L^{opt} -cyclic if it has an L^{opt} -cycle when $f_v \leq 1$ and $f_e \leq 1$.

Fig. 4. Illustration of the proof of Theorem 2

Theorem 3. $P_m \times C_n$, $n \ge 4$ even, is 1-vertex and 1-edge-fault L^{opt} -cyclic.

Proof. We consider the case that $f_v = 1$ and $f_e = 1$ by Theorem 1. We let v_f and (x, y) be the faulty vertex and edge, respectively. We assume w.l.o.g. that x has a color different from v_f . We find an L^{opt} -cycle C regarding x (as well as v_f) as a faulty vertex by using Theorem 2. C does not pass through (x, y) and v_f , and the length of C is mn - 2. Thus, C is a desired L^{opt} -cycle.

Contrary to Theorem 2 and 3, $P_m \times C_n$, $n \ge 4$ even, with two faulty edges does not always have an L^{opt} -cycle since both faulty edges may be incident to a common vertex of degree 3. Note that, when there are no faulty vertices, an L^{opt} -cycle means a hamiltonian cycle. There are some other fault patterns which prevent $P_m \times C_n$ from having a hamiltonian cycle. For example, $P_2 \times C_n$ has no hamiltonian cycle if (v_n^1, v_1^1) and (v_2^2, v_3^2) are faulty (see Fig. 5 (a)): supposing that there is a hamiltonian cycle, a faulty edge (v_n^1, v_1^1) (resp. (v_2^2, v_3^2)) forces (v_1^1, v_2^1) and (v_1^1, v_1^2) (resp. (v_2^2, v_1^2) and (v_2^2, v_2^1)) to be included in the hamiltonian cycle, which is impossible. Similarly, we can see that $P_m \times C_4$ has no hamiltonian cycle if (v_2^1, v_2^2) and (v_4^1, v_4^2) are faulty (see Fig. 5 (b)).

Fig. 5. Nonhamiltonian $P_m \times C_n$ with $f = f_e = 2$

Theorem 4. $P_m \times C_n$, $n \ge 4$ even, with two faulty edges has a fault-free cycle of length at least mn - 2.

Proof. We let (x, y) and (x', y') be the faulty edges, and assume w.l.o.g. that x and x' are black. We find an L^{opt} -cycle C regarding x and y' as faulty vertices by using Theorem 2. C does not pass through (x, y) and (x', y') as well as x and y', and the length of C is mn - 2, as required by the theorem.

Theorem 5. $P_m \times C_n$, $m \ge 3$ and even $n \ge 6$, with two faulty edges has a hamiltonian cycle if both faulty edges are not incident to a common vertex of degree 3.

Proof. The proof is by induction on m. We let e_f and e'_f be the faulty edges, and will construct a hamiltonian cycle C.

Case 1 $e_f, e'_f \in G\langle R(1) \rangle$. We assume w.l.o.g. that $e_f = (v_n^1, v_1^1)$ and $e'_f = (v_i^1, v_{i+1}^1)$. By assumption, we have $i \neq 1, n-1$. When *i* is even, $C = (H[v_1^m, v_i^m|C(1,i)], H[v_{i+1}^m, v_n^m|C(i+1,n)])$. When both *i* and *m* are odd, $C = (H[v_1^m, v_i^m|C(1,i)], H[v_{i+1}^m, v_n^m|C(i+1,n)])$. The existence of hamiltonian paths in $G\langle C(1,i) \rangle$ and in $G\langle C(i+1,n) \rangle$ is due to Lemma 1 (b). When *i* is odd and *m* is even, $C = (H[v_1^m, v_i^{m-1}|C(1,i)], H[v_{i+1}^m, v_n^{m-1}|C(1,i)], H[v_{i+1}^m, v_n^m|C(i+1,n)])$.

Case 2 $e_f \in G\langle R(1) \rangle$ and $e'_f \notin G\langle R(1) \rangle$. W.l.o.g., we let $e_f = (v_n^1, v_1^1)$. By assumption, both (v_1^1, v_1^2) and (v_n^1, v_n^2) are fault-free. $C = (v_1^1, v_2^1, \dots, v_n^1, P')$, where P' is a hamiltonian path in $G\langle R(2, m) \rangle$ between v_n^2 and v_1^2 due to Theorem 1.

Case 3 $e_f, e'_f \notin G\langle R(1) \rangle$.

Case 3.1 There is a faulty column edge joining a vertex in R(1) and a vertex in R(2). There exists *i* such that both (v_i^1, v_i^2) and (v_{i+1}^1, v_{i+1}^2) are fault-free since $f_e = 2$ and $n \ge 6$. $C = (H[v_i^1, v_{i+1}^1 | R(1)], P')$, where P' is a hamiltonian path in $G\langle R(2,m) \rangle$ between v_{i+1}^2 and v_i^2 .

Case 3.2 There is no faulty column edge joining a vertex in R(1) and a vertex in R(2). First, we consider the case that there is a faulty edge in $G\langle R(2)\rangle$. We assume w.l.o.g. that $e_f = (v_n^2, v_1^2)$. We find a hamiltonian path P' in $G\langle R(2,m)\rangle$ between v_n^2 and v_1^2 regarding e_f as a fault-free edge by using Theorem 1. Obviously, P' does not pass through e_f . Thus, we have a hamiltonian cycle $C = (H[v_1^1, v_n^1|R(1)], P')$. The construction of a hamiltonian cycle for the base case m = 3 is completed since the case that there is a faulty edge in $G\langle R(3)\rangle$ is reduced to Case 1 and 2, and the case that there is a faulty edge joining a vertex in R(2) and a vertex in R(3) is reduced to Case 3.1.

The remaining case is that $m \ge 4$ and there is no faulty edge in $G\langle R(1,2) \rangle$. The faulty edges are contained in $G\langle R(2,m) \rangle$, and both of them are not incident to a common vertex in R(2). That is, we have $G\langle R(2,m) \rangle$ isomorphic to $P_{m-1} \times C_n$ such that both faulty edges are not incident to a common vertex of degree 3. Thus, we have a hamiltonian cycle C' in $G\langle R(2,m) \rangle$ by the induction hypothesis. A merge of C' and $G\langle R(1) \rangle - (x',y')$ w.r.t. (x,x') and (y,y') results in a hamiltonian cycle in $P_m \times C_n$, where x and y are the vertices in R(2) such that (x,y) is an edge on C', and x' and y' are the vertices in R(1) adjacent to x and y, respectively. This completes the proof.

4 $C_m \times C_n$ with Even m and n

Let us consider fault-hamiltonicity of a bipartite $C_m \times C_n$ with $m, n \ge 4$. $C_m \times C_n$ is bipartite if and only if both m and n are even.

Theorem 6. (a) $C_m \times C_n$, m and n even, is 1-fault strongly hamiltonianlaceable. (b) $C_m \times C_n$, m and n even, is 2-fault L^{opt} -cyclic.

Proof. The statement (a) is due to Theorem 1. It is sufficient to show that $C_m \times C_n$ with two faulty edges has a hamiltonian cycle by Theorem 2 and Theorem 3. $C_m \times C_n$ has a spanning subgraph isomorphic to $P_m \times C_n$ or $P_n \times C_m$ which has at most one faulty edge. Thus, $C_m \times C_n$ has a hamiltonian cycle by Corollary 1.

5 Concluding Remarks

We proved that $P_m \times C_n$, $n \ge 4$ even, is 1-fault strongly hamiltonian-laceable, 2-vertex-fault L^{opt} -cyclic, 1-vertex and 1-edge-fault L^{opt} -cyclic. If there are two faulty edges, $P_m \times C_n$ has a fault-free cycle of length at least mn - 2. It was also proved that $P_m \times C_n$, $m \ge 3$ and even $n \ge 6$, is hamiltonian if both faulty edges are not incident to a common vertex of degree 3. By employing faulthamiltonicity of $P_m \times C_n$, we found that a bipartite $C_m \times C_n$ is 1-fault strongly hamiltonian-laceable and 2-fault L^{opt} -cyclic.

References

- C.C. Chen and N.F. Quimpo, "On strongly hamiltonian abelian group graphs," in. Australian Conference on Combinatorial Mathematics (Lecture Notes in Mathematics #884), pp. 23-34, 1980.
- S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho, "Hamiltonian-laceability of star graphs," Networks 36(4), pp. 225-232, 2000.
- A. Itai, C.H. Papadimitriou, and J.L. Czwarcfiter, "Hamiltonian paths in grid graphs," SIAM J. Comput. 11(4), pp. 676-686, 1982.
- H.-C. Kim and J.-H. Park, "Fault hamiltonicity of two-dimensional torus networks," in *Proc. of Workshop on Algorithms and Computation WAAC'00*, Tokyo, Japan, pp. 110-117, 2000.
- J.S. Kim, S.R. Maeng, and H. Yoon, "Embedding of rings in 2-D meshes and tori with faulty nodes," *Journal of Systems Architecture* 43, pp. 643-654, 1997.
- M. Lewinter and W. Widulski, "Hyper-hamilton laceable and caterpillar-spannable product graphs," *Computers Math. Applic.* 34(11), pp. 99-104, 1997.
- J.-H. Park and K.Y. Chwa, "Recursive circulants and their embeddings among hypercubes," *Theoretical Computer Science* 244, pp. 35-62, 2000.
- C.-H. Tsai, J.M. Tan, Y.-C. Chuang, and L.-H. Hsu, "Fault-free cycles and links in faulty recursive circulant graphs," in *Proc. of Workshop on Algorithms and Theory* of Computation ICS2000, pp. 74-77, 2000.