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Abstract

In this paper, we investigate the star graph Sn with faulty vertices and/or edges

from the graph theoretic point of view. We show that between every pair of vertices

with different colors in a bicoloring of Sn, n ≥ 4, there is a fault-free path of length

at least n!− 2fv − 1, and there is a path of length at least n!− 2fv − 2 joining a pair

of vertices with the same color, when the number of faulty elements is n − 3 or less.

Here, fv is the number of faulty vertices. Sn, n ≥ 4, with at most n−2 faulty elements

has a fault-free cycle of length at least n! − 2fv unless the number of faulty elements

are n− 2 and all the faulty elements are edges incident to a common vertex. It is also

shown that Sn, n ≥ 4, is strongly hamiltonian-laceable if the number of faulty elements

is n− 3 or less and the number of faulty vertices is one or less.

Key Words: Fault-hamiltonicity, star graph, hamiltonian-laceability, fault tolerance

1 Introduction

Embedding of linear arrays and rings into a faulty interconnection graph is one of the central

issues in parallel processing. The problem is modeled as finding as long fault-free paths and

cycles as possible in the graph with some faulty vertices and/or edges. Fault-hamiltonicity

of various interconnection graphs was investigated in the literature [4, 6, 7, 9–13].

∗This work was supported by grant No. R02-2000-00289 from the Basic Research Program of the Korea

Science and Engineering Foundation.
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Figure 1: 4-dimensional star graph S4

The star graph has been recognized as an attractive alternative to the hypercube graph.

The vertices of an n-dimensional star graph Sn are all the permutations of {1, 2, · · · , n}.
A permutation a1a2 · · · ak · · · an is connected to aka2 · · · ak−1a1ak+1 · · · an via an edge for

every k, 2 ≤ k ≤ n. An edge which joins a permutation and another permutation obtained

by interchanging the first and kth symbol is called a k-dimensional edge. A 4-dimensional

star graph S4 is shown in Figure 1. The star graph Sn is vertex symmetric and edge

symmetric [2]. The degree and diameter of Sn are n− 1 and b3(n− 1)/2c, respectively [2].

The n-dimensional star graph Sn is bipartite, that is, the vertices can be colored with

white and black in such a way that endvertices of every edge have different colors. Moreover,

the number of black vertices is equal to that of white vertices [1]. Sn is strongly hierarchical,

that is, for every k, 2 ≤ k ≤ n, Sn can be decomposed into n components which are

isomorphic to Sn−1 if all the k-dimensional edges are deleted [2]. All vertices contained in

a component have the same kth symbol. If we delete all 4-dimensional edges in S4 shown

in Figure 1, we have four components isomorphic to S3.

Sn has a hamiltonian cycle [8]. Furthermore, Sn has a hamiltonian path between every

pair of vertices with different colors, and has a path of length n!− 2 between every pair of

vertices with the same color [5]. Here, the length of a path is the number of edges in the

path. However, even Sn with a single faulty vertex is not hamiltonian, that is, it has no

cycle passing through all the fault-free vertices. We have an interest in fault-hamiltonicity of

star graphs, that is, hamiltonian properties of star graphs with faulty vertices and/or edges.

We need some definitions on the longest fault-free paths and cycles in bipartite graphs.

We let G be a bipartite graph with N vertices such that |B| = |W |, where B and W are the

sets of black and white vertices in G, respectively. We denote by Fv and Fe the sets of faulty

vertices and edges in G, respectively. We let F = Fv ∪ Fe, fw
v = |Fv ∩W |, f b

v = |Fv ∩ B|,
fe = |Fe|, fv = fw

v + f b
v , and f = fv + fe.
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Definition 1 Lopt-path and Lopt-cycle

When f b
v = fw

v , a fault-free path of length N − 2f b
v − 1 joining a pair of black and white

vertices is called an Lopt-path. For a pair of vertices with the same color, a fault-free path

of length N − 2f b
v − 2 between them is called an Lopt-path. When f b

v < fw
v , the length of

an Lopt-path is N − 2fw
v for a pair of black vertices, N − 2fw

v − 1 for a pair of black and

white vertices, and N − 2fw
v − 2 for a pair of white vertices. Similarly, we can define an

Lopt-path for a bipartite graph with fw
v < f b

v . A cycle of length N − 2max{f b
v , fw

v } is called

an Lopt-cycle.

Definition 2 L-path and L-cycle

A fault-free path of length N − 2fv − 1 or more between a pair of vertices with different

colors is called an L-path. Between a pair of vertices with the same color, a path of length

N − 2fv − 2 or more is called an L-path. A cycle of length N − 2fv or more is called an

L-cycle.

The lengths of an Lopt-path and an Lopt-cycle are the maximum possible. In other

words, there are no fault-free path and cycle longer than an Lopt-path and an Lopt-cycle,

respectively. The length of an L-path (resp. L-cycle) is the maximum in a sense of worst

case. In the following propositions, we will discuss about relationships among the notions of

Lopt-path, L-path, Lopt-cycle, and L-cycle, and will give a necessary condition for a bipartite

graph to have such a path (or cycle).

Proposition 1 Let G be a bipartite graph with |B| = |W |.
(a) Every Lopt-path in G is an L-path.

(b) Every Lopt-cycle in G is an L-cycle.

(c) When fv = 0, every L-path is an Lopt-path.

(d) When f b
v ≥ 1 and fw

v = 0 (resp. fw
v ≥ 1 and f b

v = 0), every L-path joining a pair of

black (resp. white) vertices or a pair of black and white vertices is an Lopt-path.

(e) When f b
v = 0 or fw

v = 0, every L-cycle is an Lopt-cycle.

(f) When fv = 0, every L-cycle is a hamiltonian cycle.

Proposition 2 Let G be a bipartite graph with |B| = |W |. Every cycle consisting of a fault-

free edge (v, w) and an Lopt-path (resp. L-path) between v and w is an Lopt-cycle (resp.

L-cycle).

Proposition 3 Let G be a bipartite graph with |B| = |W |.
(a) It is necessary that f ≤ δ(G)− 2 for G to have an L-cycle (or Lopt-cycle) for any set F

of faulty elements such that |F | ≤ f , where δ(G) is the minimum degree of G.

(b) It is necessary that f ≤ δ(G)− 2 for G to have an L-path (or Lopt-path) between every-

pair of fault-free vertices for any set F of faulty elements such that |F | ≤ f .
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Note that in Proposition 3, all the faulty elements may be edges incident to a common

vertex.

A bipartite graph with |B| = |W | is called hamiltonian-laceable if it has a hamilto-

nian path joining every pair of black and white vertices. Strong hamiltonian-laceability

of a bipartite graph with |B| = |W | was defined in [5]. We extend the notion of strong

hamiltonian-laceability to a bipartite graph with faulty elements as follows.

Definition 3 f -fault strong hamiltonian-laceability

A bipartite graph G with |B| = |W | is called f -fault strongly hamiltonian-laceable if for

any set F of faulty elements such that |F | ≤ f , G has an Lopt-path between every pair of

fault-free vertices.

Under various fault patterns, long fault-free cycles and paths in a faulty star graph Sn

have been constructed in the literature [4, 6, 7, 9, 10,13]. They are discussed in Section 2.

In this paper, we will show that for every pair of fault-free vertices in Sn, n ≥ 4, with

f ≤ n− 3, there is an L-path joining them (Theorem 1). The bound n − 3 on the number

of faulty elements is optimal due to Proposition 3. This result implies that Sn, n ≥ 4, with

f ≤ n− 3, has an L-cycle passing through an arbitrary fault-free edge (Corollary 1) due to

Proposition 2. Beyond the bound n− 3 on the number of faulty elements for Sn to have an

L-cycle for any faulty set, we will consider Sn, n ≥ 4, with n− 2 faulty elements and show

that it has an L-cycle except for the case that all the faulty elements are edges incident to

a common vertex (Theorem 2). For the exceptional case, it has a cycle of length n! − 2,

which is the longest possible. Simple and recursive construction schemes of an L-path and

an L-cycle in faulty Sn will be given, based on the construction of an Lopt-path and an Lopt-

cycle in faulty S4. We will utilize the fact that Sn is strongly hierarchical and a technique of

fault distribution that not all faulty elements are contained in a single component if f ≥ 2.

Additionally, it will be also shown that Sn, n ≥ 4, with f ≤ n − 3 and fv ≤ 1 is strongly

hamiltonian-laceable.

Graph theoretic terms not defined here can be found in [3]. This paper is organized as

follows. In Section 2, we discuss about previous works on the construction of long fault-free

cycles and paths in faulty Sn. L-paths and L-cycles in faulty Sn are constructed recursively

in Section 3. Finally, we give a summary and further remarks in Section 4.

2 Previous Works

Under various fault types such as vertex faults only, edge faults only, and hybrid faults, and

under various bounds on the number of faulty elements, long fault-free cycles [4, 9, 13] and

long fault-free paths [6, 7, 10] in a faulty star graph Sn have been constructed. They are

summarized in Table 1 and 2. The item (a) in Table 1, for example, says that Latifi et.
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Table 1: Previous works on long cycles in Sn, n ≥ 4

Who Fault pattern How long Remarks

(a) Latifi et. al. fv ≤ n− 2 and Sn has an L-cycle. vertex faults

1997 [9] fe = 0

(b) Tseng et. al. f ≤ n− 3 Sn has a cycle of length hybrid faults,

1997 [13] at least n!− 4fv. shorter than an L-cycle

(c) Chang et. al. f ≤ n− 3 Sn has an L-cycle. hybrid faults

1999 [4]

Table 2: Previous works on long paths in Sn, n ≥ 4

Who Fault pattern How long Remarks

(a) Hsieh et. al. fv ≤ n− 5 and Sn has an L-path between vertex faults,

2001 [6] fe = 0 an arbitrary pair of vertices. n ≥ 6

(b) fv = 0 and Sn has an Lopt-path between edge faults,

Hsieh et. al. fe ≤ n− 3 almost every pair of vertices. n ≥ 6

(c) 2001 [7] fv = 0 and Sn is strongly edge faults,

fe ≤ n− 4 hamiltonian-laceable. n ≥ 6

(d) fv = 0 and Sn is strongly edge faults

Li et. al. fe ≤ n− 3 hamiltonian-laceable.

(e) 2002 [10] fv = 1 and Sn has an Lopt-path between an hybrid faults,

fe ≤ n− 4 arbitrary pair of vertices with colors restricted

different from the faulty vertex. to fv = 1

al. proved in [9] that Sn, n ≥ 4, with fv ≤ n − 2 and fe = 0 has an L-cycle. Table 1 is

concerned with fault-free cycles in Sn and Table 2 is concerned with fault-free paths in Sn.

Theorem 1 which states that for every pair of fault-free vertices in Sn, n ≥ 4, with

f ≤ n − 3, there is an L-path joining them, is an extension of every item except (e) in

Table 2. Recall Proposition 1(c) which says that when fv = 0, every L-path is an Lopt-path.

Corollary 1 which states that Sn, n ≥ 4, with f ≤ n− 3, has an L-cycle passing through an

arbitrary fault-free edge, is an extension of items (b) and (c) in Table 1. Theorem 2 which

states that Sn, n ≥ 4, with f = n− 2 has an L-cycle except for the case that all the faulty

elements are edges incident to a common vertex, is an extension of item (a) in Table 1.
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3 L-paths and L-cycles in Faulty Sn

We will show, in this section, that Sn, n ≥ 4, with f ≤ n − 3 has an L-path between any

pair of vertices, and that Sn, n ≥ 4, with f = n − 2 has an L-cycle unless all the faulty

elements are edges incident to a common vertex. Finally, we will show that Sn, n ≥ 4, with

f ≤ n− 3 and fv ≤ 1 is strongly hamiltonian-laceable. First, we will discuss about the base

case of n = 4 and decompositions of Sn into n components isomorphic to Sn−1, and then

give simple and recursive constructions of an L-path and an L-cycle in faulty Sn.

3.1 Lopt-paths and Lopt-cycles in faulty S4

In this subsection, we are concerned with Lopt-paths and Lopt-cycles in S4 rather than L-

paths and L-cycles. We show that there exists an Lopt-path between any pair of vertices in

S4 with a single faulty element. This implies that S4 is 1-fault strongly hamiltonian-laceable

since an Lopt-path in S4 with a single faulty edge is indeed an Lopt-path in S4 without faulty

elements. Proofs of Lemma 1 and 2 are given in Appendix.

Lemma 1 For any pair of vertices v and w in S4 with fv = 1 and fe = 0, there exists an

Lopt-path joining them.

Lemma 2 For any pair of vertices v and w in S4 with fv = 0 and fe = 1, there exists an

Lopt-path joining them.

We show that S4 with two or less faulty elements has an Lopt-cycle unless there are two

faulty edges incident to a common vertex. S4 with two faulty edges incident to a common

vertex is shown to have a cycle of length 4!− 2, which is the longest possible. By Lemma 1,

2 and Proposition 2, we are sufficient to consider S4 with two faulty elements. Proofs of

Lemma 3, 4, and 5 are given in Appendix.

Lemma 3 S4 with fv = 2 and fe = 0 has an Lopt-cycle.

Lemma 4 S4 with fv = 1 and fe = 1 has an Lopt-cycle.

Contrary to Lemma 3 and 4, S4 with two faulty edges does not always have an Lopt-

cycle since both faulty edges may be incident to a common vertex of degree three. Recall

Proposition 1(f) which implies that, when there are no faulty vertices, an Lopt-cycle means

a hamiltonian cycle.

Lemma 5 S4 with fv = 0 and fe = 2 has a fault-free hamiltonian cycle except for the case

that the two faulty edges are incident to a common vertex. For the exceptional case, it has

a fault-free cycle of length 4!− 2.
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3.2 Decompositions of Sn into n components

We are going to discuss about some preliminary properties on decomposition of Sn into n

components S1
n−1, S2

n−1, · · ·, Sn
n−1 which are isomorphic to Sn−1. The decomposition can

be achieved if we delete all the k-dimensional edges for any k, 2 ≤ k ≤ n. There are n − 1

vertices adjacent to each vertex in Si
n−1. Among them, exactly one vertex is not contained

in Si
n−1 and the other vertices are contained in Si

n−1.

Lemma 6 We let x and y be adjacent vertices in a component Si
n−1, and let x′ and y′ be

the vertices adjacent to x and y not contained in Si
n−1, respectively. Then, x′ and y′ are

contained in different components.

Proof We let Si
n−1 be a component obtained from the decomposition by k-dimensional

edges, and let x = a1a2 · · · an and y = b1b2 · · · bn. It holds true that a1 6= b1 and ak = bk.

Thus, x′ = aka2 · · · ak−1a1ak+1 · · · an and y′ = bkb2 · · · bk−1b1bk+1 · · · bn are contained in

different components since they have different kth symbols. ¤

Lemma 7 We let n ≥ 4. There are (n−2)! pairwise non-adjacent edges which join vertices

in Si
n−1 and vertices in Sj

n−1 for any pair of i and j such that i 6= j. Half of the edges have

black endvertices in Si
n−1, and the other half have white endvertices in Si

n−1.

Proof We let Si
n−1 be a component obtained from the decomposition by k-dimensional

edges, and let b be the kth symbol of vertices in Si
n−1. For a 6= b, we let V i

a be the set of

vertices in Si
n−1 whose first symbol is a. Obviously, |V i

a | = (n − 2)!. Furthermore, we can

observe that V i
a has the same number of black and white vertices, or equivalently V i

a has the

same number of odd and even permutations. Note that every even (resp. odd) permutation

can be interpreted as a white (resp. black) vertex, as in Figure 1. Thus, we have the lemma.

¤

Lemma 8 Sn with f ≥ 2 faulty elements can be decomposed into n components S1
n−1, S2

n−1,

· · ·, Sn
n−1 isomorphic to Sn−1 such that every Si

n−1 contains at most f − 1 faulty elements.

Proof If Sn has a faulty edge, say a k-dimensional edge, the decomposition of Sn by

k-dimensional edges is sufficient. If Sn has no faulty edge, Sn has two faulty vertices x and

y such that x = a1a2 · · · an, y = b1b2 · · · bn. There exists k, 2 ≤ k ≤ n, such that ak 6= bk.

If we decompose Sn by k-dimensional edges, two vertices x and y are contained in different

components. This completes the proof. ¤

3.3 L-paths in Sn with n− 3 or less faulty elements

We will give a recursive construction of an L-path between an arbitrary pair of vertices v

and w in Sn with f ≤ n− 3. First of all, Sn, n ≥ 5, is decomposed into n components S1
n−1,
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Figure 2: Illustration of Theorem 1

S2
n−1, · · ·, Sn

n−1 isomorphic to Sn−1 such that every Si
n−1 contains at most n − 4 faulty

elements, and then n or n − 1 inter-component edges are found depending on whether or

not v and w are contained in the same component. In each component, an L-path is found.

Finally, all the L-paths in the components are merged into an L-path between v and w with

the inter-component edges.

Theorem 1 For any pair of vertices v and w in Sn, n ≥ 4, with f ≤ n− 3, there exists an

L-path joining them.

Proof We prove the theorem by induction on n. When n = 4, the theorem holds true by

Lemma 1 and 2. We assume that n ≥ 5. We first decompose Sn into n components S1
n−1,

S2
n−1, · · ·, Sn

n−1 isomorphic to Sn−1 such that every Si
n−1 contains at most n − 4 faulty

elements. The decomposition is trivial if f ≤ n− 4. When f = n− 3, it is also possible by

Lemma 8. Since Si
n−1 has at most n − 4 faulty elements, Si

n−1 has an L-path joining any

pair of vertices. Now, we are going to construct an L-path joining v and w in Sn. We have

two cases.

Case 1 Both v and w are contained in some Sp
n−1 (see Figure 2 (a)).

Without loss of generality, we assume that p = 1. Let P1 be an L-path joining v and w

in S1
n−1. We are going to choose an edge (v1, w1) on P1 such that (i) the vertices w2 and

vn not contained in S1
n−1 which are adjacent to v1 and w1, respectively, are fault-free, and

(ii) the edges (v1, w2) and (w1, vn) are fault-free. This process is always possible since the

length l(P1) of P1 is sufficiently larger than two times the number of faulty elements. That

is, l(P1) ≥ (n− 1)!− 2(n− 4)− 2 > 2(n− 3) ≥ 2f for all n ≥ 5. Deleting the edge (v1, w1)

decomposes P1 into two path segments: the path P ′1 from v to v1 and the path P ′′1 from

w1 to w. We can assume that, by Lemma 6, w2 and vn are contained in S2
n−1 and Sn

n−1,

respectively.

8



Now, we choose pairs of vertices vi, wi+1 for all 2 ≤ i < n, which satisfy that (i) vi and

wi+1 are fault-free vertices contained in Si
n−1 and Si+1

n−1, respectively, (ii) (vi, wi+1) is an

edge and fault-free, and (iii) the colors of vi and wi+1 are the same as v1 and w1, respectively.

This process is possible since there are (n − 2)!/2 candidates for a pair of vertices vi and

wi+1 by Lemma 7 and the number of candidates is greater than that of faulty elements.

That is, (n− 2)!/2 > n− 3 ≥ f for all n ≥ 5.

Let Pi be an L-path in Si
n−1 between wi and vi for 2 ≤ i ≤ n. The paths P ′1, P ′′1 ,

P2, · · ·, Pn, and edges (v1, w2), (v2, w3), · · ·, (vn−1, wn), and (vn, w1) constitute a path

P between v and w. Let us consider the length l(P ) of P . We let f i
v be the number

of faulty vertices in Si
n−1 so that fv =

∑
1≤i≤n f i

v. The length l(Pi) of Pi is at least

(n − 1)! − 2f i
v − 1 for all 2 ≤ i ≤ n. We have that l(P ′1) + l(P ′′1 ) = l(P1) − 1 and l(P1) ≥

(n− 1)!− 2f1
v −∆, where ∆ = 1 if v and w have different colors; otherwise, ∆ = 2. Thus,

l(P ) = l(P ′1) + l(P ′′1 ) +
∑

2≤i≤n l(Pi) + n ≥ n!− 2fv −∆ and P is an L-path.

Case 2 v is in Sp
n−1 and w is in Sq

n−1 such that p 6= q (see Figure 2 (b)).

We assume that p = 1 and q = n, and that no vertex in Sn−1
n−1 is adjacent to w. Similarly to

Case 1, we choose pairs of vertices vi and wi+1 for all 1 ≤ i < n such that (i) vi and wi+1 are

fault-free and contained in Si
n−1 and Si+1

n−1, respectively, (ii) (vi, wi+1) is a fault-free edge,

and (iii) vi has a different color from v (and wi+1 has the same color as v). It holds true

that wn 6= w by our assumption. We let P1 be an L-path from v to v1 in S1
n−1, let Pi,

2 ≤ i < n, be an L-path from wi to vi in Si
n−1, and let Pn be an L-path from wn to w in

Sn
n−1. An L-path P from v to w can be constructed by merging paths P1, P2, · · ·, Pn and

edges (v1, w2), (v2, w3), · · ·, (vn−1, wn). ¤

Recalling Proposition 2 that a fault-free edge (v, w) and an L-path joining v and w form

an L-cycle leads to the following corollary.

Corollary 1 Sn, n ≥ 4, with f ≤ n−3 has an L-cycle passing through an arbitrary fault-free

edge.

Remember Proposition 1 that when there are no faulty vertices, every L-path is an

Lopt-path and every L-cycle is a hamiltonian cycle.

Corollary 2 [10] Sn, n ≥ 4, with f = fe ≤ n − 3 is strongly hamiltonian-laceable. That

is, it has an Lopt-path joining an arbitrary pair of vertices.

Corollary 3 Sn, n ≥ 4, with f = fe ≤ n−3 is edge-hamiltonian. That is, it has a fault-free

hamiltonian cycle passing through an arbitrary edge.

3.4 L-cycles in Sn with n− 2 faulty elements

Sn, n ≥ 4, with n− 2 faulty elements can not have an L-cycle when all the faulty elements

are edges incident to a common vertex. We will give a recursive construction of an L-cycle in

9
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Sn with f = n−2 unless all the faulty elements are edges incident to a common vertex. The

construction is similar to the construction of an L-path in Theorem 1. We first decompose

Sn, n ≥ 5, into n components isomorphic to Sn−1 such that each component has at most

n− 3 faulty elements and does not have n− 3 faulty edges incident to a common vertex in

the component, and then we find n inter-component edges. In one component, an L-cycle is

found, and in each of the other components, an L-path is found. Finally, they are merged

into an L-cycle with the inter-component edges.

Lemma 9 If not all the faulty elements are edges incident to a common vertex in Sn,

n ≥ 5, with f = n−2, then Sn can be decomposed into n components S1
n−1, S2

n−1, · · ·, Sn
n−1

isomorphic to Sn−1 such that for every i, (a) Si
n−1 has at most n − 3 faulty elements and

(b) no Si
n−1 has n− 3 faulty edges incident to a common vertex in it.

Proof If Sn has no n−3 faulty edges incident to a common vertex, the decomposition can

be achieved by Lemma 8. We assume that Sn has n− 3 faulty edges incident to a common

vertex x. There are three possible types of fault pattern: the faulty element other than

the n − 3 faulty edges incident to x is a vertex vf (Figure 3 (a)), an edge e′f which is not

adjacent to other faulty edges (Figure 3 (b)), or an edge e′f which is adjacent to some faulty

edges(Figure 3 (c)). Observe that e′f can not be adjacent to two or more faulty edges since

e′f is, by assumption, not incident to x and Sn has no cycle of length three. If the fault

pattern is of type (c) in Figure 3, we let ef be one of the n − 3 faulty edges incident to x

such that ef is adjacent to e′f ; otherwise, we let ef be an arbitrary faulty edge incident to

x. Assuming that ef is a k-dimensional edge, we decompose Sn into n components by the

k-dimensional edges. Obviously, ef is an inter-component edge in the decomposition, and

thus the decomposition satisfies the two conditions of the lemma. ¤

Theorem 2 Sn, n ≥ 4, with n − 2 faulty elements has an L-cycle except for the case that

all the faulty elements are edges incident to a common vertex. For the exceptional case, it

has a fault-free cycle of length n!− 2.

Proof When n = 4, the theorem holds true by Lemma 3, 4, and 5. We assume that n ≥ 5.

If all the faulty elements are edges incident to a common vertex x, we can construct a cycle

10
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of length n!− 2 by regarding x as a faulty vertex and employing Corollary 1. From now on,

we assume that not all the faulty elements are edges incident to a common vertex. First, by

utilizing Lemma 9, we decompose Sn into n components S1
n−1, S2

n−1, · · ·, Sn
n−1 isomorphic

to Sn−1 such that each Si
n−1 has at most n − 3 faulty elements and does not have n − 3

faulty edges incident to a common vertex in it.

Among the n components, we assume that S1
n−1 is a component with the maximum

number of faulty elements. That is, f1 ≥ f i for all i, where f i is the number of faulty

elements in Si
n−1. Moreover, when all the faulty elements are edges joining vertices in

Sp
n−1 and vertices in Sq

n−1, we assume that S1
n−1 is one of the two components. S1

n−1

has an L-cycle by an induction hypothesis. We claim that for every 2 ≤ i ≤ n, Si
n−1

has an L-path between an arbitrary pair of vertices. If f1 ≤ 1, then f i ≤ 1; otherwise,

f i ≤ f − f1 ≤ (n − 2) − 2 = n − 4 for all 2 ≤ i ≤ n. Thus, the claim holds true by

Theorem 1.

Now, we are going to construct an L-cycle in a similar way to Case 1 in the proof of

Theorem 1. See Figure 4. Let C1 be an L-cycle in S1
n−1. We find an edge (v1, w1) on C1

such that (i) the vertices w2 and vn not contained in S1
n−1 which are adjacent to v1 and

w1, respectively, are fault-free, and (ii) the edges (v1, w2) and (w1, vn) are fault-free. If we

delete the edge (v1, w1) on C1, we have a path P1 between v1 and w1. We assume that w2

and vn are contained in S2
n−1 and Sn

n−1, respectively.

We choose pairs of vertices vi, wi+1 for all 2 ≤ i < n, which satisfy that (i) vi and wi+1

are fault-free vertices contained in Si
n−1 and Si+1

n−1, respectively, (ii) (vi, wi+1) is a fault-free

edge, and (iii) the colors of vi and wi+1 are the same as v1 and w1, respectively. This process

is possible since there are (n − 2)!/2 candidates for a pair of vertices vi and wi+1 and, by

the choice of S1
n−1, there are at most n−3 faulty edges joining vertices in Si

n−1 and vertices

Si+1
n−1 for all 2 ≤ i < n.

Let Pi be an L-path in Si
n−1 between wi and vi for 2 ≤ i ≤ n. The paths P1, P2, · · ·,

Pn, and edges (v1, w2), (v2, w3), · · ·, (vn−1, wn), and (vn, w1) constitute an L-cycle C. Note
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that the number of fault-free vertices in Si
n−1 which are not on C is less than or equal to

that of faulty vertices in Si
n−1 for all i. ¤

Corollary 4 Sn, n ≥ 4, with f = fe = n − 2 has a fault-free hamiltonian cycle unless all

the faulty edges are incident to a common vertex.

3.5 Strong hamiltonian-laceability of faulty Sn

We will show that Sn, n ≥ 4, with f ≤ n − 3 and fv ≤ 1 is strongly hamiltonian-laceable,

that is, it has an Lopt-path joining any pair of vertices v and w.

Theorem 3 Sn, n ≥ 4, with f ≤ n− 3 and fv ≤ 1 is strongly hamiltonian-laceable.

Proof When fv = 0, by Corollary 2, the theorem holds true. We assume that a vertex

vf is faulty and that vf is black. For a pair of white vertices v and w, we employ a result

in [10] which states that Sn, n ≥ 4, with fv = 1 and fe ≤ n − 4 has an Lopt-path between

them. Excluding the case that both v and w are white, an L-path between them, which can

be found by Theorem 1, implies an Lopt-path due to Proposition 1(d). ¤

4 Concluding Remarks

We proved that Sn, n ≥ 4, with f ≤ n−3 has an L-path joining any pair of fault-free vertices,

and that Sn, n ≥ 4, with f ≤ n− 2 has an L-cycle unless the number of faulty elements are

n− 2 and all the faulty elements are edges incident to a common vertex. According to the

constructions of an L-path and an L-cycle presented in this paper, we can design without

difficulty efficient recursive algorithms for finding an L-path between an arbitrary pair of

vertices and an L-cycle. It was also shown that Sn, n ≥ 4, with f ≤ n − 3 and fv ≤ 1 is

strongly hamiltonian-laceable. It is open whether or not Sn, n ≥ 4, is n − 3-fault strongly

hamiltonian-laceable, that is, there exists an Lopt-path joining an arbitrary pair of fault-free

vertices in Sn with f ≤ n− 3.

Acknowledgement The authors would like to thank the anonymous referees for improv-

ing the presentation of this paper and shortening the proof of Theorem 2.
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Appendix

A Lopt-paths and Lopt-cycles in faulty S4

In this Appendix, we will prove Lemma 1 through 5. We denote by V and E the vertex and

edge set of S4, respectively.

A.1 S4 with a single faulty vertex

To show that for any pair of fault-free vertices in S4 with f = fv = 1, there exists an Lopt-

path joining them, assuming without loss of generality that an arbitrary vertex is faulty

due to vertex symmetry of S4, we are sufficient to find all Lopt-paths joining every pair of

fault-free vertices. However, the number of such vertex pairs, (4! − 1) ∗ (4! − 2)/2 = 253,

is very large. In order to reduce the number of vertex pairs, we need to think of pairs of

vertices being nondistinguishable. Thus, we are to define an equivalence relation on the set

of unordered pairs of distinct vertices in V \vf , where vf is the designated vertex 3214, the

upper-left corner vertex of S4 in Figure 1. We assume that vf is black. Later, vf will serve

as a faulty vertex. Let us consider automorphisms of S4 and a relation on V \vf first.

Lemma 10 There exist six automorphisms φ of S4 such that φ(vf ) = vf .

Proof S4 can be drawn in two ways different from Figure 1 as given in Figure 5 (a)

and (b), where the vertex vf is restricted to be located at the upper-left corner position.

For each of the three drawings, we can find a mirror drawing with respect to the straight

line passing through the upper-left corner vertex vf and the lower-right corner vertex, say

4123 in Figure 1. Thus, we have six drawings in total. Obviously, each of them induces an

automorphism of S4. We show that there are no more automorphisms. In 3! ways, we can

label three vertices adjacent to vf . For each labeling, we can observe that the three vertices

from which there are two (disjoint) shortest paths of length 3 to vf are labeled as 3124,

3412, and 3241 in a unique way, and then the vertices which are located on the cycles of

length 6 passing through vf and all the other vertices are labeled uniquely. ¤

Definition 4 Let R1 be a relation on V \vf such that xR1y if there exists an automorphism
φ of S4 satisfying φ(vf ) = vf and φ(x) = y.

Lemma 11 R1 is an equivalence relation. There are six equivalence classes relative to R1

as follows. Three of them W1, W2, and W3 are sets of white vertices and the other three
B1, B2, and B3 are sets of black vertices.

• W1 = {2431, 1342, 4321, 2143, 4132, 1423}
• W2 = {3124, 3412, 3241}
• W3 = {1234, 2314, 4213}
• B1 = {4231, 4312, 1324, 1243, 2134, 2413}
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Figure 5: Other representations of S4

• B2 = {2341, 1432, 4123}
• B3 = {3421, 3142}

Proof It is trivial to show that R1 is an equivalence relation. By carefully observing six

automorphisms given in Lemma 10, we can find out pairs of vertices that are R1-related. For

example, the upper-right corner vertices 2431 in Figure 1, 4321 and 4132 in Figure 5 as well

as 1342, 2143 and 1423 in their mirror drawings are R1-related, and thus they are contained

in the same set W1. Continuing this process, we can construct the above six equivalence

classes. ¤
Two shortest paths from a vertex in W2 to vf of length three are disjoint, and thus they

form a cycle of length six. For each vertex in S4, there are three distinct cycles of length six

passing through the vertex, one per a pair of edges incident to the vertex. We call a vertex

underlined in each equivalence class of Lemma 11 the representative vertex of the class.

Definition 5 Let R2 be a relation on the set of unordered pairs of vertices in V \vf such
that (x, y)R2(x′, y′) if there exists an automorphism φ of S4 satisfying φ(vf ) = vf and either
φ(x) = x′ and φ(y) = y′ or φ(x) = y′ and φ(y) = x′.

Lemma 12 R2 is an equivalence relation. There are 49 equivalence classes relative to R2

as follows. Among at most six vertex pairs in each class, one representative pair is shown.

• C1 = {(2431, 1342)}, C2 = {(2431, 4321)}, C3 = {(2431, 2143)}, C4 = {(2431, 4132)}
⊆ W1 ×W1

• C5 = {(2431, 3124)}, C6 = {(2431, 3412)}, C7 = {(2431, 3241)} ⊆ W1 ×W2

• C8 = {(2431, 1234)}, C9 = {(2431, 2314)}, C10 = {(2431, 4213)} ⊆ W1 ×W3

• C11 = {(3124, 3412)} ⊆ W2 ×W2

• C12 = {(3124, 1234)}, C13 = {(3124, 4213)} ⊆ W2 ×W3
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• C14 = {(1234, 2314)} ⊆ W3 ×W3

• C15 = {(2431, 4231)}, C16 = {(2431, 4312)}, C17 = {(2431, 1324)}, C18 = {(2431, 1243)},
C19 = {(2431, 2134)}, C20 = {(2431, 2413)} ⊆ W1 ×B1

• C21 = {(2431, 2341)}, C22 = {(2431, 1432)}, C23 = {(2431, 4123)} ⊆ W1 ×B2

• C24 = {(2431, 3421)}, C25 = {(2431, 3142)} ⊆ W1 ×B3

• C26 = {(3124, 4231)}, C27 = {(3124, 1324)}, C28 = {(3124, 1243)} ⊆ W2 ×B1

• C29 = {(3124, 2341)}, C30 = {(3124, 4123)} ⊆ W2 ×B2

• C31 = {(3124, 3421)} ⊆ W2 ×B3

• C32 = {(1234, 4231)}, C33 = {(1234, 4312)}, C34 = {(1234, 1324)} ⊆ W3 ×B1

• C35 = {(1234, 2341)}, C36 = {(1234, 1432)} ⊆ W3 ×B2

• C37 = {(1234, 3421)} ⊆ W3 ×B3

• C38 = {(4231, 4312)}, C39 = {(4231, 1324)}, C40 = {(4231, 1243)}, C41 = {(4231, 2134)}
⊆ B1 ×B1

• C42 = {(4231, 2341)}, C43 = {(4231, 1432)}, C44 = {(4231, 4123)} ⊆ B1 ×B2

• C45 = {(4231, 3421)}, C46 = {(4231, 3142)} ⊆ B1 ×B3

• C47 = {(2341, 1432)} ⊆ B2 ×B2

• C48 = {(2341, 3421)} ⊆ B2 ×B3

• C49 = {(3421, 3142)} ⊆ B3 ×B3

Proof Obviously, R2 is an equivalence relation. Similar to the proof of Lemma 11, by

observing six automorphisms given in Lemma 10, we can obtain the above 49 equivalence

classes. ¤
A path in S4 can be represented as a starting vertex followed by a sequence of edges,

where an edge is represented as its dimension number. Note that every vertex in S4 is

incident to one 2-dimensional edge, one 3-dimensional edge, and one 4-dimensional edge.

Proof of Lemma 1 We assume that the vertex vf = 3214 is faulty. By Lemma 12, it is

sufficient to construct Lopt-paths between 49 pairs of vertices, one pair for each equivalence

class. They are shown in Table 3. Note that the lengths of Lopt-paths are 22, 21, and 20,

respectively, for a pair of white vertices, for a pair of white and black vertices, and for a pair

of black vertices. ¤
It was shown in [6] that between every pair of adjacent vertices in S4 with f = fv = 1,

there exists an Lopt-path. Among the equivalence classes given in Lemma 12, six classes

C15, C22, C24, C27, C30, and C32 are sets of pairs of adjacent vertices. Although we need

not construct Lopt-paths between these pairs in the proof of Lemma 1, they are included

here for completeness.
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Table 3: Lopt-paths between v and w in S4 with f = fv = 1

w = 1342 4 3 2 4 3 2 4 3 4 3 4 2 4 3 4 3 2 3 4 2 3 4
w = 4321 4 3 4 2 3 2 4 3 4 2 4 3 2 4 3 4 3 2 4 2 4 2
w = 2143 4 2 3 2 4 2 3 4 2 3 4 2 4 2 4 3 4 2 4 2 3 2
w = 4132 4 3 2 4 3 4 2 4 3 2 3 2 3 4 3 2 4 3 2 4 2 3

v = 2431 w = 3124 4 3 4 2 3 2 4 3 4 2 4 3 2 4 3 4 3 4 2 4 2 4
w = 3412 4 2 3 2 3 4 3 2 3 2 4 3 2 3 2 4 2 3 2 3 2 4
w = 3241 4 3 2 4 3 2 4 3 2 3 2 3 4 2 3 4 2 3 4 2 4 3
w = 1234 4 3 2 4 3 4 2 4 3 2 3 2 3 4 3 4 3 2 4 2 3 4
w = 2314 4 3 2 3 2 3 4 2 4 3 2 3 2 4 3 2 3 2 3 4 2 3
w = 4213 4 3 2 4 3 2 4 3 2 4 3 4 2 4 3 2 4 3 2 4 3 2

w = 3412 4 3 4 2 3 4 3 4 3 2 4 3 2 3 4 3 2 4 2 4 2 3
v = 3124 w = 1234 4 3 2 3 2 3 4 2 4 3 4 2 3 4 2 3 2 4 2 3 4 2

w = 4213 4 3 4 2 4 3 4 3 4 2 4 3 4 3 4 2 4 2 4 3 4 3

v = 1234 w = 2314 4 2 4 2 4 3 2 4 2 4 2 3 4 2 4 2 4 3 2 4 2 4

w = 4231 4 3 2 3 4 2 4 3 2 3 4 2 4 2 4 3 4 3 4 2 4
w = 4312 4 3 4 2 3 2 4 2 4 2 3 4 2 3 4 2 4 2 4 3 4
w = 1324 4 3 2 3 2 3 4 2 4 3 2 3 2 4 3 2 3 2 3 4 2
w = 1243 4 3 2 3 4 2 3 4 2 4 3 4 3 4 2 4 2 4 3 2 3
w = 2134 4 3 2 4 3 2 4 3 4 2 4 3 2 4 3 2 3 4 3 4 2

v = 2431 w = 2413 4 3 2 4 3 4 2 4 2 4 3 2 4 3 2 4 2 4 2 3 2
w = 2341 4 3 2 4 3 4 2 4 3 2 3 4 3 4 2 3 4 3 4 2 4
w = 1432 3 4 3 2 3 2 3 4 3 2 4 3 2 3 4 3 4 3 2 3 2
w = 4123 4 3 2 3 4 2 3 4 2 4 3 4 2 3 2 3 4 2 4 2 4
w = 3421 4 3 2 3 2 3 4 2 4 3 2 3 4 2 4 3 2 3 2 3 4
w = 3142 4 3 2 4 3 4 2 4 3 2 3 2 3 4 3 2 4 3 2 4 2

w = 4231 4 3 4 2 3 4 3 4 3 2 4 3 2 3 4 3 4 2 4 2 4
w = 1324 4 3 4 2 3 2 3 2 4 2 4 2 3 4 3 2 3 4 2 3 4

v = 3124 w = 1243 4 3 4 2 3 4 3 4 3 2 3 4 2 4 2 4 3 4 3 2 3
w = 2341 4 3 4 2 3 4 3 4 2 3 2 4 2 4 2 3 4 2 3 4 2
w = 4123 3 4 2 3 2 4 3 4 2 3 2 3 2 4 2 4 2 3 2 3 2
w = 3421 4 3 4 2 3 4 3 4 3 2 4 3 2 4 3 2 4 2 4 2 3

w = 4231 2 4 2 3 2 3 2 4 3 4 2 4 3 2 4 3 2 3 4 3 2
w = 4312 4 2 4 3 4 2 3 2 3 2 4 2 3 4 2 3 4 3 2 3 4

v = 1234 w = 1324 4 2 4 3 4 2 3 2 4 3 4 3 4 2 4 2 3 4 3 4 3
w = 2341 4 2 4 3 2 4 3 4 2 4 3 2 3 2 3 4 3 4 3 2 4
w = 1432 4 2 3 4 3 2 3 2 3 4 3 4 3 2 4 3 4 3 4 2 3
w = 3421 4 2 4 3 2 3 4 2 4 3 2 3 2 3 4 3 4 3 2 4 2

w = 4312 2 4 3 4 2 3 2 3 2 4 2 3 4 2 3 4 3 2 3 4
w = 1324 2 4 3 4 2 3 2 4 3 4 3 4 2 4 2 3 4 3 4 3
w = 1243 2 3 4 3 4 3 2 4 3 4 3 4 2 3 4 3 4 3 2 4
w = 2134 2 4 3 2 3 4 2 4 3 2 3 4 2 4 2 4 3 4 3 4

v = 4231 w = 2341 2 4 3 2 4 3 4 2 4 3 2 3 2 3 4 3 4 3 2 4
w = 1432 2 3 4 3 2 3 2 3 4 3 4 3 2 4 3 4 3 4 2 3
w = 4123 2 4 3 2 3 4 2 4 3 2 3 4 2 4 2 3 4 3 4 3
w = 3421 2 4 3 2 3 4 2 4 3 2 3 2 3 4 3 4 3 2 4 2
w = 3142 2 4 3 4 2 3 2 3 2 4 2 3 4 3 4 3 2 3 4 3

v = 2341 w = 1432 4 3 2 4 2 3 4 3 4 2 4 3 4 3 4 2 4 2 3 4
w = 3421 4 3 2 3 2 3 4 3 2 3 2 3 4 3 4 2 3 2 4 2

v = 3421 w = 3142 4 3 4 2 4 3 4 3 2 4 2 3 4 3 2 4 2 4 2 3
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Figure 6: Another representation of S4

A.2 S4 with a single faulty edge

In a similar approach taken in Section A.1, we are going to show that for any pair of vertices

in S4 with f = fe = 1, there exists an Lopt-path joining them. We let ef be the designated

edge (3214, 4213). Let us discuss about automorphisms ψ of S4 first. For a pair of vertices

(x, y), we say that ψ(x, y) = (x′, y′) if either ψ(x) = x′ and ψ(y) = y′ or ψ(x) = y′ and

ψ(y) = x′.

Lemma 13 There exist four automorphisms ψ of S4 such that ψ(ef ) = ef .

Proof We can draw S4 in a different way from Figure 1 without altering the position of

the edge ef , as shown in Figure 6. The two drawings and their mirrors with respect to the

straight line passing through the upper-left corner vertex and the lower-right corner vertex

induce four automorphisms. We show that there are no more automorphisms. We can label

the upper-left corner vertex as 3214 or 4213 in two ways. For each labeling, we can also

label in two ways the vertices on the unique cycle of length six which passes through the

upper-left corner vertex and does not pass through the other endvertex of ef . Note that for

each vertex, there are three cycles of length six passing through the vertex, one per a pair

of edges incident to the vertex. Once labels of the cycle are fixed, we can observe that all

the other vertices are labeled in a unique way. ¤

Definition 6 Let R′1 be a relation on V such that xR′1y if there exists an automorphism ψ
of S4 satisfying ψ(ef ) = ef and ψ(x) = y.

Lemma 14 R′1 is an equivalence relation. There are seven equivalence classes relative to
R′1 as follows.

• X1 = {1234, 2314, 2413, 1243}
• X2 = {2134, 1324, 1423, 2143}
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• X3 = {4231, 4312, 3412, 3241}
• X4 = {2431, 1342, 1432, 2341}
• X5 = {3421, 3142, 4132, 4321}
• X6 = {3124, 4123}
• X7 = {4213, 3214}

Proof Obviously, R′1 is an equivalence relation. By using the four automorphisms of S4

given in Lemma 13, we can obtain the above seven equivalence classes. ¤

Definition 7 Let R′2 be a relation on the set of unordered pairs of white and black vertices
in V such that (x, y)R′2(x

′, y′) if there exists an automorphism ψ of S4 satisfying ψ(ef ) = ef

and ψ(x, y) = (x′, y′).

Lemma 15 R′2 is an equivalence relation. There are 43 equivalence classes relative to R′2
as follows. Among at most four vertex pairs in each class, one representative pair is shown.

• Y1 = {(1234, 2413)}, Y2 = {(1234, 1243)} ⊆ X1 ×X1

• Y3 = {(1234, 2134)}, Y4 = {(1234, 1324)} ⊆ X1 ×X2

• Y5 = {(1234, 4231)}, Y6 = {(1234, 4312)} ⊆ X1 ×X3

• Y7 = {(1234, 1432)}, Y8 = {(1234, 2341)} ⊆ X1 ×X4

• Y9 = {(1234, 3421)}, Y10 = {(1234, 3142)} ⊆ X1 ×X5

• Y11 = {(1234, 4123)} ⊆ X1 ×X6

• Y12 = {(1234, 3214)} ⊆ X1 ×X7

• Y13 = {(1423, 2134)}, Y14 = {(1423, 1324)} ⊆ X2 ×X2

• Y15 = {(1423, 4231)}, Y16 = {(1423, 4312)} ⊆ X2 ×X3

• Y17 = {(1423, 1432)}, Y18 = {(1423, 2341)} ⊆ X2 ×X4

• Y19 = {(1423, 3421)}, Y20 = {(1423, 3142)} ⊆ X2 ×X5

• Y21 = {(1423, 4123)} ⊆ X2 ×X6

• Y22 = {(1423, 3214)} ⊆ X2 ×X7

• Y23 = {(3241, 4231)}, Y24 = {(3241, 4312)} ⊆ X3 ×X3

• Y25 = {(3241, 1432)}, Y26 = {(3241, 2341)} ⊆ X3 ×X4

• Y27 = {(3241, 3421)}, Y28 = {(3241, 3142)} ⊆ X3 ×X5

• Y29 = {(3241, 4123)} ⊆ X3 ×X6

• Y30 = {(3241, 3214)} ⊆ X3 ×X7

• Y31 = {(2431, 1432)}, Y32 = {(2431, 2341)} ⊆ X4 ×X4

19



• Y33 = {(2431, 3421)}, Y34 = {(2431, 3142)} ⊆ X4 ×X5

• Y35 = {(2431, 4123)} ⊆ X4 ×X6

• Y36 = {(2431, 3214)} ⊆ X4 ×X7

• Y37 = {(4321, 3421)}, Y38 = {(4321, 3142)} ⊆ X5 ×X5

• Y39 = {(4321, 4123)} ⊆ X5 ×X6

• Y40 = {(4321, 3214)} ⊆ X5 ×X7

• Y41 = {(3124, 4123)} ⊆ X6 ×X6

• Y42 = {(3124, 3214)} ⊆ X6 ×X7

• Y43 = {(4213, 3214)} ⊆ X7 ×X7

Proof Obviously, R′2 is an equivalence relation. Similarly to the proof of Lemma 14, we

can obtain the above equivalence classes. ¤

Proof of Lemma 2 Due to edge symmetry of Sn, we assume that the edge ef is faulty.

For a pair of white (resp. black) vertices, we can find an Lopt-path of length 22 joining them

by regarding the black (resp. white) endvertex of ef as a virtual vertex fault and employing

Lemma 1. The path does not pass through the virtual fault, and thus does not pass through

ef . Table 4 shows Lopt-paths joining 43 pairs of white and black vertices, one per each

equivalence class given in Lemma 15. ¤

A.3 S4 with two faulty elements

To represent a cycle, a starting vertex is followed by a sequence of edges, represented by

their dimension numbers.

Proof of Lemma 3 We assume that vf = 3214 is a faulty vertex. Moreover, we assume the

other faulty vertex v′f is a representative vertex of the equivalence classes given in Lemma 11.

The lengths of Lopt-cycles are 22 (resp. 20) if v′f is white (resp. black). Lopt-cycles in faulty

S4 are constructed and shown in Table 5. ¤

Proof of Lemma 4 We assume that vf = 3214 is a faulty vertex. Let ef = (v, w) be an

arbitrary faulty edge, and let w be a white vertex. We find an Lopt-cycle of length 22 by

regarding w (as well as vf ) as a faulty vertex and employing Lemma 3. The cycle does not

pass through ef (as well as vf ), and thus it is an Lopt-cycle in the presence of two faulty

elements vf and ef . ¤

Proof of Lemma 5 We assume that one of the two faulty edges is ef = (3214, 4213).

Among the 43 equivalence classes given in Lemma 15, twelve are sets of pairs of adjacent

vertices, that is, edges. They are Y3, Y5, Y12, Y19, Y21, Y23, Y26, Y31, Y33, Y37, Y41, and Y43.

Thus, we can assume the other faulty edge e′f is a representative edge of the equivalence
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Table 4: Lopt-paths between pairs of white and black vertices in S4 with f = fe = 1

w = 2413 3 2 4 2 3 2 4 3 2 4 3 4 2 4 3 2 4 3 2 3 4 3 2
w = 1243 3 2 4 3 2 4 3 2 4 3 2 3 2 3 4 2 3 4 2 3 4 2 3
w = 2134 3 2 4 3 2 3 2 3 4 2 3 2 3 2 4 3 2 3 2 3 4 2 3
w = 1324 3 2 4 3 2 4 2 3 2 4 3 2 4 3 4 2 4 3 2 3 2 3 4
w = 4231 3 2 4 3 4 3 4 2 3 4 3 4 3 2 4 3 4 3 4 2 3 4 3

v = 1234 w = 4312 3 2 3 4 2 4 3 2 3 2 3 4 3 4 3 2 4 2 3 2 4 3 2
w = 1432 3 2 4 3 2 3 4 3 2 4 3 2 3 2 3 4 2 3 2 3 2 4 3
w = 2341 3 2 4 3 2 3 4 3 2 4 2 4 2 3 2 3 2 4 3 4 2 3 2
w = 3421 3 2 4 3 2 3 4 3 2 4 3 2 3 2 4 3 4 2 3 2 3 2 4
w = 3142 3 2 4 3 4 3 4 2 3 4 2 3 4 2 3 4 3 2 3 4 2 3 4
w = 4123 3 2 4 3 2 4 2 3 2 4 3 2 4 3 2 4 3 2 3 2 3 4 2
w = 3214 4 2 4 2 4 3 2 4 2 4 2 3 4 2 4 2 4 3 2 4 2 4 2

w = 2134 3 2 3 2 3 4 2 4 2 3 4 3 2 4 2 3 4 3 2 4 2 3 4
w = 1324 3 2 3 2 3 4 3 4 3 2 3 2 3 4 3 2 3 2 3 4 3 2 3
w = 4231 3 2 3 2 3 4 2 4 2 3 4 3 2 4 2 3 2 4 3 2 4 2 3
w = 4312 3 2 3 2 3 4 3 4 3 2 4 2 3 4 3 2 3 4 2 3 4 3 2

v = 1423 w = 1432 3 2 3 2 3 4 2 4 2 3 2 3 2 4 2 3 4 2 3 2 4 2 3
w = 2341 3 2 3 2 3 4 3 4 3 2 3 2 3 4 3 2 4 3 2 3 4 3 2
w = 3421 3 2 3 2 3 4 2 3 2 3 2 4 3 2 3 2 3 4 2 3 2 3 2
w = 3142 3 2 3 2 3 4 3 2 3 2 3 4 2 3 2 3 2 4 3 2 3 2 3
w = 4123 3 2 3 2 4 3 2 3 2 3 4 2 3 2 3 2 4 3 2 3 2 3 4
w = 3214 3 2 3 4 2 4 3 2 3 2 3 4 3 4 3 2 4 2 3 2 4 3 2

w = 4231 4 3 2 4 3 4 3 4 2 3 4 3 4 3 2 4 3 4 3 4 2 3 4
w = 4312 4 3 2 4 3 2 4 3 2 4 3 4 2 4 3 2 4 3 2 4 3 2 4
w = 1432 4 3 2 4 2 3 4 3 2 4 2 3 4 3 4 3 2 3 2 3 4 2 4

v = 3241 w = 2341 4 3 2 4 2 4 2 3 4 2 4 2 4 3 2 4 2 4 2 3 4 2 4
w = 3421 4 3 2 4 2 4 2 3 4 2 4 2 4 3 2 4 3 4 2 4 3 2 4
w = 3142 4 3 2 4 3 2 4 3 2 4 3 4 3 4 2 3 4 2 3 4 2 3 4
w = 4123 4 3 2 3 4 3 2 4 3 2 4 2 3 2 4 3 2 4 3 4 2 4 3
w = 3214 4 3 2 4 2 3 4 3 2 4 2 3 4 3 2 4 2 4 2 3 2 3 2

w = 1432 3 4 2 3 4 3 4 3 2 4 3 4 3 4 2 3 4 3 4 3 2 4 3
w = 2341 4 3 2 3 2 3 4 3 4 3 2 3 2 3 4 2 4 3 2 3 4 3 2

v = 2431 w = 3421 4 3 4 2 3 4 3 4 3 2 4 3 4 3 4 2 3 4 3 4 3 2 4
w = 3142 4 3 2 3 4 2 3 4 3 2 3 4 2 4 3 2 3 2 3 4 3 4 3
w = 4123 4 3 2 3 2 3 4 3 2 3 2 3 4 3 2 3 2 4 3 2 3 2 3
w = 3214 4 3 2 3 2 3 4 2 4 3 2 3 2 4 3 2 3 2 3 4 2 3 2

w = 3421 3 2 4 3 2 3 2 3 4 2 3 2 3 2 4 3 2 3 2 3 4 2 3
v = 4321 w = 3142 2 4 2 4 2 3 2 3 2 4 2 4 2 3 2 4 3 2 4 2 3 2 4

w = 4123 2 4 3 2 3 4 2 4 3 2 3 4 2 4 3 2 3 2 3 4 3 4 3
w = 3214 2 4 3 2 3 2 3 4 2 3 4 2 3 4 2 3 2 4 2 3 4 2 3

v = 3124 w = 4123 3 2 3 2 3 4 2 3 2 3 2 4 3 2 3 2 3 4 2 3 2 3 2
w = 3214 4 3 4 2 3 2 3 2 4 2 4 2 3 4 3 2 3 4 2 3 4 3 2

v = 4213 w = 3214 2 4 2 3 4 2 4 2 4 3 2 4 2 4 2 3 4 2 4 2 4 3 2
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Table 5: Lopt-cycles in S4 with two faulty vertices vf = 3214 and v′f

v′f = 2431 1234 : 4 3 4 3 2 4 3 2 3 4 3 2 4 2 3 4 3 4 3 2 3 2
v′f = 3124 1234 : 4 2 4 3 4 2 3 4 2 4 3 4 3 4 2 4 2 3 4 3 4 2
v′f = 1234 2314 : 4 3 2 4 2 3 2 4 3 2 4 3 4 2 4 3 2 3 2 3 4 3
v′f = 4231 2314 : 4 3 2 3 4 3 4 2 4 3 4 3 4 2 3 4 2 3 4 3
v′f = 2341 1234 : 4 2 4 3 4 2 3 2 4 2 3 4 3 4 2 4 2 4 3 2
v′f = 3421 1234 : 4 2 4 3 2 3 2 4 3 2 3 2 3 4 2 3 4 2 3 2

Table 6: Hamiltonian cycles in S4 with two faulty edges ef = (3214, 4213) and e′f

e′f = (1234, 2134) 1234 : 4 2 4 2 4 3 2 4 2 4 2 3 4 2 4 2 4 3 2 4 2 4 2 3
e′f = (1234, 4231) 1234 : 2 4 3 2 3 2 3 4 2 3 2 3 2 4 3 2 3 2 3 4 2 3 2 3
e′f = (1423, 3421) 1234 : 2 3 4 2 3 2 3 2 4 3 2 3 2 3 4 2 3 2 3 2 4 3 2 3
e′f = (1423, 4123) 1234 : 2 4 3 2 3 2 3 4 2 3 2 3 2 4 3 2 3 2 3 4 2 3 2 3
e′f = (3241, 4231) 1234 : 4 2 4 2 4 3 2 4 2 4 2 3 4 2 4 2 4 3 2 4 2 4 2 3
e′f = (3241, 2341) 1234 : 4 3 4 3 2 4 3 4 3 4 2 3 4 3 4 3 2 4 3 4 3 4 2 3
e′f = (2431, 1432) 1234 : 4 2 3 2 3 2 4 3 2 3 2 3 4 2 3 2 3 2 4 3 2 3 2 3
e′f = (2431, 3421) 1234 : 4 2 4 2 4 3 2 4 2 4 2 3 4 2 4 2 4 3 2 4 2 4 2 3
e′f = (4321, 3421) 1234 : 4 3 4 3 2 4 3 4 3 4 2 3 4 3 4 3 2 4 3 4 3 4 2 3
e′f = (3124, 4123) 1234 : 4 2 4 2 4 3 2 4 2 4 2 3 4 2 4 2 4 3 2 4 2 4 2 3

classes. We need not consider Y43 since Y43 has only one member ef . When e′f is the

representative edge of Y12, both ef and e′f are incident to vertex 3214, and thus we can

construct a cycle of length 22 by regarding 3214 and an arbitrary white vertex, say 4213,

as two faulty vertices and utilizing Lemma 3. For the other cases, hamiltonian cycles in S4

with two faulty edges ef and e′f are listed in Table 6. ¤
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