Longest Paths and Cycles in Faulty Star
 Graphs*

Jung-Heum Park
School of Computer Science and Information Engineering The Catholic University of Korea
Email: j.h.park@catholic.ac.kr

Hee-Chul Kim
Computer Science and Information Communications Engineering Division
Hankuk University of Foreign Studies
Email: hckim@hufs.ac.kr

Abstract

In this paper, we investigate the star graph S_{n} with faulty vertices and/or edges from the graph theoretic point of view. We show that between every pair of vertices with different colors in a bicoloring of $S_{n}, n \geq 4$, there is a fault-free path of length at least $n!-2 f_{v}-1$, and there is a path of length at least $n!-2 f_{v}-2$ joining a pair of vertices with the same color, when the number of faulty elements is $n-3$ or less. Here, f_{v} is the number of faulty vertices. $S_{n}, n \geq 4$, with at most $n-2$ faulty elements has a fault-free cycle of length at least $n!-2 f_{v}$ unless the number of faulty elements are $n-2$ and all the faulty elements are edges incident to a common vertex. It is also shown that $S_{n}, n \geq 4$, is strongly hamiltonian-laceable if the number of faulty elements is $n-3$ or less and the number of faulty vertices is one or less.

Key Words: Fault-hamiltonicity, star graph, hamiltonian-laceability, fault tolerance

1 Introduction

Embedding of linear arrays and rings into a faulty interconnection graph is one of the central issues in parallel processing. The problem is modeled as finding as long fault-free paths and cycles as possible in the graph with some faulty vertices and/or edges. Fault-hamiltonicity of various interconnection graphs was investigated in the literature [4, 6, 7, 9-13].

[^0]

Figure 1: 4-dimensional star graph S_{4}

The star graph has been recognized as an attractive alternative to the hypercube graph. The vertices of an n-dimensional star graph S_{n} are all the permutations of $\{1,2, \cdots, n\}$. A permutation $a_{1} a_{2} \cdots a_{k} \cdots a_{n}$ is connected to $a_{k} a_{2} \cdots a_{k-1} a_{1} a_{k+1} \cdots a_{n}$ via an edge for every $k, 2 \leq k \leq n$. An edge which joins a permutation and another permutation obtained by interchanging the first and k th symbol is called a k-dimensional edge. A 4-dimensional star graph S_{4} is shown in Figure 1. The star graph S_{n} is vertex symmetric and edge symmetric [2]. The degree and diameter of S_{n} are $n-1$ and $\lfloor 3(n-1) / 2\rfloor$, respectively [2].

The n-dimensional star graph S_{n} is bipartite, that is, the vertices can be colored with white and black in such a way that endvertices of every edge have different colors. Moreover, the number of black vertices is equal to that of white vertices [1]. S_{n} is strongly hierarchical, that is, for every $k, 2 \leq k \leq n, S_{n}$ can be decomposed into n components which are isomorphic to S_{n-1} if all the k-dimensional edges are deleted [2]. All vertices contained in a component have the same k th symbol. If we delete all 4-dimensional edges in S_{4} shown in Figure 1, we have four components isomorphic to S_{3}.
S_{n} has a hamiltonian cycle [8]. Furthermore, S_{n} has a hamiltonian path between every pair of vertices with different colors, and has a path of length $n!-2$ between every pair of vertices with the same color [5]. Here, the length of a path is the number of edges in the path. However, even S_{n} with a single faulty vertex is not hamiltonian, that is, it has no cycle passing through all the fault-free vertices. We have an interest in fault-hamiltonicity of star graphs, that is, hamiltonian properties of star graphs with faulty vertices and/or edges.

We need some definitions on the longest fault-free paths and cycles in bipartite graphs. We let G be a bipartite graph with N vertices such that $|B|=|W|$, where B and W are the sets of black and white vertices in G, respectively. We denote by F_{v} and F_{e} the sets of faulty vertices and edges in G, respectively. We let $F=F_{v} \cup F_{e}, f_{v}^{w}=\left|F_{v} \cap W\right|, f_{v}^{b}=\left|F_{v} \cap B\right|$, $f_{e}=\left|F_{e}\right|, f_{v}=f_{v}^{w}+f_{v}^{b}$, and $f=f_{v}+f_{e}$.

Definition $1 L^{\mathrm{opt}}$-path and L^{opt}-cycle
When $f_{v}^{b}=f_{v}^{w}$, a fault-free path of length $N-2 f_{v}^{b}-1$ joining a pair of black and white vertices is called an L^{opt}-path. For a pair of vertices with the same color, a fault-free path of length $N-2 f_{v}^{b}-2$ between them is called an $L^{\text {opt }}$-path. When $f_{v}^{b}<f_{v}^{w}$, the length of an $L^{\text {opt }}$-path is $N-2 f_{v}^{w}$ for a pair of black vertices, $N-2 f_{v}^{w}-1$ for a pair of black and white vertices, and $N-2 f_{v}^{w}-2$ for a pair of white vertices. Similarly, we can define an L^{opt}-path for a bipartite graph with $f_{v}^{w}<f_{v}^{b}$. A cycle of length $N-2 \max \left\{f_{v}^{b}, f_{v}^{w}\right\}$ is called an L^{opt}-cycle.

Definition 2 L-path and L-cycle
A fault-free path of length $N-2 f_{v}-1$ or more between a pair of vertices with different colors is called an L-path. Between a pair of vertices with the same color, a path of length $N-2 f_{v}-2$ or more is called an L-path. A cycle of length $N-2 f_{v}$ or more is called an L-cycle.

The lengths of an L^{opt}-path and an L^{opt}-cycle are the maximum possible. In other words, there are no fault-free path and cycle longer than an L^{opt}-path and an L^{opt}-cycle, respectively. The length of an L-path (resp. L-cycle) is the maximum in a sense of worst case. In the following propositions, we will discuss about relationships among the notions of L^{opt}-path, L-path, L^{opt}-cycle, and L-cycle, and will give a necessary condition for a bipartite graph to have such a path (or cycle).

Proposition 1 Let G be a bipartite graph with $|B|=|W|$.
(a) Every L^{opt}-path in G is an L-path.
(b) Every L^{opt}-cycle in G is an L-cycle.
(c) When $f_{v}=0$, every L-path is an L^{opt}-path.
(d) When $f_{v}^{b} \geq 1$ and $f_{v}^{w}=0$ (resp. $f_{v}^{w} \geq 1$ and $f_{v}^{b}=0$), every L-path joining a pair of black (resp. white) vertices or a pair of black and white vertices is an L^{opt}-path.
(e) When $f_{v}^{b}=0$ or $f_{v}^{w}=0$, every L-cycle is an L^{opt}-cycle.
(f) When $f_{v}=0$, every L-cycle is a hamiltonian cycle.

Proposition 2 Let G be a bipartite graph with $|B|=|W|$. Every cycle consisting of a faultfree edge (v, w) and an L^{opt}-path (resp. L-path) between v and w is an L^{opt}-cycle (resp. L-cycle).

Proposition 3 Let G be a bipartite graph with $|B|=|W|$.
(a) It is necessary that $f \leq \delta(G)-2$ for G to have an L-cycle (or L^{opt}-cycle) for any set F of faulty elements such that $|F| \leq f$, where $\delta(G)$ is the minimum degree of G.
(b) It is necessary that $f \leq \delta(G)-2$ for G to have an L-path (or $L^{\text {opt }}$-path) between everypair of fault-free vertices for any set F of faulty elements such that $|F| \leq f$.

Note that in Proposition 3, all the faulty elements may be edges incident to a common vertex.

A bipartite graph with $|B|=|W|$ is called hamiltonian-laceable if it has a hamiltonian path joining every pair of black and white vertices. Strong hamiltonian-laceability of a bipartite graph with $|B|=|W|$ was defined in [5]. We extend the notion of strong hamiltonian-laceability to a bipartite graph with faulty elements as follows.

Definition $3 f$-fault strong hamiltonian-laceability

A bipartite graph G with $|B|=|W|$ is called f-fault strongly hamiltonian-laceable if for any set F of faulty elements such that $|F| \leq f, G$ has an $L^{\text {opt }}$-path between every pair of fault-free vertices.

Under various fault patterns, long fault-free cycles and paths in a faulty star graph S_{n} have been constructed in the literature [$4,6,7,9,10,13$]. They are discussed in Section 2.

In this paper, we will show that for every pair of fault-free vertices in $S_{n}, n \geq 4$, with $f \leq n-3$, there is an L-path joining them (Theorem 1). The bound $n-3$ on the number of faulty elements is optimal due to Proposition 3. This result implies that $S_{n}, n \geq 4$, with $f \leq n-3$, has an L-cycle passing through an arbitrary fault-free edge (Corollary 1) due to Proposition 2. Beyond the bound $n-3$ on the number of faulty elements for S_{n} to have an L-cycle for any faulty set, we will consider $S_{n}, n \geq 4$, with $n-2$ faulty elements and show that it has an L-cycle except for the case that all the faulty elements are edges incident to a common vertex (Theorem 2). For the exceptional case, it has a cycle of length $n!-2$, which is the longest possible. Simple and recursive construction schemes of an L-path and an L-cycle in faulty S_{n} will be given, based on the construction of an L^{opt}-path and an L^{opt} _ cycle in faulty S_{4}. We will utilize the fact that S_{n} is strongly hierarchical and a technique of fault distribution that not all faulty elements are contained in a single component if $f \geq 2$. Additionally, it will be also shown that $S_{n}, n \geq 4$, with $f \leq n-3$ and $f_{v} \leq 1$ is strongly hamiltonian-laceable.

Graph theoretic terms not defined here can be found in [3]. This paper is organized as follows. In Section 2, we discuss about previous works on the construction of long fault-free cycles and paths in faulty S_{n}. L-paths and L-cycles in faulty S_{n} are constructed recursively in Section 3. Finally, we give a summary and further remarks in Section 4.

2 Previous Works

Under various fault types such as vertex faults only, edge faults only, and hybrid faults, and under various bounds on the number of faulty elements, long fault-free cycles [4, 9, 13] and long fault-free paths $[6,7,10]$ in a faulty star graph S_{n} have been constructed. They are summarized in Table 1 and 2. The item (a) in Table 1, for example, says that Latifi et.

Table 1: Previous works on long cycles in $S_{n}, n \geq 4$

	Who	Fault pattern	How long	Remarks
(a)	Latifi et. al. 1997 [9]	$f_{v} \leq n-2$ and $f_{e}=0$	S_{n} has an L-cycle.	vertex faults
(b)	Tseng et. al. 1997 [13]	$f \leq n-3$	S_{n} has a cycle of length at least $n!-4 f_{v}$.	hybrid faults, shorter than an L-cycle
(c)	Chang et. al. $1999[4]$	$f \leq n-3$	S_{n} has an L-cycle.	hybrid faults

Table 2: Previous works on long paths in $S_{n}, n \geq 4$

	Who	Fault pattern	How long	Remarks
(a)	Hsieh et. al. 2001 [6]	$\begin{aligned} & \hline f_{v} \leq n-5 \text { and } \\ & f_{e}=0 \end{aligned}$	S_{n} has an L-path between an arbitrary pair of vertices.	vertex faults, $n \geq 6$
(b)	Hsieh et. al.$2001 \text { [7] }$	$\begin{aligned} & f_{v}=0 \text { and } \\ & f_{e} \leq n-3 \end{aligned}$	S_{n} has an $L^{\text {opt }}$-path between almost every pair of vertices.	edge faults, $n \geq 6$
(c)		$\begin{aligned} & f_{v}=0 \text { and } \\ & f_{e} \leq n-4 \end{aligned}$	S_{n} is strongly hamiltonian-laceable.	edge faults, $n \geq 6$
(d)	$\begin{aligned} & \text { Li et. al. } \\ & 2002 \text { [10] } \end{aligned}$	$\begin{aligned} & f_{v}=0 \text { and } \\ & f_{e} \leq n-3 \end{aligned}$	S_{n} is strongly hamiltonian-laceable.	edge faults
(e)		$\begin{aligned} & f_{v}=1 \text { and } \\ & f_{e} \leq n-4 \end{aligned}$	S_{n} has an $L^{\text {opt }}$-path between an arbitrary pair of vertices with colors different from the faulty vertex.	hybrid faults, restricted to $f_{v}=1$

al. proved in [9] that $S_{n}, n \geq 4$, with $f_{v} \leq n-2$ and $f_{e}=0$ has an L-cycle. Table 1 is concerned with fault-free cycles in S_{n} and Table 2 is concerned with fault-free paths in S_{n}.

Theorem 1 which states that for every pair of fault-free vertices in $S_{n}, n \geq 4$, with $f \leq n-3$, there is an L-path joining them, is an extension of every item except (e) in Table 2. Recall Proposition 1(c) which says that when $f_{v}=0$, every L-path is an $L^{\text {opt }}$-path. Corollary 1 which states that $S_{n}, n \geq 4$, with $f \leq n-3$, has an L-cycle passing through an arbitrary fault-free edge, is an extension of items (b) and (c) in Table 1. Theorem 2 which states that $S_{n}, n \geq 4$, with $f=n-2$ has an L-cycle except for the case that all the faulty elements are edges incident to a common vertex, is an extension of item (a) in Table 1.

$3 L$-paths and L-cycles in Faulty S_{n}

We will show, in this section, that $S_{n}, n \geq 4$, with $f \leq n-3$ has an L-path between any pair of vertices, and that $S_{n}, n \geq 4$, with $f=n-2$ has an L-cycle unless all the faulty elements are edges incident to a common vertex. Finally, we will show that $S_{n}, n \geq 4$, with $f \leq n-3$ and $f_{v} \leq 1$ is strongly hamiltonian-laceable. First, we will discuss about the base case of $n=4$ and decompositions of S_{n} into n components isomorphic to S_{n-1}, and then give simple and recursive constructions of an L-path and an L-cycle in faulty S_{n}.

3.1 L^{opt}-paths and L^{opt}-cycles in faulty S_{4}

In this subsection, we are concerned with $L^{\text {opt }}$-paths and $L^{\text {opt }}$-cycles in S_{4} rather than L paths and L-cycles. We show that there exists an $L^{\text {opt }}$-path between any pair of vertices in S_{4} with a single faulty element. This implies that S_{4} is 1-fault strongly hamiltonian-laceable since an $L^{\text {opt }}$-path in S_{4} with a single faulty edge is indeed an $L^{\text {opt }}$-path in S_{4} without faulty elements. Proofs of Lemma 1 and 2 are given in Appendix.

Lemma 1 For any pair of vertices v and w in S_{4} with $f_{v}=1$ and $f_{e}=0$, there exists an $L^{\text {opt }}$-path joining them.

Lemma 2 For any pair of vertices v and w in S_{4} with $f_{v}=0$ and $f_{e}=1$, there exists an $L^{\text {opt }}$-path joining them.

We show that S_{4} with two or less faulty elements has an $L^{\text {opt }}$-cycle unless there are two faulty edges incident to a common vertex. S_{4} with two faulty edges incident to a common vertex is shown to have a cycle of length $4!-2$, which is the longest possible. By Lemma 1, 2 and Proposition 2, we are sufficient to consider S_{4} with two faulty elements. Proofs of Lemma 3, 4, and 5 are given in Appendix.

Lemma $3 S_{4}$ with $f_{v}=2$ and $f_{e}=0$ has an L^{opt}-cycle.
Lemma $4 S_{4}$ with $f_{v}=1$ and $f_{e}=1$ has an L^{opt}-cycle.
Contrary to Lemma 3 and $4, S_{4}$ with two faulty edges does not always have an $L^{\text {opt_ }}$ cycle since both faulty edges may be incident to a common vertex of degree three. Recall Proposition 1(f) which implies that, when there are no faulty vertices, an $L^{\text {opt }}$-cycle means a hamiltonian cycle.

Lemma $5 S_{4}$ with $f_{v}=0$ and $f_{e}=2$ has a fault-free hamiltonian cycle except for the case that the two faulty edges are incident to a common vertex. For the exceptional case, it has a fault-free cycle of length $4!-2$.

3.2 Decompositions of S_{n} into n components

We are going to discuss about some preliminary properties on decomposition of S_{n} into n components $S_{n-1}^{1}, S_{n-1}^{2}, \cdots, S_{n-1}^{n}$ which are isomorphic to S_{n-1}. The decomposition can be achieved if we delete all the k-dimensional edges for any $k, 2 \leq k \leq n$. There are $n-1$ vertices adjacent to each vertex in S_{n-1}^{i}. Among them, exactly one vertex is not contained in S_{n-1}^{i} and the other vertices are contained in S_{n-1}^{i}.

Lemma 6 We let x and y be adjacent vertices in a component S_{n-1}^{i}, and let x^{\prime} and y^{\prime} be the vertices adjacent to x and y not contained in S_{n-1}^{i}, respectively. Then, x^{\prime} and y^{\prime} are contained in different components.

Proof We let S_{n-1}^{i} be a component obtained from the decomposition by k-dimensional edges, and let $x=a_{1} a_{2} \cdots a_{n}$ and $y=b_{1} b_{2} \cdots b_{n}$. It holds true that $a_{1} \neq b_{1}$ and $a_{k}=b_{k}$. Thus, $x^{\prime}=a_{k} a_{2} \cdots a_{k-1} a_{1} a_{k+1} \cdots a_{n}$ and $y^{\prime}=b_{k} b_{2} \cdots b_{k-1} b_{1} b_{k+1} \cdots b_{n}$ are contained in different components since they have different k th symbols.

Lemma 7 We let $n \geq 4$. There are ($n-2$)! pairwise non-adjacent edges which join vertices in S_{n-1}^{i} and vertices in S_{n-1}^{j} for any pair of i and j such that $i \neq j$. Half of the edges have black endvertices in S_{n-1}^{i}, and the other half have white endvertices in S_{n-1}^{i}.

Proof We let S_{n-1}^{i} be a component obtained from the decomposition by k-dimensional edges, and let b be the k th symbol of vertices in S_{n-1}^{i}. For $a \neq b$, we let V_{a}^{i} be the set of vertices in S_{n-1}^{i} whose first symbol is a. Obviously, $\left|V_{a}^{i}\right|=(n-2)$!. Furthermore, we can observe that V_{a}^{i} has the same number of black and white vertices, or equivalently V_{a}^{i} has the same number of odd and even permutations. Note that every even (resp. odd) permutation can be interpreted as a white (resp. black) vertex, as in Figure 1. Thus, we have the lemma.

Lemma $8 S_{n}$ with $f \geq 2$ faulty elements can be decomposed into n components S_{n-1}^{1}, S_{n-1}^{2}, \cdots, S_{n-1}^{n} isomorphic to S_{n-1} such that every S_{n-1}^{i} contains at most $f-1$ faulty elements.

Proof If S_{n} has a faulty edge, say a k-dimensional edge, the decomposition of S_{n} by k-dimensional edges is sufficient. If S_{n} has no faulty edge, S_{n} has two faulty vertices x and y such that $x=a_{1} a_{2} \cdots a_{n}, y=b_{1} b_{2} \cdots b_{n}$. There exists $k, 2 \leq k \leq n$, such that $a_{k} \neq b_{k}$. If we decompose S_{n} by k-dimensional edges, two vertices x and y are contained in different components. This completes the proof.

3.3 L-paths in S_{n} with $n-3$ or less faulty elements

We will give a recursive construction of an L-path between an arbitrary pair of vertices v and w in S_{n} with $f \leq n-3$. First of all, $S_{n}, n \geq 5$, is decomposed into n components S_{n-1}^{1},

Figure 2: Illustration of Theorem 1
$S_{n-1}^{2}, \cdots, S_{n-1}^{n}$ isomorphic to S_{n-1} such that every S_{n-1}^{i} contains at most $n-4$ faulty elements, and then n or $n-1$ inter-component edges are found depending on whether or not v and w are contained in the same component. In each component, an L-path is found. Finally, all the L-paths in the components are merged into an L-path between v and w with the inter-component edges.

Theorem 1 For any pair of vertices v and w in $S_{n}, n \geq 4$, with $f \leq n-3$, there exists an L-path joining them.

Proof We prove the theorem by induction on n. When $n=4$, the theorem holds true by Lemma 1 and 2. We assume that $n \geq 5$. We first decompose S_{n} into n components S_{n-1}^{1}, $S_{n-1}^{2}, \cdots, S_{n-1}^{n}$ isomorphic to S_{n-1} such that every S_{n-1}^{i} contains at most $n-4$ faulty elements. The decomposition is trivial if $f \leq n-4$. When $f=n-3$, it is also possible by Lemma 8. Since S_{n-1}^{i} has at most $n-4$ faulty elements, S_{n-1}^{i} has an L-path joining any pair of vertices. Now, we are going to construct an L-path joining v and w in S_{n}. We have two cases.

Case 1 Both v and w are contained in some S_{n-1}^{p} (see Figure 2 (a)).
Without loss of generality, we assume that $p=1$. Let P_{1} be an L-path joining v and w in S_{n-1}^{1}. We are going to choose an edge $\left(v_{1}, w_{1}\right)$ on P_{1} such that (i) the vertices w_{2} and v_{n} not contained in S_{n-1}^{1} which are adjacent to v_{1} and w_{1}, respectively, are fault-free, and (ii) the edges $\left(v_{1}, w_{2}\right)$ and $\left(w_{1}, v_{n}\right)$ are fault-free. This process is always possible since the length $l\left(P_{1}\right)$ of P_{1} is sufficiently larger than two times the number of faulty elements. That is, $l\left(P_{1}\right) \geq(n-1)!-2(n-4)-2>2(n-3) \geq 2 f$ for all $n \geq 5$. Deleting the edge $\left(v_{1}, w_{1}\right)$ decomposes P_{1} into two path segments: the path P_{1}^{\prime} from v to v_{1} and the path $P_{1}^{\prime \prime}$ from w_{1} to w. We can assume that, by Lemma 6, w_{2} and v_{n} are contained in S_{n-1}^{2} and S_{n-1}^{n}, respectively.

Now, we choose pairs of vertices v_{i}, w_{i+1} for all $2 \leq i<n$, which satisfy that (i) v_{i} and w_{i+1} are fault-free vertices contained in S_{n-1}^{i} and S_{n-1}^{i+1}, respectively, (ii) $\left(v_{i}, w_{i+1}\right)$ is an edge and fault-free, and (iii) the colors of v_{i} and w_{i+1} are the same as v_{1} and w_{1}, respectively. This process is possible since there are $(n-2)!/ 2$ candidates for a pair of vertices v_{i} and w_{i+1} by Lemma 7 and the number of candidates is greater than that of faulty elements. That is, $(n-2)!/ 2>n-3 \geq f$ for all $n \geq 5$.

Let P_{i} be an L-path in S_{n-1}^{i} between w_{i} and v_{i} for $2 \leq i \leq n$. The paths $P_{1}^{\prime}, P_{1}^{\prime \prime}$, P_{2}, \cdots, P_{n}, and edges $\left(v_{1}, w_{2}\right),\left(v_{2}, w_{3}\right), \cdots,\left(v_{n-1}, w_{n}\right)$, and $\left(v_{n}, w_{1}\right)$ constitute a path P between v and w. Let us consider the length $l(P)$ of P. We let f_{v}^{i} be the number of faulty vertices in S_{n-1}^{i} so that $f_{v}=\sum_{1 \leq i \leq n} f_{v}^{i}$. The length $l\left(P_{i}\right)$ of P_{i} is at least $(n-1)!-2 f_{v}^{i}-1$ for all $2 \leq i \leq n$. We have that $l\left(P_{1}^{\prime}\right)+l\left(P_{1}^{\prime \prime}\right)=l\left(P_{1}\right)-1$ and $l\left(P_{1}\right) \geq$ $(n-1)!-2 f_{v}^{1}-\Delta$, where $\Delta=1$ if v and w have different colors; otherwise, $\Delta=2$. Thus, $l(P)=l\left(P_{1}^{\prime}\right)+l\left(P_{1}^{\prime \prime}\right)+\sum_{2 \leq i \leq n} l\left(P_{i}\right)+n \geq n!-2 f_{v}-\Delta$ and P is an L-path.

Case 2 $\quad v$ is in S_{n-1}^{p} and w is in S_{n-1}^{q} such that $p \neq q$ (see Figure 2 (b)).
We assume that $p=1$ and $q=n$, and that no vertex in S_{n-1}^{n-1} is adjacent to w. Similarly to Case 1 , we choose pairs of vertices v_{i} and w_{i+1} for all $1 \leq i<n$ such that (i) v_{i} and w_{i+1} are fault-free and contained in S_{n-1}^{i} and S_{n-1}^{i+1}, respectively, (ii) $\left(v_{i}, w_{i+1}\right)$ is a fault-free edge, and (iii) v_{i} has a different color from v (and w_{i+1} has the same color as v). It holds true that $w_{n} \neq w$ by our assumption. We let P_{1} be an L-path from v to v_{1} in S_{n-1}^{1}, let P_{i}, $2 \leq i<n$, be an L-path from w_{i} to v_{i} in S_{n-1}^{i}, and let P_{n} be an L-path from w_{n} to w in S_{n-1}^{n}. An L-path P from v to w can be constructed by merging paths $P_{1}, P_{2}, \cdots, P_{n}$ and edges $\left(v_{1}, w_{2}\right),\left(v_{2}, w_{3}\right), \cdots,\left(v_{n-1}, w_{n}\right)$.

Recalling Proposition 2 that a fault-free edge (v, w) and an L-path joining v and w form an L-cycle leads to the following corollary.

Corollary $1 S_{n}, n \geq 4$, with $f \leq n-3$ has an L-cycle passing through an arbitrary fault-free edge.

Remember Proposition 1 that when there are no faulty vertices, every L-path is an $L^{\text {opt }}$-path and every L-cycle is a hamiltonian cycle.

Corollary 2 [10] $S_{n}, n \geq 4$, with $f=f_{e} \leq n-3$ is strongly hamiltonian-laceable. That is, it has an L^{opt}-path joining an arbitrary pair of vertices.

Corollary $3 S_{n}, n \geq 4$, with $f=f_{e} \leq n-3$ is edge-hamiltonian. That is, it has a fault-free hamiltonian cycle passing through an arbitrary edge.

3.4 L-cycles in S_{n} with $n-2$ faulty elements

$S_{n}, n \geq 4$, with $n-2$ faulty elements can not have an L-cycle when all the faulty elements are edges incident to a common vertex. We will give a recursive construction of an L-cycle in

Figure 3: Three possible fault patterns
S_{n} with $f=n-2$ unless all the faulty elements are edges incident to a common vertex. The construction is similar to the construction of an L-path in Theorem 1. We first decompose $S_{n}, n \geq 5$, into n components isomorphic to S_{n-1} such that each component has at most $n-3$ faulty elements and does not have $n-3$ faulty edges incident to a common vertex in the component, and then we find n inter-component edges. In one component, an L-cycle is found, and in each of the other components, an L-path is found. Finally, they are merged into an L-cycle with the inter-component edges.

Lemma 9 If not all the faulty elements are edges incident to a common vertex in S_{n}, $n \geq 5$, with $f=n-2$, then S_{n} can be decomposed into n components $S_{n-1}^{1}, S_{n-1}^{2}, \cdots, S_{n-1}^{n}$ isomorphic to S_{n-1} such that for every i, (a) S_{n-1}^{i} has at most $n-3$ faulty elements and (b) no S_{n-1}^{i} has $n-3$ faulty edges incident to a common vertex in it.

Proof If S_{n} has no $n-3$ faulty edges incident to a common vertex, the decomposition can be achieved by Lemma 8 . We assume that S_{n} has $n-3$ faulty edges incident to a common vertex x. There are three possible types of fault pattern: the faulty element other than the $n-3$ faulty edges incident to x is a vertex v_{f} (Figure 3 (a)), an edge e_{f}^{\prime} which is not adjacent to other faulty edges (Figure 3 (b)), or an edge e_{f}^{\prime} which is adjacent to some faulty edges(Figure 3 (c)). Observe that e_{f}^{\prime} can not be adjacent to two or more faulty edges since e_{f}^{\prime} is, by assumption, not incident to x and S_{n} has no cycle of length three. If the fault pattern is of type (c) in Figure 3, we let e_{f} be one of the $n-3$ faulty edges incident to x such that e_{f} is adjacent to e_{f}^{\prime}; otherwise, we let e_{f} be an arbitrary faulty edge incident to x. Assuming that e_{f} is a k-dimensional edge, we decompose S_{n} into n components by the k-dimensional edges. Obviously, e_{f} is an inter-component edge in the decomposition, and thus the decomposition satisfies the two conditions of the lemma.

Theorem $2 S_{n}, n \geq 4$, with $n-2$ faulty elements has an L-cycle except for the case that all the faulty elements are edges incident to a common vertex. For the exceptional case, it has a fault-free cycle of length $n!-2$.

Proof When $n=4$, the theorem holds true by Lemma 3, 4, and 5. We assume that $n \geq 5$. If all the faulty elements are edges incident to a common vertex x, we can construct a cycle

Figure 4: Illustration of the proof of Theorem 2
of length $n!-2$ by regarding x as a faulty vertex and employing Corollary 1. From now on, we assume that not all the faulty elements are edges incident to a common vertex. First, by utilizing Lemma 9 , we decompose S_{n} into n components $S_{n-1}^{1}, S_{n-1}^{2}, \cdots, S_{n-1}^{n}$ isomorphic to S_{n-1} such that each S_{n-1}^{i} has at most $n-3$ faulty elements and does not have $n-3$ faulty edges incident to a common vertex in it.

Among the n components, we assume that S_{n-1}^{1} is a component with the maximum number of faulty elements. That is, $f^{1} \geq f^{i}$ for all i, where f^{i} is the number of faulty elements in S_{n-1}^{i}. Moreover, when all the faulty elements are edges joining vertices in S_{n-1}^{p} and vertices in S_{n-1}^{q}, we assume that S_{n-1}^{1} is one of the two components. S_{n-1}^{1} has an L-cycle by an induction hypothesis. We claim that for every $2 \leq i \leq n, S_{n-1}^{i}$ has an L-path between an arbitrary pair of vertices. If $f^{1} \leq 1$, then $f^{i} \leq 1$; otherwise, $f^{i} \leq f-f^{1} \leq(n-2)-2=n-4$ for all $2 \leq i \leq n$. Thus, the claim holds true by Theorem 1.

Now, we are going to construct an L-cycle in a similar way to Case 1 in the proof of Theorem 1. See Figure 4. Let C_{1} be an L-cycle in S_{n-1}^{1}. We find an edge $\left(v_{1}, w_{1}\right)$ on C_{1} such that (i) the vertices w_{2} and v_{n} not contained in S_{n-1}^{1} which are adjacent to v_{1} and w_{1}, respectively, are fault-free, and (ii) the edges $\left(v_{1}, w_{2}\right)$ and $\left(w_{1}, v_{n}\right)$ are fault-free. If we delete the edge $\left(v_{1}, w_{1}\right)$ on C_{1}, we have a path P_{1} between v_{1} and w_{1}. We assume that w_{2} and v_{n} are contained in S_{n-1}^{2} and S_{n-1}^{n}, respectively.

We choose pairs of vertices v_{i}, w_{i+1} for all $2 \leq i<n$, which satisfy that (i) v_{i} and w_{i+1} are fault-free vertices contained in S_{n-1}^{i} and S_{n-1}^{i+1}, respectively, (ii) $\left(v_{i}, w_{i+1}\right)$ is a fault-free edge, and (iii) the colors of v_{i} and w_{i+1} are the same as v_{1} and w_{1}, respectively. This process is possible since there are $(n-2)!/ 2$ candidates for a pair of vertices v_{i} and w_{i+1} and, by the choice of S_{n-1}^{1}, there are at most $n-3$ faulty edges joining vertices in S_{n-1}^{i} and vertices S_{n-1}^{i+1} for all $2 \leq i<n$.

Let P_{i} be an L-path in S_{n-1}^{i} between w_{i} and v_{i} for $2 \leq i \leq n$. The paths P_{1}, P_{2}, \cdots, P_{n}, and edges $\left(v_{1}, w_{2}\right),\left(v_{2}, w_{3}\right), \cdots,\left(v_{n-1}, w_{n}\right)$, and $\left(v_{n}, w_{1}\right)$ constitute an L-cycle C. Note
that the number of fault-free vertices in S_{n-1}^{i} which are not on C is less than or equal to that of faulty vertices in S_{n-1}^{i} for all i.

Corollary $4 S_{n}, n \geq 4$, with $f=f_{e}=n-2$ has a fault-free hamiltonian cycle unless all the faulty edges are incident to a common vertex.

3.5 Strong hamiltonian-laceability of faulty S_{n}

We will show that $S_{n}, n \geq 4$, with $f \leq n-3$ and $f_{v} \leq 1$ is strongly hamiltonian-laceable, that is, it has an L^{opt}-path joining any pair of vertices v and w.

Theorem $3 S_{n}, n \geq 4$, with $f \leq n-3$ and $f_{v} \leq 1$ is strongly hamiltonian-laceable.

Proof When $f_{v}=0$, by Corollary 2, the theorem holds true. We assume that a vertex v_{f} is faulty and that v_{f} is black. For a pair of white vertices v and w, we employ a result in [10] which states that $S_{n}, n \geq 4$, with $f_{v}=1$ and $f_{e} \leq n-4$ has an $L^{\text {opt }}$-path between them. Excluding the case that both v and w are white, an L-path between them, which can be found by Theorem 1, implies an $L^{\text {opt }}$-path due to Proposition 1(d).

4 Concluding Remarks

We proved that $S_{n}, n \geq 4$, with $f \leq n-3$ has an L-path joining any pair of fault-free vertices, and that $S_{n}, n \geq 4$, with $f \leq n-2$ has an L-cycle unless the number of faulty elements are $n-2$ and all the faulty elements are edges incident to a common vertex. According to the constructions of an L-path and an L-cycle presented in this paper, we can design without difficulty efficient recursive algorithms for finding an L-path between an arbitrary pair of vertices and an L-cycle. It was also shown that $S_{n}, n \geq 4$, with $f \leq n-3$ and $f_{v} \leq 1$ is strongly hamiltonian-laceable. It is open whether or not $S_{n}, n \geq 4$, is n - 3 -fault strongly hamiltonian-laceable, that is, there exists an $L^{\text {opt }}$-path joining an arbitrary pair of fault-free vertices in S_{n} with $f \leq n-3$.

Acknowledgement The authors would like to thank the anonymous referees for improving the presentation of this paper and shortening the proof of Theorem 2.

References

[1] S.B. Akers, D. Harel, and B. Krishnamurthy, "The star graph: an attractive alternative to the n-cube," in Proc. International Conference on Parallel Processing ICPP'87, pp. 393-400, 1987.
[2] S.B. Akers and B. Krishnamurthy, "A group-theoretic model for symmetric interconnection networks," IEEE Trans. Computers 38(4), pp. 555-566, 1989.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, 5th printing, American Elsevier Publishing Co., Inc., 1976.
[4] J.-H. Chang, C.-S. Shin, and K.Y. Chwa, "Ring embedding in faulty star graphs," IEICE Trans. Fundamentals E82-A(9), pp. 1953-1964, 1999.
[5] S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho, "Hamiltonian-laceability of star graphs," Networks 36(4), pp. 225-232, 2000.
[6] S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho, "Longest fault-free paths in star graphs with vertex faults," Theoretical Computer Science 262(1-2), pp. 215-227, 2001.
[7] S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho, "Longest fault-free paths in star graphs with edge faults," IEEE Trans. Computers 50(9), pp. 960-971, Sep. 2001.
[8] J.-S. Jwo, S. Lakshmivarahan, and S.K. Dhall, "Embedding of cycles and grids in star graphs," in Proc. Second Symposium on Parallel and Distributed Processing SPDP'90, pp. 540-547, 1990.
[9] S. Latifi, N. Bagherzadeh, and R.R. Gajjala, "Fault-tolerant embedding of linear arrays and rings in the star graph," Computers Elect. Engng. 23(2), pp. 95-107, 1997.
[10] T.-K. Li, J.J.M. Tan, and L.-H. Hsu, "Hamiltonian laceability on edge fault star graph," in Proc. Ninth International Conference on Parallel and Distributed Systems ICPADS'02, pp. 23-28, 2002.
[11] A. Sengupta, "On ring embedding in hypercubes with faulty nodes and links", Inform. Proc. Lett. 68, pp. 207-214, 1998.
[12] T.-Y. Sung, C.-Y. Lin, Y.-C. Chuang, and L.-H. Hsu, "Fault tolerant token ring embedding in double loop networks," Inform. Proc. Lett. 66, pp. 201-207, 1998.
[13] Y.-C. Tseng, S.-H. Chang, and J.-P. Sheu, "Fault-tolerant ring embedding in a star graph with both link and node failures," IEEE Trans. Parallel and Distributed Systems 8(12), pp. 1185-1195, 1997.

Appendix

A $L^{\text {opt }}$-paths and $L^{\text {opt }}$-cycles in faulty S_{4}

In this Appendix, we will prove Lemma 1 through 5 . We denote by V and E the vertex and edge set of S_{4}, respectively.

A. $1 \quad S_{4}$ with a single faulty vertex

To show that for any pair of fault-free vertices in S_{4} with $f=f_{v}=1$, there exists an $L^{\text {opt }}$ path joining them, assuming without loss of generality that an arbitrary vertex is faulty due to vertex symmetry of S_{4}, we are sufficient to find all $L^{\text {opt }}$-paths joining every pair of fault-free vertices. However, the number of such vertex pairs, $(4!-1) *(4!-2) / 2=253$, is very large. In order to reduce the number of vertex pairs, we need to think of pairs of vertices being nondistinguishable. Thus, we are to define an equivalence relation on the set of unordered pairs of distinct vertices in $V \backslash v_{f}$, where v_{f} is the designated vertex 3214, the upper-left corner vertex of S_{4} in Figure 1. We assume that v_{f} is black. Later, v_{f} will serve as a faulty vertex. Let us consider automorphisms of S_{4} and a relation on $V \backslash v_{f}$ first.

Lemma 10 There exist six automorphisms ϕ of S_{4} such that $\phi\left(v_{f}\right)=v_{f}$.
Proof S_{4} can be drawn in two ways different from Figure 1 as given in Figure 5 (a) and (b), where the vertex v_{f} is restricted to be located at the upper-left corner position. For each of the three drawings, we can find a mirror drawing with respect to the straight line passing through the upper-left corner vertex v_{f} and the lower-right corner vertex, say 4123 in Figure 1. Thus, we have six drawings in total. Obviously, each of them induces an automorphism of S_{4}. We show that there are no more automorphisms. In 3! ways, we can label three vertices adjacent to v_{f}. For each labeling, we can observe that the three vertices from which there are two (disjoint) shortest paths of length 3 to v_{f} are labeled as 3124 , 3412 , and 3241 in a unique way, and then the vertices which are located on the cycles of length 6 passing through v_{f} and all the other vertices are labeled uniquely.

Definition 4 Let R_{1} be a relation on $V \backslash v_{f}$ such that $x R_{1} y$ if there exists an automorphism ϕ of S_{4} satisfying $\phi\left(v_{f}\right)=v_{f}$ and $\phi(x)=y$.

Lemma $11 R_{1}$ is an equivalence relation. There are six equivalence classes relative to R_{1} as follows. Three of them W_{1}, W_{2}, and W_{3} are sets of white vertices and the other three B_{1}, B_{2}, and B_{3} are sets of black vertices.

- $W_{1}=\{\underline{2431}, 1342,4321,2143,4132,1423\}$
- $W_{2}=\{\underline{3124}, 3412,3241\}$
- $W_{3}=\{\underline{1234}, 2314,4213\}$
- $B_{1}=\{\underline{4231}, 4312,1324,1243,2134,2413\}$

Figure 5: Other representations of S_{4}

- $B_{2}=\{\underline{2341}, 1432,4123\}$
- $B_{3}=\{\underline{3421}, 3142\}$

Proof It is trivial to show that R_{1} is an equivalence relation. By carefully observing six automorphisms given in Lemma 10, we can find out pairs of vertices that are R_{1}-related. For example, the upper-right corner vertices 2431 in Figure 1, 4321 and 4132 in Figure 5 as well as 1342,2143 and 1423 in their mirror drawings are R_{1}-related, and thus they are contained in the same set W_{1}. Continuing this process, we can construct the above six equivalence classes.

Two shortest paths from a vertex in W_{2} to v_{f} of length three are disjoint, and thus they form a cycle of length six. For each vertex in S_{4}, there are three distinct cycles of length six passing through the vertex, one per a pair of edges incident to the vertex. We call a vertex underlined in each equivalence class of Lemma 11 the representative vertex of the class.

Definition 5 Let R_{2} be a relation on the set of unordered pairs of vertices in $V \backslash v_{f}$ such that $(x, y) R_{2}\left(x^{\prime}, y^{\prime}\right)$ if there exists an automorphism ϕ of S_{4} satisfying $\phi\left(v_{f}\right)=v_{f}$ and either $\phi(x)=x^{\prime}$ and $\phi(y)=y^{\prime}$ or $\phi(x)=y^{\prime}$ and $\phi(y)=x^{\prime}$.

Lemma $12 R_{2}$ is an equivalence relation. There are 49 equivalence classes relative to R_{2} as follows. Among at most six vertex pairs in each class, one representative pair is shown.

- $C_{1}=\{(2431,1342)\}, C_{2}=\{(2431,4321)\}, C_{3}=\{(2431,2143)\}, C_{4}=\{(2431,4132)\}$ $\subseteq W_{1} \times W_{1}$
- $C_{5}=\{(2431,3124)\}, C_{6}=\{(2431,3412)\}, C_{7}=\{(2431,3241)\} \subseteq W_{1} \times W_{2}$
- $C_{8}=\{(2431,1234)\}, C_{9}=\{(2431,2314)\}, C_{10}=\{(2431,4213)\} \subseteq W_{1} \times W_{3}$
- $C_{11}=\{(3124,3412)\} \subseteq W_{2} \times W_{2}$
- $C_{12}=\{(3124,1234)\}, C_{13}=\{(3124,4213)\} \subseteq W_{2} \times W_{3}$

```
- \(C_{14}=\{(1234,2314)\} \subseteq W_{3} \times W_{3}\)
- \(C_{15}=\{(2431,4231)\}, C_{16}=\{(2431,4312)\}, C_{17}=\{(2431,1324)\}, C_{18}=\{(2431,1243)\}\),
    \(C_{19}=\{(2431,2134)\}, C_{20}=\{(2431,2413)\} \subseteq W_{1} \times B_{1}\)
- \(C_{21}=\{(2431,2341)\}, C_{22}=\{(2431,1432)\}, C_{23}=\{(2431,4123)\} \subseteq W_{1} \times B_{2}\)
- \(C_{24}=\{(2431,3421)\}, C_{25}=\{(2431,3142)\} \subseteq W_{1} \times B_{3}\)
- \(C_{26}=\{(3124,4231)\}, C_{27}=\{(3124,1324)\}, C_{28}=\{(3124,1243)\} \subseteq W_{2} \times B_{1}\)
- \(C_{29}=\{(3124,2341)\}, C_{30}=\{(3124,4123)\} \subseteq W_{2} \times B_{2}\)
- \(C_{31}=\{(3124,3421)\} \subseteq W_{2} \times B_{3}\)
- \(C_{32}=\{(1234,4231)\}, C_{33}=\{(1234,4312)\}, C_{34}=\{(1234,1324)\} \subseteq W_{3} \times B_{1}\)
- \(C_{35}=\{(1234,2341)\}, C_{36}=\{(1234,1432)\} \subseteq W_{3} \times B_{2}\)
- \(C_{37}=\{(1234,3421)\} \subseteq W_{3} \times B_{3}\)
- \(C_{38}=\{(4231,4312)\}, C_{39}=\{(4231,1324)\}, C_{40}=\{(4231,1243)\}, C_{41}=\{(4231,2134)\}\)
\(\subseteq B_{1} \times B_{1}\)
- \(C_{42}=\{(4231,2341)\}, C_{43}=\{(4231,1432)\}, C_{44}=\{(4231,4123)\} \subseteq B_{1} \times B_{2}\)
- \(C_{45}=\{(4231,3421)\}, C_{46}=\{(4231,3142)\} \subseteq B_{1} \times B_{3}\)
- \(C_{47}=\{(2341,1432)\} \subseteq B_{2} \times B_{2}\)
- \(C_{48}=\{(2341,3421)\} \subseteq B_{2} \times B_{3}\)
- \(C_{49}=\{(3421,3142)\} \subseteq B_{3} \times B_{3}\)
```

Proof Obviously, R_{2} is an equivalence relation. Similar to the proof of Lemma 11, by observing six automorphisms given in Lemma 10, we can obtain the above 49 equivalence classes.

A path in S_{4} can be represented as a starting vertex followed by a sequence of edges, where an edge is represented as its dimension number. Note that every vertex in S_{4} is incident to one 2-dimensional edge, one 3-dimensional edge, and one 4-dimensional edge.

Proof of Lemma 1 We assume that the vertex $v_{f}=3214$ is faulty. By Lemma 12, it is sufficient to construct $L^{\text {opt }}$-paths between 49 pairs of vertices, one pair for each equivalence class. They are shown in Table 3. Note that the lengths of $L^{\text {opt }}$-paths are 22, 21, and 20, respectively, for a pair of white vertices, for a pair of white and black vertices, and for a pair of black vertices.

It was shown in [6] that between every pair of adjacent vertices in S_{4} with $f=f_{v}=1$, there exists an $L^{\text {opt }}$-path. Among the equivalence classes given in Lemma 12, six classes $C_{15}, C_{22}, C_{24}, C_{27}, C_{30}$, and C_{32} are sets of pairs of adjacent vertices. Although we need not construct $L^{\text {opt }}$-paths between these pairs in the proof of Lemma 1, they are included here for completeness.

Table 3: $L^{\text {opt }}$-paths between v and w in S_{4} with $f=f_{v}=1$

	$w=1342$	4324324343424343234234
	$w=4321$	4342324342432434324242
	$w=2143$	4232423423424243424232
	$w=4132$	4324342432323432432423
$v=2431$	$w=3124$	4342324342432434342424
	$w=3412$	4232343232432324232324
	$w=3241$	4324324323234234234243
	$w=1234$	4324342432323434324234
	$w=2314$	4323234243232432323423
	$w=4213$	4324324324342432432432
	$w=3412$	4342343432432343242423
$v=3124$	$w=1234$	4323234243423423242342
	$w=4213$	4342434342434342424343
$v=1234$	$w=2314$	4242432424234242432424
	$w=4231$	432342432342424343424
	$w=4312$	434232424234234242434
	$w=1324$	432323424323243232342
	$w=1243$	432342342434342424323
	$w=2134$	432432434243243234342
$v=2431$	$w=2413$	432434242432432424232
	$w=2341$	432434243234342343424
	$w=1432$	343232343243234343232
	$w=4123$	432342342434232342424
	$w=3421$	432323424323424323234
	$w=3142$	432434243232343243242
	$w=4231$	434234343243234342424
	$w=1324$	434232324242343234234
$v=3124$	$w=1243$	434234343234242434323
	$w=2341$	434234342324242342342
	$w=4123$	342324342323242423232
	$w=3421$	434234343243243242423
	$w=4231$	242323243424324323432
	$w=4312$	424342323242342343234
$v=1234$	$w=1324$	424342324343424234343
	$w=2341$	424324342432323434324
	$w=1432$	423432323434324343423
	$w=3421$	424323424323234343242
	$w=4312$	24342323242342343234
	$w=1324$	24342324343424234343
	$w=1243$	23434324343423434324
	$w=2134$	24323424323424243434
$v=4231$	$w=2341$	24324342432323434324
	$w=1432$	23432323434324343423
	$w=4123$	24323424323424234343
	$w=3421$	24323424323234343242
	$w=3142$	24342323242343432343
$v=2341$	$w=1432$	43242343424343424234
	$w=3421$	43232343232343423242
$v=3421$	$w=3142$	43424343242343242423

Figure 6: Another representation of S_{4}

A. $2 S_{4}$ with a single faulty edge

In a similar approach taken in Section A.1, we are going to show that for any pair of vertices in S_{4} with $f=f_{e}=1$, there exists an $L^{\text {opt }}$-path joining them. We let e_{f} be the designated edge (3214, 4213). Let us discuss about automorphisms ψ of S_{4} first. For a pair of vertices (x, y), we say that $\psi(x, y)=\left(x^{\prime}, y^{\prime}\right)$ if either $\psi(x)=x^{\prime}$ and $\psi(y)=y^{\prime}$ or $\psi(x)=y^{\prime}$ and $\psi(y)=x^{\prime}$.

Lemma 13 There exist four automorphisms ψ of S_{4} such that $\psi\left(e_{f}\right)=e_{f}$.
Proof We can draw S_{4} in a different way from Figure 1 without altering the position of the edge e_{f}, as shown in Figure 6. The two drawings and their mirrors with respect to the straight line passing through the upper-left corner vertex and the lower-right corner vertex induce four automorphisms. We show that there are no more automorphisms. We can label the upper-left corner vertex as 3214 or 4213 in two ways. For each labeling, we can also label in two ways the vertices on the unique cycle of length six which passes through the upper-left corner vertex and does not pass through the other endvertex of e_{f}. Note that for each vertex, there are three cycles of length six passing through the vertex, one per a pair of edges incident to the vertex. Once labels of the cycle are fixed, we can observe that all the other vertices are labeled in a unique way.

Definition 6 Let R_{1}^{\prime} be a relation on V such that $x R_{1}^{\prime} y$ if there exists an automorphism ψ of S_{4} satisfying $\psi\left(e_{f}\right)=e_{f}$ and $\psi(x)=y$.

Lemma $14 R_{1}^{\prime}$ is an equivalence relation. There are seven equivalence classes relative to R_{1}^{\prime} as follows.

- $X_{1}=\{\underline{1234}, 2314,2413,1243\}$
- $X_{2}=\{2134,1324,1423,2143\}$
- $X_{3}=\{4231,4312,3412, \underline{3241}\}$
- $X_{4}=\{\underline{2431}, 1342,1432,2341\}$
- $X_{5}=\{3421,3142,4132, \underline{4321}\}$
- $X_{6}=\{\underline{3124}, 4123\}$
- $X_{7}=\{\underline{4213}, 3214\}$

Proof Obviously, R_{1}^{\prime} is an equivalence relation. By using the four automorphisms of S_{4} given in Lemma 13, we can obtain the above seven equivalence classes.

Definition 7 Let R_{2}^{\prime} be a relation on the set of unordered pairs of white and black vertices in V such that $(x, y) R_{2}^{\prime}\left(x^{\prime}, y^{\prime}\right)$ if there exists an automorphism ψ of S_{4} satisfying $\psi\left(e_{f}\right)=e_{f}$ and $\psi(x, y)=\left(x^{\prime}, y^{\prime}\right)$.

Lemma $15 R_{2}^{\prime}$ is an equivalence relation. There are 43 equivalence classes relative to R_{2}^{\prime} as follows. Among at most four vertex pairs in each class, one representative pair is shown.

- $Y_{1}=\{(1234,2413)\}, Y_{2}=\{(1234,1243)\} \subseteq X_{1} \times X_{1}$
- $Y_{3}=\{(1234,2134)\}, Y_{4}=\{(1234,1324)\} \subseteq X_{1} \times X_{2}$
- $Y_{5}=\{(1234,4231)\}, Y_{6}=\{(1234,4312)\} \subseteq X_{1} \times X_{3}$
- $Y_{7}=\{(1234,1432)\}, Y_{8}=\{(1234,2341)\} \subseteq X_{1} \times X_{4}$
- $Y_{9}=\{(1234,3421)\}, Y_{10}=\{(1234,3142)\} \subseteq X_{1} \times X_{5}$
- $Y_{11}=\{(1234,4123)\} \subseteq X_{1} \times X_{6}$
- $Y_{12}=\{(1234,3214)\} \subseteq X_{1} \times X_{7}$
- $Y_{13}=\{(1423,2134)\}, Y_{14}=\{(1423,1324)\} \subseteq X_{2} \times X_{2}$
- $Y_{15}=\{(1423,4231)\}, Y_{16}=\{(1423,4312)\} \subseteq X_{2} \times X_{3}$
- $Y_{17}=\{(1423,1432)\}, Y_{18}=\{(1423,2341)\} \subseteq X_{2} \times X_{4}$
- $Y_{19}=\{(1423,3421)\}, Y_{20}=\{(1423,3142)\} \subseteq X_{2} \times X_{5}$
- $Y_{21}=\{(1423,4123)\} \subseteq X_{2} \times X_{6}$
- $Y_{22}=\{(1423,3214)\} \subseteq X_{2} \times X_{7}$
- $Y_{23}=\{(3241,4231)\}, Y_{24}=\{(3241,4312)\} \subseteq X_{3} \times X_{3}$
- $Y_{25}=\{(3241,1432)\}, Y_{26}=\{(3241,2341)\} \subseteq X_{3} \times X_{4}$
- $Y_{27}=\{(3241,3421)\}, Y_{28}=\{(3241,3142)\} \subseteq X_{3} \times X_{5}$
- $Y_{29}=\{(3241,4123)\} \subseteq X_{3} \times X_{6}$
- $Y_{30}=\{(3241,3214)\} \subseteq X_{3} \times X_{7}$
- $Y_{31}=\{(2431,1432)\}, Y_{32}=\{(2431,2341)\} \subseteq X_{4} \times X_{4}$
- $Y_{33}=\{(2431,3421)\}, Y_{34}=\{(2431,3142)\} \subseteq X_{4} \times X_{5}$
- $Y_{35}=\{(2431,4123)\} \subseteq X_{4} \times X_{6}$
- $Y_{36}=\{(2431,3214)\} \subseteq X_{4} \times X_{7}$
- $Y_{37}=\{(4321,3421)\}, Y_{38}=\{(4321,3142)\} \subseteq X_{5} \times X_{5}$
- $Y_{39}=\{(4321,4123)\} \subseteq X_{5} \times X_{6}$
- $Y_{40}=\{(4321,3214)\} \subseteq X_{5} \times X_{7}$
- $Y_{41}=\{(3124,4123)\} \subseteq X_{6} \times X_{6}$
- $Y_{42}=\{(3124,3214)\} \subseteq X_{6} \times X_{7}$
- $Y_{43}=\{(4213,3214)\} \subseteq X_{7} \times X_{7}$

Proof Obviously, R_{2}^{\prime} is an equivalence relation. Similarly to the proof of Lemma 14, we can obtain the above equivalence classes.

Proof of Lemma 2 Due to edge symmetry of S_{n}, we assume that the edge e_{f} is faulty. For a pair of white (resp. black) vertices, we can find an $L^{\text {opt }}$-path of length 22 joining them by regarding the black (resp. white) endvertex of e_{f} as a virtual vertex fault and employing Lemma 1. The path does not pass through the virtual fault, and thus does not pass through e_{f}. Table 4 shows L^{opt}-paths joining 43 pairs of white and black vertices, one per each equivalence class given in Lemma 15.

A. $3 S_{4}$ with two faulty elements

To represent a cycle, a starting vertex is followed by a sequence of edges, represented by their dimension numbers.

Proof of Lemma 3 We assume that $v_{f}=3214$ is a faulty vertex. Moreover, we assume the other faulty vertex v_{f}^{\prime} is a representative vertex of the equivalence classes given in Lemma 11. The lengths of $L^{\text {opt }}$-cycles are 22 (resp. 20) if v_{f}^{\prime} is white (resp. black). $L^{\text {opt }}$-cycles in faulty S_{4} are constructed and shown in Table 5.

Proof of Lemma 4 We assume that $v_{f}=3214$ is a faulty vertex. Let $e_{f}=(v, w)$ be an arbitrary faulty edge, and let w be a white vertex. We find an $L^{\text {opt }}$-cycle of length 22 by regarding w (as well as v_{f}) as a faulty vertex and employing Lemma 3. The cycle does not pass through e_{f} (as well as v_{f}), and thus it is an $L^{\text {opt }}$-cycle in the presence of two faulty elements v_{f} and e_{f}.

Proof of Lemma 5 We assume that one of the two faulty edges is $e_{f}=(3214,4213)$. Among the 43 equivalence classes given in Lemma 15, twelve are sets of pairs of adjacent vertices, that is, edges. They are $Y_{3}, Y_{5}, Y_{12}, Y_{19}, Y_{21}, Y_{23}, Y_{26}, Y_{31}, Y_{33}, Y_{37}, Y_{41}$, and Y_{43}. Thus, we can assume the other faulty edge e_{f}^{\prime} is a representative edge of the equivalence

Table 4: $L^{\text {opt }}$-paths between pairs of white and black vertices in S_{4} with $f=f_{e}=1$

$v=1234$	$w=2413$	32423243243424324323432
	$w=1243$	32432432432323423423423
	$w=2134$	32432323423232432323423
	$w=1324$	32432423243243424323234
	$w=4231$	32434342343432434342343
	$w=4312$	32342432323434324232432
	$w=1432$	32432343243232342323243
	$w=2341$	32432343242423232434232
	$w=3421$	32432343243232434232324
	$w=3142$	32434342342342343234234
	$w=4123$	32432423243243243232342
	$w=3214$	42424324242342424324242
$v=1423$	$w=2134$	32323424234324234324234
	$w=1324$	32323434323234323234323
	$w=4231$	32323424234324232432423
	$w=4312$	32323434324234323423432
	$w=1432$	32323424232324234232423
	$w=2341$	32323434323234324323432
	$w=3421$	32323423232432323423232
	$w=3142$	32323432323423232432323
	$w=4123$	32324323234232324323234
	$w=3214$	32342432323434324232432
$v=3241$	$w=4231$	43243434234343243434234
	$w=4312$	43243243243424324324324
	$w=1432$	43242343242343432323424
	$w=2341$	43242423424243242423424
	$w=3421$	43242423424243243424324
	$w=3142$	43243243243434234234234
	$w=4123$	43234324324232432434243
	$w=3214$	43242343242343242423232
$v=2431$	$w=1432$	34234343243434234343243
	$w=2341$	43232343432323424323432
	$w=3421$	43423434324343423434324
	$w=3142$	43234234323424323234343
	$w=4123$	43232343232343232432323
	$w=3214$	43232342432324323234232
$v=4321$	$w=3421$	32432323423232432323423
	$w=3142$	24242323242423243242324
	$w=4123$	24323424323424323234343
	$w=3214$	24323234234234232423423
$v=3124$	$w=4123$	32323423232432323423232
	$w=3214$	43423232424234323423432
$v=4213$	$w=3214$	24234242432424234242432

Table 5: L^{opt}-cycles in S_{4} with two faulty vertices $v_{f}=3214$ and v_{f}^{\prime}

$v_{f}^{\prime}=2431$	$1234: 4343243234324234343232$
$v_{f}^{\prime}=3124$	$1234: 4243423424343424234342$
$v_{f}^{\prime}=1234$	$2314: 4324232432434243232343$
$v_{f}^{\prime}=4231$	$2314: 43234342434342342343$
$v_{f}^{\prime}=2341$	$1234: 42434232423434242432$
$v_{f}^{\prime}=3421$	$1234: 42432324323234234232$

Table 6: Hamiltonian cycles in S_{4} with two faulty edges $e_{f}=(3214,4213)$ and e_{f}^{\prime}

$e_{f}^{\prime}=(1234,2134)$	1234: 424243242423424243242423
$e_{f}^{\prime}=(1234,4231)$	1234: 243232342323243232342323
$e_{f}^{\prime}=(1423,3421)$	1234: 234232324323234232324323
$e_{f}^{\prime}=(1423,4123)$	1234: 243232342323243232342323
$e_{f}^{\prime}=(3241,4231)$	1234: 424243242423424243242423
$e_{f}^{\prime}=(3241,2341)$	1234: 434324343423434324343423
$e_{f}^{\prime}=(2431,1432)$	1234: 423232432323423232432323
$e_{f}^{\prime}=(2431,3421)$	1234: 424243242423424243242423
$e_{f}^{\prime}=(4321,3421)$	1234: 434324343423434324343423
$e_{f}^{\prime}=(3124,4123)$	1234: 424243242423424243242423

classes. We need not consider Y_{43} since Y_{43} has only one member e_{f}. When e_{f}^{\prime} is the representative edge of Y_{12}, both e_{f} and e_{f}^{\prime} are incident to vertex 3214 , and thus we can construct a cycle of length 22 by regarding 3214 and an arbitrary white vertex, say 4213 , as two faulty vertices and utilizing Lemma 3. For the other cases, hamiltonian cycles in S_{4} with two faulty edges e_{f} and e_{f}^{\prime} are listed in Table 6.

[^0]: *This work was supported by grant No. R02-2000-00289 from the Basic Research Program of the Korea Science and Engineering Foundation.

