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A k-disjoint path cover of a graph is a set of k internally vertex-disjoint paths which cover the
vertex set with k paths and each of which runs between a source and a sink. Given that each
source and sink v is associated with an integer-valued demand d(v) ≥ 1, we are concerned
with general-demand k-disjoint path cover in which every source and sink v is contained in
the d(v) paths. In this paper, we present a reduction of a general-demand disjoint path cover
problem to an unpaired many-to-many disjoint path cover problem, and obtain some results
on disjoint path covers of restricted HL-graphs and proper interval graphs with faulty vertices
and/or edges.
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1. Introduction

An interconnection network is often modeled as a graph, in which vertices and
edges correspond to nodes and communication links, respectively. One of the central
issues in interconnection networks is finding (vertex-)disjoint paths concerned with
the routing among nodes and the embedding of linear arrays. Vertex-disjoint paths
can be used as parallel paths for an efficient data routing among nodes. Disjoint
paths can be categorized as three types: one-to-one type deals with the disjoint
paths joining a single source and a single sink, one-to-many type considers the
disjoint paths joining a single source and k distinct sinks, and many-to-many type
deals with the disjoint paths joining k distinct sources and k distinct sinks. A path
means a simple path in this paper.

The connectivity of an interconnection network corresponds to its reliability (or
fault-tolerance) which is subject to node failures. According to Menger’s theorem,
a graph G is k-connected if and only if every pair of source s and sink t are joined
by k internally disjoint paths of type one-to-one. So-called Fan Lemma states that
a graph G is k-connected if and only if G has k internally disjoint paths of type
one-to-many joining every source s and k distinct sinks t1, t2, . . ., tk such that
ti 6= s for all i [1]. Moreover, a graph G is k-connected if and only if G has k
disjoint paths of type many-to-many joining any k distinct sources s1, s2, . . ., sk
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and k distinct sinks t1, t2, . . ., tk, where if a source si coincides with a sink tj , si (or
tj) itself is considered as a path. In other words, letting S = {s1, s2, . . . , sk} and
T = {t1, t2, . . . , tk}, the condition says that S = T or G\X has k′ disjoint paths of
type many-to-many joining S \X and T \X, where X = S ∩ T and k′ = k − |X|.

All of the three types of disjoint paths can be accommodated with the covering of
vertices in the graph. A k-disjoint path cover (k-DPC for short) of a graph G is a set
of k internally disjoint paths containing all the vertices in G. The k-DPC problem
that originated from an interconnection network is concerned with the application
where the full utilization of nodes is important [14]. The k-DPC problem can also
be categorized into three types: one-to-one, one-to-many, and many-to-many. The
many-to-many type is further subdivided into two subtypes: paired and unpaired.
In the paired type problem, each source si is required to be paired to a designated
sink ti. In the unpaired type problem, on the other hand, the sources and sinks are
allowed to be freely mapped. In other words, source si can be freely matched to
sink tσi

under an arbitrary permutation σ on {1, 2, . . . , k}.
Several types of graphs have been studied on their disjoint path covers. One-

to-one DPC’s in recursive circulants [10, 17] and hypercubes with faulty edges [2]
were investigated. A one-to-one k-DPC is also known as a k∗-container [2, 17]. In
hypercube-like interconnection networks, called restricted HL-graphs, with faulty
vertices and/or edges, one-to-many DPC’s [11], paired DPC’s [14, 15], and unpaired
DPC’s [12] were constructed. The paired 2-DPC consisting of two paths of equal
length was suggested in [8]. The disjoint path cover problem has also been studied
for some bipartite graphs: paired DPC’s for hypercubes [7] and for hypercubes with
faulty vertices [6]; unpaired DPC’s for hypercubes [3, 9] and for bipartite graphs
obtained by adding some edges to hypercubes [4].

In this paper, we present the following framework, which generalizes the above-
mentioned three DPC problems: one-to-one, one-to-many, and unpaired many-to-
many DPC problems (excluding the paired one). We formally define our general-
demand k-DPC problem in a graph G. Let S = {s1, s2, . . . , sk′} denote a nonempty
set of sources and let T = {t1, t2, . . . , tk′′} denote a nonempty set of sinks such that
S, T ⊂ V (G) and S ∩ T = ∅. Each source and sink is associated with an integer-
valued demand d(·) ≥ 1 such that

∑
sj∈S d(sj) =

∑
tj∈T d(tj) = k. A general-

demand k-DPC joining S and T is a set of k internally disjoint paths Pi joining
a source in S and a sink in T , 1 ≤ i ≤ k, such that (a)

⋃
1≤i≤k V (Pi) = V (G)

and (b)
∑

1≤i≤k I(sj , Pi) = d(sj) and
∑

1≤i≤k I(tj , Pi) = d(tj), where I(x, Pi) is
a 0/1-variable indicating whether x ∈ V (Pi). Here V (Pi) denotes the vertex set
of Pi. In a graph G with a set F of faulty elements, where F ⊂ V (G) ∪ E(G), a
general-demand k-DPC joining S and T such that S, T ⊂ V (G) \ F is defined as
a general-demand k-DPC of G \ F joining S and T . Such a disjoint path cover is
denoted by k-DPC[S, T |G,F ].

Given S and T in a graph, the problem of determining whether there exists a
general-demand k-DPC between S and T is NP-complete for any fixed k ≥ 1, since
the problem of determining one-to-one k-DPC, one-to-many k-DPC, and many-
to-many k-DPC, regardless of paired or unpaired type, are all NP-complete for
any fixed k ≥ 1 [14, 15]. In this paper, we consider a graph which has a general-
demand k-DPC for arbitrary set of sources and arbitrary set of sinks rather than
fixed sources and sinks, which is called a general-demand k-disjoint path coverable
graph.

Definition 1.1 A graph G is called f -fault general-demand k-disjoint path cov-
erable if f + 2k ≤ |V (G)| and for any fault set F with |F | ≤ f , G has a k-
DPC[S, T |G,F ] for any set S of sources and any set T of sinks contained in
V (G) \ F such that S ∩ T = ∅ and

∑
sj∈S d(sj) =

∑
tj∈T d(tj) = k.
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In this paper, we will develop a reduction of an f -fault general-demand k-DPC
problem into an f ′-fault unpaired many-to-many k′-DPC problem for some f ′ ≥ f
and k′ ≤ k with f ′ + k′ = f + k. In case when there exists a unique source (or
symmetrically, a unique sink), the general-demand k-DPC problem is referred to
as the single-source k-DPC problem. Reduction of an f -fault single-source k-DPC
problem to an f -fault one-to-many k-DPC problem will also be addressed. By ap-
plying our reductions to restricted HL-graphs, we obtain that every m-dimensional
restricted HL-graph, m ≥ 3, is f -fault general-demand k-disjoint path coverable
for any f and k ≥ 1 with f + k ≤ m− 2. Furthermore, the graph is f -fault single-
source k-disjoint path coverable for any f and k ≥ 2 with f + k ≤ m − 1. For
proper interval graphs, a necessary and sufficient condition for the graphs to be
unpaired k-disjoint path coverable is derived. Using the characterization, we show
that for an integer B ≥ 2, a proper interval graph is f -vertex-fault general-demand
k-disjoint path coverable for any f and k ≥ 2 with f + k ≤ B if any only if it is
(B + 1)-connected.

This paper is organized as follows. We will discuss about transformation of a
general-demand DPC problem in Section 2 and transformation of a single-source
DPC problem in Section 3. The general-demand/single-source DPC problems in
restricted HL-graphs and proper interval graphs will be considered in Sections 4
and 5, respectively. Finally, in Section 6, concluding remarks will be mentioned.

2. Reduction of the General-Demand DPC Problem

A graph G is called f -fault unpaired (many-to-many) k-disjoint path coverable if
f + 2k ≤ |V (G)| and for any set F of faulty elements with |F | ≤ f , G has an
unpaired k-DPC for any set S of k sources and any set T of k sinks in G \ F such
that S ∩ T = ∅. The sources and sinks are called terminals in general. A vertex v
is called free if v is fault-free and not a terminal. An edge (v, w) is called free if v
and w are free and (v, w) 6∈ F . A path in a graph is represented as a sequence of
vertices. A v-w path refers to a path from vertex v to w, and a v-path refers to a
path whose starting vertex is v.

Suppose a graph G has a general-demand k-DPC between S and T . Let P be
a disjoint path cover in G \ F joining S and T . For any terminal, say source si,
there are d(si) paths in P joining si and some sinks. Suppose d(si) ≥ 2. Among
the paths, let (si, w, . . . , tj) be an arbitrary si-path. Since the vertex w is neither
a faulty vertex nor a source, w must be either a free vertex or a sink. Moreover,
(si, w) must be fault-free, and whenever w is a sink, w must be equal to tj and the
path must be (si, tj).

Let D(G) denote
∑

si∈S{d(si)−1}+
∑

tj∈T {d(tj)−1}, that is, the sum of surplus
demands over all terminals. Based on the above observation, we may construct a
general-demand DPC in a graph G from a general-demand DPC in the graph with
smaller sum of surplus demands as follows. Let w be “some” vertex adjacent to si
via a fault-free edge such that w is a free vertex or a sink.

(1) If w is a free vertex, we regard it as a virtual source with unit demand and
reduce the demand of si by one. And then, find a general-demand k-DPC,
if any, and replace the w-path with (si, w-path). For example, a 3-DPC of
the graph in Figure 1(a) can be obtained from the 3-DPC of Figure 1(b)
by replacing (v7, v6, v5) with (v0, v7, v6, v5). The symbol × on a vertex or
on an edge in the figures indicates that the corresponding element is faulty.
The demand of a terminal is in parenthesis.

(2) If w is a sink with unit demand, we regard it as a virtual fault and reduce
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Figure 1. Reduction to a DPC problem with smaller sum of surplus demands. (a) F = {v1}; (b) F ′ = {v1}
and P ′ = {(v0, v3), (v0, v2, v4, v3), (v7, v6, v5)}; (c) F ′ = {v1, v5} and P ′ = {(v0, v2, v3), (v0, v7, v6, v4, v3)};
(d) F ′ = {v1, (v0, v3)} and P ′ = {(v0, v2, v4, v5), (v0, v7, v6, v3)}.

d(si) by one. And then, find a general-demand (k−1)-DPC, if any, and add
a path (si, w) to the (k − 1)-DPC. For example, a 3-DPC of Figure 1(a)
can be obtained from the 2-DPC of Figure 1(c).

(3) If w is a sink with demand two or greater, we regard the edge (si, w) as
a virtual fault and reduce both d(si) and d(w) by one. And then, find a
general-demand (k− 1)-DPC, if any, and add a path (si, w) to the (k− 1)-
DPC. For example, a 3-DPC of Figure 1(a) can be obtained from the 2-DPC
of Figure 1(d).

It is obvious that at least one of the above three are always applicable provided
G has a general-demand k-DPC and w is chosen carefully. The difficulty here is
how to pick up such a “proper” vertex w. It might not always be sufficient to pick
up w in an arbitrary manner.

On the other hand, we are concerned with the problem of determining whether
a graph G is f -fault general-demand k-disjoint path coverable for any f and k ≥ 1
with f + k ≤ B for some bound B. For the graph G to have a positive answer,
it is necessary that for any f and k ≥ 1 with f + k ≤ B, G has an f -fault unit-
demand k-DPC, or equivalently, G is f -fault unpaired many-to-many k-disjoint
path coverable. A necessary condition for a graph to have an f -fault unpaired
k-DPC was given in [15] as follows.

Lemma 2.1 [15] If a graph G is f -fault unpaired many-to-many k(≥ 2)-disjoint
path coverable, then δ(G) ≥ κ(G) ≥ f + k, where δ(G) is the minimum degree in
G and κ(G) is the connectivity of G. Furthermore, if G has f + 2k + 1 or more
vertices, then δ(G) ≥ f + k + 1.

Let us revisit the above transformation of a general-demand DPC problem into a
general-demand DPC problem with smaller sum of surplus demands. For the first
case of w being a free vertex, the number f of faults and the total demand k of
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sources remain unchanged. For the second and third cases of w being a sink, the
number of faults (including virtual faults) is increased from f to f + 1 and the
total demand of sources are decreased from k to k − 1. In all cases, the number of
faults plus the total demand of sources remains unchanged.

Let G be f -fault unpaired k-disjoint path coverable for any f and k ≥ 1 with
f + k ≤ B for some B. It holds B ≤ δ(G) by Lemma 2.1. To reach a conclusion
that G is also f -fault general-demand k-disjoint path coverable for any f and k ≥ 1
with f + k ≤ B, we will show that an f -fault general-demand k-DPC problem
with f + k ≤ B reduces to an f ′-fault unit-demand k′-DPC problem for some
f ′ ≥ f and k′ ≤ k such that f ′ + k′ = f + k ≤ B. For this reduction, we present a
general-demand DPC algorithm employing an unpaired DPC algorithm. Under the
condition of unpaired disjoint path coverability of G, the aforementioned difficulty
of picking up a proper vertex w is resolved and it suffices to pick up an arbitrary
vertex as follows.

Algorithm for the general-demand DPC problem
/* It is assumed that G is f -fault unpaired k-disjoint path coverable for any f and
k ≥ 1 with f + k ≤ B for some B ≤ δ(G). */

(1) If D(G) = 0, then find an unpaired k-DPC[S, T |G,F ] and return the set P
of disjoint paths.

(2) Otherwise, pick up any terminal, say source si, with demand two or greater.
Let w be an arbitrary vertex adjacent to si such that (si, w) 6∈ F and
w ∈ V \ (S ∪ F ).

a) Case when w is a free vertex: Decrement d(si) by one. Let S′ :=
S ∪ {w} and d(w) := 1. Find P := k-DPC[S′, T |G,F ] and return
P ∪ {(si, Pw)} \ Pw, where Pw is the w-path in P.

b) Case when w is a sink with d(w) = 1: Decrement d(si) by one. Let
T ′ := T \ w and F ′ := F ∪ {w}. Find P := (k − 1)-DPC[S, T ′|G,F ′]
and return P ∪ {(si, w)}.

c) Case when w is a sink with d(w) ≥ 2: Decrement both d(si) and d(w)
by one. Let F ′ := F ∪ {(si, w)}. Find P := (k − 1)-DPC[S, T |G,F ′]
and return P ∪ {(si, w)}.

Lemma 2.2 There exists a vertex w adjacent to a terminal, say a source si, with
demand two or greater such that (si, w) 6∈ F and w ∈ V \ (S ∪ F ).

Proof Suppose, for a contradiction, that such vertex w does not exist, that is, for
any vertex v adjacent to si, (i) v ∈ S, (ii) v ∈ F , or (iii) (si, v) ∈ F . The number of
sources adjacent to si (which satisfies condition (i)) is at most k−2 since d(si) ≥ 2.
Furthermore, the number of vertices v adjacent to si which satisfies conditions (ii)
or (iii) is at most f . Thus, the total number of vertices adjacent to si satisfying
(i), (ii), or (iii) is at most f + k− 2, which implies the degree δ(si) of si is at most
f + k− 2 and δ(G) ≤ f + k− 2. This contradicts to the necessity of f + k ≤ δ(G).
�

Lemma 2.3 Let G be an f -fault unpaired k-disjoint path coverable graph for any
f and k ≥ 1 with f +k ≤ B for some B ≤ δ(G). Then, the f -fault general-demand
k-DPC problem with f + k ≤ B reduces to the f ′-fault unpaired k′-DPC problem
for some f ′ ≥ f and k′ ≤ k with f ′ + k′ = f + k.

Proof The proof is by induction on the sum of surplus demands over all terminals,
D(G). Due to Lemma 2.2, at least one of the three Cases 2(a), 2(b), and 2(c)
in Step 2 of the algorithm is applicable. Notice that in Step 2, the number of
faults plus the total demand of sources remains unchanged. Moreover, the f -fault
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general-demand k-DPC problem reduces to either the f -fault general-demand k-
DPC problem or the (f+1)-fault general-demand (k−1)-DPC problem which have
smaller sum of surplus demands, and eventually reduces to the f ′-fault unpaired
k′-DPC problem for some f ′ and k′ with f ′+k′ = f +k. This completes the proof.
�

Theorem 2.4 Let G be an f -fault unpaired k-disjoint path coverable graph for any
f and k ≥ 1 with f+k ≤ B for some B ≤ δ(G). Then, G is f -fault general-demand
k-disjoint path coverable for any f and k ≥ 1 with f + k ≤ B.

3. Reduction of the Single-Source DPC Problem

A graph G is called f -fault one-to-many k-disjoint path coverable if f + k + 1 ≤
|V (G)| and for any set F of faulty elements with |F | ≤ f , G has a one-to-many
k-DPC for any source s and any set T of k sinks in G \ F such that s 6∈ T . We
begin with a necessary condition for a graph to be f -fault one-to-many k-disjoint
path coverable.

Theorem 3.1 If a graph G is f -fault one-to-many k-disjoint path coverable, then
κ(G) ≥ f+k. Furthermore, if G has f+k+2 or more vertices, then κ(G) ≥ f+k+1.

Proof Suppose κ(G) ≤ f + k − 1. We will show that for some source s, set T of
k sinks, and fault set F with |F | ≤ f , even disjoint paths of type one-to-many
joining s and T do not exist (irrespective of covering G \ F ). We claim G is not
a complete graph; suppose otherwise, then |V (G)| ≥ f + k + 1 by definition and
thus κ(G) ≥ f + k, which is a contradiction. Thus, there exists a vertex cut C of
size f + k − 1 or less. Let X and Y be the vertex sets of two distinct connected
components of G \ C. In case when s ∈ X, C ( F ∪ T , and T ∩ Y 6= ∅, there
exists no path joining s and a sink tj of Y in G \ (F ∪ T \ tj). This implies that
G \ F does not have disjoint paths between s and T of type one-to-many. Thus,
we have κ(G) ≥ f + k. Now, let |V (G)| ≥ f + k + 2. Suppose, for a contradiction,
κ(G) ≤ f +k. It follows that κ(G) = f +k and G is not a complete graph. Thus, G
has a vertex cut C of size f + k and G \C has at least two connected components.
Let s be contained in one component, and let x be an arbitrary vertex contained
in the other component. In case when C = F ∪ T , no fault-free path joining s and
a sink can pass through x. Hence, the proof is completed. �

Let D′(G) denote
∑

tj∈T {d(tj)− 1}, the sum of surplus demands over all sinks.
Similar to the reduction addressed in Section 2, we assume that G is an f -fault
one-to-many k-disjoint path coverable graph, and show that the f -fault single-
source k-DPC problem in G reduces to the f -fault single-source k-DPC problem
with smaller sum of surplus demands over all sinks, and eventually reduces to the
f -fault one-to-many k-DPC problem. For our purpose, it is sufficient to pick up an
arbitrary free vertex w adjacent via a fault-free edge to a sink tj with demand two
or greater and regard it as a virtual sink with unit demand.

Algorithm for the single-source DPC problem
/* It is assumed that G is f -fault one-to-many k-disjoint path coverable. */

(1) If D′(G) = 0, find a one-to-many k-DPC[s, T |G,F ] and return the set P of
disjoint paths.

(2) Otherwise, let tj be any sink with demand two or greater. Pick up an
arbitrary free vertex w adjacent to tj via a fault-free edge.
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(3) Decrement d(tj) by one. Let T ′ := T ∪ {w} and d(w) := 1. Find P := k-
DPC[s, T ′|G,F ] and return P ∪ {(Pw, tj)} \ Pw, where Pw is the s-w path
in P.

Lemma 3.2 Let G be an f -fault one-to-many k-disjoint path coverable graph. Then,
the f -fault single-source k-DPC problem reduces to the f -fault one-to-many k-DPC
problem.

Proof We claim that there exists a free vertex w adjacent to a sink tj with d(tj) ≥ 2
such that (tj , w) 6∈ F . Suppose, for a contradiction, that for every vertex v adjacent
to tj , (i) v is a terminal, (ii) v ∈ F , or (iii) (tj , v) ∈ F . The number of terminals
adjacent to tj is at most k − 1 (one source and k − 2 sinks), and the number of
vertices v adjacent to tj which satisfies conditions (ii) or (iii) is at most f . Thus,
the total number of vertices adjacent to tj satisfying (i), (ii), or (iii) is at most
f + k − 1, which implies δ(tj) ≤ f + k − 1. This contradicts to the necessary
condition of f + k ≤ δ(G) given in Theorem 3.1. Thus, the claim is proved. It is
straightforward to see by induction on the sum of surplus demands D′(G) over
all sinks that the f -fault single-source k-DPC problem eventually reduces to the
f -fault one-to-many k-DPC problem. The proof is completed. �

Theorem 3.3 An f -fault one-to-many k-disjoint path coverable graph is f -fault
single-source k-disjoint path coverable.

4. Disjoint Path Covers in Restricted HL-Graphs

For given two graphs G0 and G1 having the same number of vertices, we denote
by G0 ⊕G1 an arbitrary graph whose vertex set is V (G0) ∪ V (G1) and edge set is
E(G0)∪E(G1)∪E2, where E2 = {(v, φ(v)) : v ∈ V (G0) and φ : V (G0)→ V (G1) is
a bijection}. The classes of hypercube-like graphs (HL-graphs for short), introduced
by Vaidya et al. [18], are recursively defined as follows: HL0 = {K1} and HLm =
{G0 ⊕ G1 : G0, G1 ∈ HLm−1} for m ≥ 1. Then, HL1 = {K2}; HL2 = {C4};
HL3 = {Q3, G(8, 4)}, where C4 is a cycle graph with four vertices, Q3 is the 3-
dimensional hypercube, and G(8, 4) is a recursive circulant whose vertex set is
{v0, v1, . . . , v7} and edge set is {(vi, vj) : i+ 1 or i+ 4 ≡ j (mod 8)}.

The restricted HL-graphs is a subclass of nonbipartite HL-graphs, which is defined
recursively as follows [13]: RHL3 = HL3 \ Q3 = {G(8, 4)}; RHLm = {G0 ⊕ G1 :
G0, G1 ∈ RHLm−1} for m ≥ 4. A graph in RHLm is called an m-dimensional
restricted HL-graph. Many of the non-bipartite hypercube-like networks such as
crossed cube, Möbius cube, twisted cube, multiply twisted cube, Mcube, general-
ized twisted cube, locally twisted cube, etc. proposed in the literature are indeed
restricted HL-graphs. Fault-hamiltonicity of restricted HL-graphs was studied in
[13] as follows. A graph G is called f -fault hamiltonian (resp. f -fault hamiltonian-
connected) if there exists a hamiltonian cycle (resp. if each pair of vertices are joined
by a hamiltonian path) in G \ F for any set F of faulty elements with |F | ≤ f .

Lemma 4.1 [13] Every m-dimensional restricted HL-graph, m ≥ 3, is (m−3)-fault
hamiltonian-connected and (m− 2)-fault hamiltonian.

General-demand disjoint path coverability of restricted HL-graphs is a direct
consequence of Theorem 2.4 and the following theorem on unpaired disjoint path
coverability.

Theorem 4.2 [12] Every m-dimensional restricted HL-graph, m ≥ 3, is f -fault
unpaired many-to-many k-disjoint path coverable for any f and k ≥ 1 with f +k ≤
m− 2.
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Corollary 4.3 Every m-dimensional restricted HL-graph, m ≥ 3, is f -fault
general-demand k-disjoint path coverable for any f and k ≥ 1 with f + k ≤ m− 2.

Now, we consider the problem of constructing single-source disjoint path covers
in restricted HL-graphs. Due to Theorem 3.3, it suffices to construct one-to-many
disjoint path covers. We begin by pointing out the fact that a graph is f -fault
one-to-many 2-disjoint path coverable if and only if it is f -fault one-to-many 1-
disjoint path coverable. Utilizing fault-hamiltonicity of m-dimensional restricted
HL-graphs given in Lemma 4.1, an f -fault one-to-many k-DPC for k = 1, 2 can
be constructed when f ≤ m− 3. It was shown in [11] that an f -fault one-to-many
k-DPC in G0 ⊕G1 can be constructed by using f -fault one-to-many (k − 1)-DPC
and fault-hamiltonicity of Gi, i = 0, 1, as follows.

Lemma 4.4 [11] For f ≥ 0 and k ≥ 3, let Gi be a graph with n vertices satisfying
the following three conditions, i = 0, 1: (a) Gi is f -fault one-to-many (k−1)-disjoint
path coverable, (b) Gi is (f + k − 3)-fault hamiltonian-connected (one-to-many 2-
disjoint path coverable), and (c) Gi is (f +k−2)-fault hamiltonian. Then, G0⊕G1

is f -fault one-to-many k-disjoint path coverable.

Lemmas 4.1 and 4.4 lead to one-to-many disjoint path coverability of restricted
HL-graphs.

Theorem 4.5 Every m-dimensional restricted HL-graph, m ≥ 3, is f -fault one-
to-many k-disjoint path coverable for any f and k ≥ 2 with f + k ≤ m− 1.

Proof The proof is by induction on m. For m = 3, the theorem holds true by
Lemma 4.1. Let m ≥ 4 and let G = G0 ⊕G1 be an m-dimensional restricted HL-
graph, where G0 and G1 are (m − 1)-dimensional restricted HL-graphs. If k = 2,
then f ≤ m − 3 and by Lemma 4.1, G is f -fault one-to-many 2-disjoint path
coverable. Assume k ≥ 3. Since f + k ≤ m − 1, each Gi is (i) f -fault one-to-
many (k − 1)-disjoint path coverable by induction hypothesis, (ii) (f + k − 3)-
fault hamiltonian-connected by Lemma 4.1, and (iii) (f + k− 2)-fault hamiltonian
by Lemma 4.1. Thus, by Lemma 4.4, G is f -fault one-to-many k-disjoint path
coverable. This completes the proof. �

It is worthy of remark that the bound of f+k ≤ m−1 achieved in Theorem 4.5 is
optimal due to the necessary condition of Theorem 3.1. Note that the connectivity
of an m-dimensional restricted HL-graph is m.

Corollary 4.6 Every m-dimensional restricted HL-graph, m ≥ 3, is f -fault
single-source k-disjoint path coverable for any f and k ≥ 2 with f + k ≤ m− 1.

5. Disjoint Path Covers in Proper Interval Graphs

An interval graph is the intersection graph of a family of intervals on the real line,
where two vertices are connected with an edge if and only if their corresponding
intervals intersect. It is a proper interval graph if no interval in the family properly
contains another. Due to [16], proper interval graphs are also referred to in the
literature as unit interval graphs, the intersection graphs of unit-length intervals
on the real line.

An ordering (v1, v2, . . . , vn) of the vertices of a graph G is a consecutive ordering
if for any vertex vi, its closed neighbor N [vi] is consecutive, i.e., N [vi] = {vj : li ≤
j ≤ ri} for some li and ri, where N [vi] is the set of vertices adjacent to vi plus vi
itself. A graph G is said to be k-connected if κ(G) ≥ k.

Lemma 5.1 [5] (a) A graph G is a proper interval graph if and only if G has a



May 23, 2012 15:42 International Journal of Computer Mathematics ”general-demand DPC”

International Journal of Computer Mathematics 9

consecutive ordering. (b) For any positive integer k and any proper interval graph
G of n ≥ k+1 vertices with a consecutive ordering (v1, v2, . . . , vn), G is k-connected
if and only if (vi, vj) ∈ E(G) whenever 1 ≤ |i− j| ≤ k.

We are to characterize unpaired k-disjoint path coverable proper interval graphs.
Recall the necessary condition of Lemma 2.1 saying that when there are no faults,
a graph G should be k-connected and if |V (G)| ≥ 2k + 1, then δ(G) ≥ k + 1.

Lemma 5.2 Let G be a proper interval graph with a consecutive ordering
(v1, v2, . . . , vn). If n ≥ 2k and G is k-connected, then for any set S of k sources and
set T of k sinks such that S ∩ T = ∅ and v1, vn ∈ S ∪ T , there exists an unpaired
k-DPC joining S and T .

Proof The proof is by induction on n. In the base case of n = 2k, every vertex is
a terminal. The consecutive ordering can be seen as a shuffle of source sequence
(s1, s2, . . . , sk) and sink sequence (t1, t2, . . . , tk). That is, we can assume wlog that
p < q if si = vp and si+1 = vq for 1 ≤ i < k and that p < q if ti = vp and ti+1 = vq
for 1 ≤ i < k. Then, (si, ti) ∈ E(G) for every i since, assuming wlog si = vp and
ti = vq with p < q, the set of vertices {vj : p < j < q} to the right of vp and to
the left of vq should be a subset of {sj : j > i} ∪ {tj : j < i} of cardinality k − 1.
Therefore, we have an unpaired k-DPC P = {(si, ti) : 1 ≤ i ≤ k}.

Now, let n ≥ 2k + 1. We claim that there exists a nonterminal vj such that
(v1, vj) or (vj , vn) ∈ E(G). Suppose, for a contradiction, that such nonterminal
vj does not exist. Then, there are k contiguous terminals v2, v3, . . . , vk+1 adjacent
to v1 and there are k contiguous terminals vn−k, vn−k+1, . . . , vn−1 adjacent to vn.
Furthermore, k + 1 < n − k due to the existence of a nonterminal. This implies
there are at least 2k + 2 terminals (including v1 and vn), which is a contradiction.
Assume wlog that vj is a nonterminal adjacent to v1 and v1 is a source. Regarding
vj as a virtual source, we find an unpaired k-DPC P in the subgraph induced by
V (G) \ v1. Then, an unpaired k-DPC of G can be obtained from P by replacing
the vj-path with (v1, vj-path). The proof is completed. �

Lemma 5.3 Let G be a proper interval graph with a consecutive ordering
(v1, v2, . . . , vn). Then, G has a v1-v2 hamiltonian path if either n = 2 and G is
connected or n ≥ 3 and G is 2-connected.

Proof We proceed by induction on n. For the base case of n = 2, G has an obvious
v1-v2 hamiltonian path. Let n ≥ 3 and G be 2-connected. The subgraph induced
by V (G) \ v1 satisfies the condition of this lemma, and thus there exists v2-v3

hamiltonian path Ph in the subgraph. Since (v1, v3) is an edge of G, (v1, P
R
h ) is

a desired path, where PRh is the reverse of Ph, i.e., v3-v2 hamiltonian path of the
subgraph. �

Theorem 5.4 Let G be a proper interval graph with a consecutive ordering
(v1, v2, . . . , vn). Then, G is unpaired k-disjoint path coverable for k ≥ 2 if and
only if G is k-connected and either n = 2k or n ≥ 2k + 1 and (vi, vi+k+1) ∈ E(G)
for every i, 1 ≤ i ≤ n− 2k or k ≤ i ≤ n− k − 1.

Proof Sufficiency. Let vl and vr respectively be the leftmost and rightmost ter-
minals so that S ∪ T ⊆ X where X := {vj : l ≤ j ≤ r}. Since the subgraph of
G induced by X is k-connected, there exists a minimally k-connected subgraph
G′ whose vertex set is X and whose edge set is {(vi, vj) : 1 ≤ |i − j| ≤ k}. By
Lemma 5.2, there exists an unpaired k-DPC P ′ of G′ joining S and T . Now, we
will extend vl-path in P ′ to pass through all the vertices in L := {vj : j < l}. As-
sume L 6= ∅; otherwise we are done. Let the vl-path be (vl, vp, P

′) for some subpath
P ′, where p ≤ l + k. Then (vl−1, vp) is also an edge of G by the condition of this
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theorem. (Note that p ≤ (l−1)+k or p = (l−1)+k+1 and 1 ≤ l−1 ≤ n−2k.) If
|L| = 1, we replace the vl-path with (vl, vl−1, vp, P

′). If |L| ≥ 2, we replace the vl-
path with (vl, PL, vp, P

′), where PL is vl−2-vl−1 hamiltonian path in the subgraph
induced by L from Lemma 5.3. Similarly, we can also extend the vr-path to pass
through all the vertices in R := {vj : j > r}.

Necessity. The k-connectivity condition is from Lemma 2.1. For n ≥ 2k + 1,
suppose there exists i, 1 ≤ i ≤ n− 2k or k ≤ i ≤ n− k− 1, such that (vi, vi+k+1) 6∈
E(G). We show there exists S and T such that G has no unpaired k-DPC joining
S and T . Let S := {vj : i+ 1 ≤ j ≤ i+ k}. Let T := {vj : i+ k+ 1 ≤ j ≤ i+ 2k} if
1 ≤ i ≤ n−2k; let T := {vj : i−k+1 ≤ j ≤ i} if k ≤ i ≤ n−k−1. Then, G\S has
a connected component which contains no sink. This implies there exists no path
joining a source sj and a sink in G \ (S \ sj) that passes through some vertices of
the connected component as intermediate vertices. The proof is completed. �

Remark 1 For any k ≥ 2, a proper interval graph having n > 2k vertices is unpaired
k-disjoint path coverable if the graph is (k+1)-connected. Theorem 5.4 means that
the converse is true if and only if n ≥ 3k − 1.

The class of proper interval graphs is hereditary, i.e., every induced subgraph of
a graph in the class is contained in the same class. Or equivalently, for a vertex
fault set Fv in a proper interval graph G, G \ Fv is also a proper interval graph.
From Theorem 5.4, we can derive a necessary and sufficient condition for a proper
interval graph to be f -vertex-fault unpaired k-disjoint path coverable as follows.

Theorem 5.5 Let G be a proper interval graph with a consecutive ordering
(v1, v2, . . . , vn). Then, G is f -vertex-fault unpaired k-disjoint path coverable for
k ≥ 2 if and only if G is (f +k)-connected and either n = f + 2k or n ≥ f + 2k+ 1
and (vi, vi+f+k+1) ∈ E(G) for every i, 1 ≤ i ≤ n− f − 2k or k ≤ i ≤ n− f −k− 1.

Proof Sufficiency. Let Fv be an arbitrary vertex fault set of G with |Fv| ≤ f . Then,
G\Fv is a proper interval graph and is (f+k−|Fv|)-connected. Let (w1, w2, . . . , wn′)
be the subsequence of the consecutive ordering of G which contains all fault-free
vertices, where n′ = n− |Fv|. Then, the subsequence forms a consecutive ordering
of G \ Fv. To conclude G \ Fv is unpaired k-disjoint path coverable, we will show
that G \ Fv with its consecutive ordering satisfies the condition of Theorem 5.4.
Assume |Fv| = f ≥ 1; otherwise we are done since if |Fv| < f , then G \ Fv is
(k + 1)-connected and if f = 0, then the two conditions of Theorems 5.4 and 5.5
are the same. Then, we have n′ = n− f and G \Fv is k-connected. If n′ = 2k, then
we are done. For n′ ≥ 2k + 1, it suffices to show that (wi, wi+k+1) ∈ E(G \ Fv) for
each i, 1 ≤ i ≤ n′−2k or k ≤ i ≤ n′−k−1. Let vp = wi and vq = wi+k+1. Then, we
have q ≤ p+ f + k + 1 since there are at most f faulty vertices between vp and vq
exclusively. If q ≤ p+f+k, then (vp, vq) is an edge of G\Fv as well as G since G is
(f + k)-connected. For the remaining case of q = p+ f + k+ 1, we have p = i. The
condition of this theorem says that (vp, vq) ∈ E(G) for every p, 1 ≤ p ≤ n− f − 2k
or k ≤ p ≤ n − f − k − 1, which is equivalent to that (wi, wi+k+1) ∈ E(G \ Fv)
for every i, 1 ≤ i ≤ n′ − 2k or k ≤ i ≤ n′ − k − 1. Therefore, G \ Fv is unpaired
k-disjoint path coverable.

Necessity. The condition that G is (f+k)-connected is necessary from Lemma 2.1.
Suppose n ≥ f + 2k + 1 and (vi, vi+f+k+1) 6∈ E(G) for some i, 1 ≤ i ≤ n− f − 2k
or k ≤ i ≤ n− f − k − 1. We will show for some vertex fault set Fv with |Fv| = f ,
G \Fv is not unpaired k-disjoint path coverable. Let Fv := {vj : i+ 1 ≤ j ≤ i+ f}
and (w1, w2, . . . , wn′) be the subsequence of the consecutive ordering of G that
contains all vertices not in Fv. Then, wj = vj for 1 ≤ j ≤ i and wj = vj+f for
i + 1 ≤ j ≤ n − f = n′. In this case, we have (wi, wi+k+1) 6∈ E(G \ Fv) for some
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i, 1 ≤ i ≤ n′ − 2k or k ≤ i ≤ n′ − k − 1. By Theorem 5.4, G \ Fv is not unpaired
k-disjoint path coverable. This completes the proof. �

Corollary 5.6 For an integer B ≥ 2, a proper interval graph G with n ≥ 2B
vertices is f -vertex-fault unpaired k-disjoint path coverable for any f and k ≥ 2
with f + k ≤ B if and only if G is B-connected and either n = 4 or n ≥ 5 and G
is (B + 1)-connected.

A proper interval graph G with n = 4 vertices is not general-demand 2-disjoint
path coverable if κ(G) = 2; the graph is not even one-to-many 2-disjoint path
coverable by Theorem 3.1. Excluding this exceptional case leads to the following.

Theorem 5.7 For an integer B ≥ 2, a proper interval graph G with n ≥ 2B
vertices is f -vertex-fault general-demand k-disjoint path coverable for any f and
k ≥ 2 with f + k ≤ B if and only if G is (B + 1)-connected.

Proof The reduction algorithm of Section 2 cannot be applied directly since it
produces a virtual edge fault in Step 2(c). Instead, to obtain a reduction of f -
vertex-fault general-demand k-DPC problem into f ′-vertex-fault unpaired k′-DPC
problem such that f ′ + k′ ≤ f + k and k′ ≥ 2, we modify Step 2 of the original
reduction algorithm as follows: Pick up any terminal, say source si, of demand
d(si) ≥ 2. Let p := d(si) and let N(si) be the set of neighbors of si. (i) If there
exists a free vertex w ∈ N(si), then apply Step 2(a) of the original algorithm;
(ii) else if there exists a sink tj ∈ N(si) of demand one, then apply Step 2(b) of
the algorithm; (iii) otherwise there exists at least p sinks t1, t2, ..., tp ∈ N(si) of
demand two or greater since |N(si)| ≥ B + 1 ≥ f + k + 1 and there are at most f
faults and k− p sources in N(si). Decrement d(tj) by one for every 1 ≤ j ≤ p. Let
S′ := S \ si and F ′ := F ∪ {si}. Find P := (k − p)-DPC[S′, T |G,F ′] and return
P ∪ {(si, tj) : 1 ≤ j ≤ p}. �

For an edge fault set Fe of a proper interval graph G, G \ Fe is not necessarily
a proper interval graph. So, to deal with edge fault, it needs to take a different
approach from Theorem 5.5. The f -edge-fault unpaired k-disjoint path coverability
of a proper interval graph is open.

6. Concluding Remarks

In this paper, we presented a framework that enables the generalization of
three DPC problems: one-to-one, one-to-many, and unpaired many-to-many. The
general-demand DPC problem reduces to the unpaired many-to-many DPC prob-
lem, and the single-source DPC problem reduces to the one-to-many DPC problem.
As a result, an f -fault unpaired k-disjoint path coverable graph for any f and k ≥ 1
with f + k ≤ B is also f -fault general-demand k-disjoint path coverable for any f
and k ≥ 1 with f + k ≤ B. Furthermore, an f -fault one-to-many k-disjoint path
coverable graph is f -fault single-source k-disjoint path coverable. We obtained some
results on f -fault general-demand/single-source k-disjoint path coverability of re-
stricted HL-graphs and f -vertex-fault general-demand k-disjoint path coverability
of proper interval graphs.
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