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Many-to-Many Disjoint Path Covers in the Presence
of Faulty Elements

Jung-Heum ParkiMember, IEEE Hee-Chul Kim, and Hyeong-Seok Lim

Abstract— A many-to-manyk-disjoint path cover §-DPC) of a  types of many-to-many:-disjoint path problems. In the paired
graph G'is a set ofk disjoint paths joining k sources andk sinks  type, each source should be joined to a specific sink, that;is,
in which each vertex of+ is covered by a path. Itis called gaired  ghoyld be joined ta;. In the unpaired type, each source can

many-to-many disjoint path cover when each source should be o iih04 to an arbitrary sink. The sources and sinks are called
joined to a specific sink, and it is called anunpaired many- . .
terminalsin general.

to-many disjoint path cover when each source can be joined e . L
to an arbitrary sink. In this paper, we discuss about paired Disjoint path cover of a graplt is a set of disjoint paths

and unpaired many-to-many disjoint path covers including their ~covering all the vertices ofs. The problem of finding disjoint

relationships, application to strong hamiltonicity, and necessary path covers is closely related to a well-known hamiltonian path
conditions. And then, we give a construction scheme for paired problem and concerned with the application where the full utiliza-
many-to-many disjoint path covers in the graph Ho© H; obtained  tjqn of vertices is important. The hamiltonian path problem can
from connecting two graphs Ho and H; with |V (Ho)| = |V (H1)| be viewed if f the disioint path cover problem
by |V (Ho)| pairwise nonadjacent edges joining vertices inHo € VIewed as a Specilic case ot Ine disjoint path cover probiem.
and vertices in Hy, where Hy = Go & G1 and Hy = Gs ® G .The disjoint path cover proplem can be extended to a graph
for some graphs G,'s. Using the construction, we show that With some faulty elements (vertices and/or edges). Fault tolerance

every m-dimensional restricted HL-graph and recursive circulant is one of the important measures in networks. Especially, fault-
G(2™,4) with f or less faulty elements have a paired-DPC for  hamiltonicity of various interconnection networks was widely
any f and k > 2 with f + 2k < m. investigated in the literature[14], [16], [17], [27], [32], [34]. A
Index Terms— Fault tolerance, disjoint path covers, intercon- graphG is called f-fault hamiltonian(resp. f-fault hamiltonian-
nection networks, restricted HL-graphs, recursive circulants, connectellif there exists a hamiltonian cycle (resp. if each pair
strong hamiltonicity, fault-hamiltonicity. of vertices are joined by a hamiltonian path)Gn F for any set
F of faulty elements withF'| < f.
Considering all the above versions of disjoint path cover

. . problems, we give definitions for a grapht with a setF of
V ARIOUS interconnection networks were proposed and theity elements.

graph-theoretic properties have been investigated with theirpefinition 1: Given a set oft sourcesS — {s1,82,..., 55}

applications in parallel computing. Among the properties, findingng a set of: sinksT = {t1, to, ..., ¢} in G\F such thatSnT =
parallel paths among nodes in interconnection networks is onegof paired many-to-many-disjoint path covejoining S and7 is

the important problems concerned with efficient data transmigset ofk, fault-free disjoint pathg; joining s; andt;, 1 < j < k,
sion. Usually interconnection networks are represented as graghls cover all the fault-free vertices df.

and parallel paths are studied in terms of disjoint paths in graphspefinition 2: Given a set oft sourcesS — {s1,82,..., 8K}
In this paper, we will use standard terminology in graphs (se@d a set of sinks T — {t1,t2,...,tx} in G\F such thatS N
[2]). T = ), anunpaired many-to-mang-disjoint path coveroining
Let G = (V, E) be an undirected simple graph. A set of pathg and 7 is a set ofk fault-free disjoint pathsP; joining s; and
in G is calleddisjointif they do not share any vertices. In disjointtij, 1 < j < k, with an arbitrary permutatioi, is, .. . , i) of
path problems, one or more source vertices and one or more S{'rﬂ(z ..., k} that cover all the fault-free vertices of.
vertices are given to find disjoint paths between them. Dependingye can think of a situation in an interconnection network
on the number of sources or sinks, there are one-to-one[2ghere k, source-sink pairs are the paired type so that specific
[3], [33], one-to-many[6], [23], and many-to-many disjoint patlyources should be joined to specific sinks, apdsources and,
problems[24], [25], [28]. Among them, the many-to-many disjoindinks are the unpaired type so that they can be freely matched.
path problem is the most generalized one, and will be mainjye call the (k, + k)-disjoint path cover of the mixed type as
discussed in this paper. hybrid many-to-many(k,, k. )-disjoint path cover Hereafter in
For a setS = {s1,s2,...,s;} of k sources and a séf = thjs paper, paired (resp. unpairédPPC refers to a paired (resp.
{t1,t2,...,tx} of k sinks inV(G), the many-to-many-disjoint  ynpaired) many-to-many-disjoint path cover. Similarly, hybrid
path problem is to determine whether there ekistisjoint paths (1, ,,)-DPC refers to a hybrid many-to-marif,, k. )-disjoint
each joining a source and a sink. There pagred andunpaired path cover.

o . Given S and T in a graphG, the problem of determining
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I. INTRODUCTION
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necessary conditions. And then, féfy = Gy ® Gy and H; =
G G2 ® G3, we investigate how paired and unpaired many-to-many
disjoint path coverability ofG;'s and H;'s are translated into
G paired many-to-many disjoint path coverability &f @ H;.
' By applying our result to restricted HL-graphs and recursive

(@) Go ® G1 (b) Ho & Hy circulants, we show that every-dimensional restricted HL-graph
and recursive circulan® (2™, 4) are f-fault paired many-to-many
k-disjoint path coverable for any andk > 2 with f + 2k < m.
The bound of f+2k < m—1"in [28] is improved by one. It also
implies that there exists a hybr{@,, k..)-DPC inm-dimensional
[12] as the paired:-DPC done in [28]. restricted HL-graphs and recursive circulan2™,4) for any k,
Only a few works can be found for many-to-mamdisjoint andk. with k = kp + ku such thatf + 2k < m.
path cover problem withk > 2. Paired k-DPC problems in ~ The organization of this paper is as follows. In the next
restricted HL-graphs and recursive circulants were investigatedsigction, we will address properties @gffault paired, unpaired,
[28], and unpaired:-DPC problems in restricted HL-graphs and@nd hybrid many-to-many disjoint path coverable graphs and their
recursive circulants were studied in [25] and [29], respectiveliglationships. In Section I, the paired many-to-many disjoint
The restricted HL-graphs are known to contain twisted cubes[15pth coverability of o & Hi, where Hy = Go © G1 and
crossed cubes[11], multiply twisted cubes[10]oiius cubes[8], H1 = G2 @ G3, will be developed and applied to restricted
Mcubes[31], and generalized twisted cubes[4]. It was shown tHak-graphs and recursive circulants. Finally, in Section IV, the
both m-dimensional restricted HL-graphs and recursive circulag@ncluding remarks of this paper will be given.
G(2™,4) with f or less faulty elements have a pairedPC for
any f andk > 1 with f + 2k < m — 1, and have an unpaired Il. MANY-TO-MANY DISJOINT PATH COVERS
k-DPC for anyf andk > 1 with f + k < m — 2. Every m- In this section, we discuss about the relationships among many-
dimensional crossed cube; > 5, was shown to have a pairedto-many disjoint path covers of the three types, their applicability
2-DPC consisting of two paths of equal length by laial. in  to strong hamiltonicity, and their fundamental properties. Some
[18]. aspects of paired many-to-many disjoint path covers were ad-
In this paper, we consider a graph with faulty elements whigtressed in [28].
has ak-DPC for arbitraryk sources and: sinks rather than fixed A path in a graph is represented as a sequence of vertices. A
sources and sinks, which is called a many-to-mamjsjoint path v-w path refers to a path from vertexto w, and av-path refers
coverable graph. It is defined as follows. to a path whose starting vertex s
Definition 3: A graph G is called f-fault paired (resp. un-
paired) many-to-manyk-disjoint path coverablef f + 2k < A. Unpaired many-to-many DPC

Fig. 1. Examples of5y & G1 and Ho ® H;.

[V(G)[ and for any set” of faulty elements with | < f, G Given k sourcess, sa,...,s; and sinksti,ts,...,t; in a
has a paired (resp. unpaired)DPC for any sets of k sources graph@ with fault setF, construction of an unpaired-DPC is
and any sef” of k£ sinks inG\F such thatS N7 = 0. easier, in general, than construction of a paitelPC. A paired

Many-to-many disjoint path coverability can also be defined fQr-DPC is, by definition, an unpaireld DPC.
the hybrid type. A grapldx is called f-fault hybrid many-to-many  Proposition 1: An f-fault paired many-to-manyk-disjoint
(kp, ku)-disjoint path coverablef f + 2(kp + ku) < [V(G)| and  path coverable graph ig-fault unpaired many-to-many-disjoint
for any setF of faulty elements withF'| < f, G has a hybrid path coverable.
(kp, ku)-DPC for any set of;, source-sink pairs ankl, sources |t is known from [28] that for anyk > 2, an f-fault paired
and k., sinks of unpaired type. Of course, all the terminals angany-to-manyk-disjoint path coverable graph is alwaysfault
distinct. paired many-to-manyk — 1)-disjoint path coverable. It is a quite

Many interconnection networks such as restricted HL-graphatural question of whether or not the corresponding property
and recursive circular@® (2™, 4) can be constructed by connectingholds true in unpaired many-to-many disjoint path covers. Unfor-
two lower dimensional networks. We represent the constructigmately, the answer is negative even wifea 0 as shown in the
as follows. Given two graphsy, and G; with n vertices following lemma.
each, we denote by, and E; the vertex set and edge set Lemma 1: A complete bipartite grapt<,, m, m > 2, is (0-
of G5, j = 0,1, respectively. LetVy = {vi,va,...,vn} and fault) unpaired many-to-many:-disjoint path coverable. How-
Vi = {w1,we,...,wn}. With respect to a permutatio/ = ever, it is not (-fault) unpaired many-to-mang-disjoint path
(i1,42,...,n) Of {1,2,...,n}, we can “merge” the two graphs coverable for anyt < k < m.
into a graphGy @,s Gy with 2n vertices in such a way that the Proof: Let X, Y be the bipartition sets of<(y, . Since
vertex sefi” = VpUV; and the edge séf = EqUE; U E>, where there arem sources andn sinks in Kp,.m, every vertex is a
Ey = {(vj,w;;)|l < j < n}. We denote byGo © G1 a graph terminal. LetSy and Tx be the set of sources and the set of
obtained by merging7y and G; w.r.t. an arbitrary permutation sinks in X, respectively.Sy. andTy are defined similarly. Then,
M. Here,Go andG; are calleccomponentsf Go@®G1. Fig. 1(a) |Sx| = |Ty| and|Tx| = |Sy|. The subgraph induced ks UTy
shows an example affy ® G1. is a complete bipartite graph and it has a perfect matchifig

In this paper, we discuss about some interesting propert@®snilarly, the subgraph induced b§y U Sy also has a perfect
of f-fault paired, unpaired, and hybrid many-to-many disjoimnatchingM>. M; U M5 constitutes an unpairee-DPC.
path covers from a graph-theoretic point of view, which include Now, we showK, . is not unpaired:-disjoint path coverable
their relationships, application to strong hamiltonicity, and sonfer any k, 1 < k < m. Suppose all the sinks are ifi. Also
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suppose the sources, so,...,s,_1 are in X, ands; is in Y.
Assume there exists an unpairedPC. Everys;-path,1 < i < k,

in the k-DPC has even number of vertices, and thus has the same
number of vertices inX andY. But the s;-path should have one
more vertex inY” than in X, which contradict4 X | = |Y|. [ |

B. Strong hamiltonicity

Many-to-many disjoint path coverability is closely related to
hamiltonicity. Whenk = 1, an unpaired:-DPC is equivalent to a

t

@ [N(@@) n () [N@)NN(y)|=1
N(y) =2

g y

7

pairedk-DPC by definition. Also, the-DPC is a hamiltonian path N, f\xz Ry,ﬁyz yz
~N——

joining a source and a sink. It was known that for a grépto be

f-fault hamiltonian-connected, it is necessary that §(G) — 3, (@ N@)NN(y) =0 (d) N=)NN(y) =0

wheres§(G) is the minimum degree af. andR # 0 andR =0
Proposition 2: The following statements are equivalent. Fig. 2. lllustration of the proof of Theorem 2.
(&) A graphG is f-fault paired many-to-manyt-disjoint path
coverable.
(b) A graphG is f-fault unpaired many-to-many-disjoint path ) . L
coverable. Lemma 2: [28] If G is f-fault paired many-to-mank-disjoint

(c) A graphgG is f-fault hamiltonian-connected. path coverable, them(G) > f + 2k — 1, where x(G) is the

The problem of finding a hamiltonian path/cycle in a grapﬁonneCt'V'tY ofG. . . . N .
passing through all the edges in a given set of prescribed edgedh€re exists a graph in which equality of the condition given
of the graph was considered in the literature. For hypercubd®-€mma 2 holds true for somgandk. A complete graph
hamiltonian paths with prescribed edges and hamiltonian cycl§éfh four vertices is such a graph fgr= 0 andk = 2. However,

with prescribed edges were studied in [9] and [5], respectively1€0rem 2 shown below is suggestive of room for improvement

In [28], the construction of a hamiltonian path/cycle passinfy he necessary condition of Lemma 2.
Theorem 2: With the unique exception oKy, no 3-regular

through prescribed edges using a paired many-to-miaByPC - ! o
was suggested. It was shown thatifis f-fault paired many-to- 9raph iso-fault paired many-to-mang-disjoint path coverable.
manyk(> 2)-disjoint path coverable, then for any fault sewith ~ Proof: Let G be an arbitrany-regular graph, which is not
|F| < f and for any vertices, ¢ and any sequence of pairvvise'somorph'c toKy. Then, the number of vertices @ is even and
nonadjacent — 1 edges((z1,1), (z2,92), - .., (Ts_1,Yk_1)) in at leasts. Let z andy be two vertices adjacent to each other such
G\F such thats # z;,y; andt # z;,y; forall 1 < i < k — 1, tha_it |N(xz) N N(y)| is the _max.imum. possible. Her&/(v) is the
there exists an-¢ hamiltonian path inG\ ¥ that passes through Neighborhood set of, which is defined agw|(v,w) € E(G)}-
the edges in the order given. Thet hamiltonian path passesL€t 2 = V(G\(N(z)UN(y)). If [N(z)NN(y)| = 2, we are done
through the edgéz;, y;) from z; to y;, that is, we can assign thedue to ITemma 2. Observe in this case tNdtr) NN (y) is a vertex
direction of how to pass through the edge. cut of size2 and thus<(G) < 2. See Fig. 2. iN(z)NN(y)| =1

Given a single prescribed edge y), we can find a hamiltonian (Bl > 1), we letz € N(z) N N(y), N(z) = {z,y,21} and
path passing through the edge using an unpairddPC by N(y) = {z,x,yl}. It is straightforward to check that there does
Theorem 1 in the following. The difference in this constructiofit €xist @ paire@-DPC for {s1,¢1} = {z,z1} and {s2, 2} =
of hamiltonian path compared with that using a paizedPC is {Zﬁ?l}-
that we cannot assign the direction of how to pass through theFinally, we assumeN(z) N N(y) = 0, and let N(z) =
edge. That is, we cannot force thet hamiltonian path to pass {¥: 21,22} @and N(y) = {z,y1,42}. If R # 0, there is no paired
through the edge from to y, or vice versa. 2-DPC for{s, 11} = {z1,22} and{sz, t2} = {y1,92}. It R =10,

Theorem 1: If G is f-fault unpaired many-to-mang-disjoint W& have[V(G)| = 6 and (z;,y;) € E(G) for all 1 <5 < 2.
path coverable, then for any fault setwith |F| < f and any Note that(zi,z2), (y1,y2) ¢ E(G) by the choice ofr andy. The
verticess, t and edge(z, y) such that{s, ¢} N {z,y} = 0, there graph is |somor'ph|c tg 'a.complete b|partllse;,53. It was shown
exists ans-¢ hamiltonian path inG\F that passes through thent t0 be unpaired-disjoint path coverable in Lemma 1, and
edge(z, y). thus it is not paire@-disjoint path coverable. This completes the

Proof: There exists an unpairez:DPC joining {s,t} and Proof. . o =

{z,y} in G\F. Let P, and P, be thes-path and thet-path in In terms of connectivity and the minimum degree, necessary
the unpairec2-DPC, respectively. Ther(Ps, P[%) is the desired conditions for a graplt to be f-fault unpaired many-to-many
hamiltonian path. HereP[ is the reverse of the path;. m k-disjoint path coverable can be denvgd as follows.

Corollary 1: If G is f-fault unpaired many-to-marg-disjoint ~ Theorem 3: Let G be anf-fault unpaired many-to-mank/(>
path coverable, then for any fault setwith |F| < f and any 2)-disjoint path coverable graph, thex() > f+k. Furthermore,
two nonadjacent edgés, w) and(z, y), there exists a hamiltonian if £(G) = f + k, then for any vertex cut’ of size f + k, the

cycle in G\F that passes through both edgesw) and (z,y). ~ number of vertices contained in apy- 1 connected components
of G\C is strictly less thark, wherep is the number of connected

components of7\C.
Proof: Supposex(G) < f + k — 1. G is not isomorphic
A necessary condition for a graghto be f-fault paired many- to a complete graph; suppose otherwiSe(G)| > f + 2k by
to-manyk-disjoint path coverable was studied in [28] as followsgefinition andk(G) > f + 2k — 1, which is a contradiction. Thus,

C. Necessity
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there exists a vertex cuf' of size f + k — 1 or less. LetX be guess that there exists a graph in which equality holds true for
the vertex set of the smallest connected componei\i@ and somey, kp, andk,,. However, as shown in the following theorem,
let Y be the vertex set of all the other connected componentke situation is worse than expected.
If |C| < f, letting the fault setF” = C', we have a disconnected Theorem 4: Let k, > 1. If a graphG is f-fault hybrid many-
graph G\F. It is obvious that for some set$ of sources and to-many(k,, k., )-disjoint path coverable, thet(G) > f+2k—1,
T of sinks, there exists no unpairddDPC joining S and 7. wherek = kp + kuy.
Assume|C| > f. Let F' be an arbitrary subset ¢f vertices inC. Proof: Suppose? is f-fault hybrid many-to-manyky, k., )-
If [Y| >k, weletT CY and letS be a set such thaf O C\F  disjoint path coverable and(G) < f + 2k — 2. Then,G is not a
and SN X # §. Then, there exists no fault-free path joining @omplete graph; suppose otherwise, we hai@) = |V (G)|—1 <
source inX and a sink inY” without passing through any sourcef + 2k — 2, which contradictyV (G)| > f + 2k. There exists a
in C. Finally, we assumgY’| < k. We let all the vertices irY”  vertex cutC of size f +2k — 2 or less. If a source; and its pair
and anyk — |Y'| vertices inC'\F' be sinks, and les' be any set sink ¢; are placed in different connected componentsGar,
of k fault-free vertices such thaf N T = . In this case, the and if every vertex inC' is either a faulty vertex or a terminal
number of vertices irC'\ I’ which are not contained ifi’ is less (other thans; and¢;), then everys;-t; path should pass through
than|Y'| since|C\F| < k — 1. Thus, not every sink i’ can be a faulty vertex or a terminal as an intermediate vertex. This is a
joined to a source by a fault-free path. Therefore, it was provedntradiction. []
thatx(G) > f + k.

Supposex(G) = f + k and there is a vertex cuf' of size
f + k such that the seY” of vertices contained in some— 1

connected components 6f\C' has at leask vertices. LetX = It was shown in [28] that everyr-dimensional restricted HL-
V(G)\(CUY). X is the vertex set of a connected component Qfraph and recursive circulatt(2™, 4), m > 3, are f-fault paired
G\C. We let " C C be a fault set withF| = f. For S = C\F' " many-to-manyk-disjoint path coverable for any and k > 1
and anyT’ C Y with |T| = k, there exists no unpairedDPC  \ith f 1 2k < m — 1. Both graphs are of degree and havex™
joining S and T". No path joining a source and a sink can pasgrtices. Their connectivities are equal to degredhe necessary
through a vertex inX as an intermediate vertex. Thus, we havggndition given in Lemma 2 say§%-2k < m-1.” In this section,
the theorem. B \ve construct ary-fault pairedk-DPC for anyf andk > 2 with

Notice that equality in the necessary conditions6t:) > f + | 9 < m in m-dimensional restricted HL-graphs and recursive
k given in Theorem 3 holds true in a complete bipartite gl’aﬂhrcu|amg(2m74), m > 3.

Kim,m, m > 2, for f =0 andk = m, by Lemma 1. The bound onf + 2k is improved by one as compared with

Lemma 3: Let & be an f-fault unpaired many-to-man¥(> 28], Thus, the gap between the bound achieved and the bound
2)-disjoint path coverable graph with+ 2k +1 or more vertices. + 1 of necessity is just one. Arf-fault paired many-to-many
Then,5(G) > f+k+ 1. k-disjoint path coverable graph is alwaysfault hybrid many-

Proof: Suppose)(G) < f + k. By Theorem 3, we have o many (k,,, k,)-disjoint path coverable provided, + k. = k.
§(G) = K(G) = f + k. There exists a vertexin G whose degree Thgrefore, the gap between the boundfaf 2k for hybrid many-
is equal to5(G). The neighborhood se¥(v) of v forms a vertex o_many disjoint path covers and the bound of necessity given in
cut of size f + k. In G\N(v), there is a connected componenihegrem 4 is one also. On the other hand, it has been shown in
consisting of the vertex only. Therefore, the number of vert|ces[25] and [29] that bothm-dimensional restricted HL-graphs and
in all connected components buis at leasts, which contradicts G(2™,4), m > 3, are f-fault unpaired many-to-mank-disjoint
Theorem 3. This completes the proof. path coverable for any andk > 1 with f+k < m—2. Interesting

enough, the gap for unpaired many-to-many disjoint path covers

D. Hybrid many-to-many DPC is also one. Refer to Lemma 3.

When k, = 0, a hybrid (kp, k,)-DPC is equivalent to an Let Hy = Go & G and H; = G2 & G3. Here,Gy and G are
unpairedk,-DPC, and whenk, = 0 or 1, it is equivalent to calledsubcomponentsf Hy @ H;. The main problem studied in
a paired(ky, + k., )-DPC. By definition, a pairedk, + k., )-DPC is this section is how paired many-to-many disjoint path coverability
a hybrid (kp, k.)-DPC, and a hybridky, k.)-DPC is an unpaired and unpaired many-to-many disjoint path coverability @fs
(kp + ku)-DPC. and H;'s are translated into paired many-to-many disjoint path

Proposition 3: (a) An f-fault paired many-to-mang-disjoint coverability of Hy & H;. To achieve simpler construction, we
path coverable graph ig-fault hybrid many-to-many(kp, k,)- make an assumption that each has 2m~2 vertices and is of
disjoint path coverable for ank, andk, with k = kp + ku. degreen—2. Thus,H; has2™ ! vertices and is of degree — 1.

(b) An f-fault hybrid many-to-manyk,, k., )-disjoint path cover- The main theorem will be stated as follows.
able graph isf-fault unpaired many-to-mangk, + k. )-disjoint Theorem 5: Let m > 5. Let G;, i = 0,1,2,3, be a graph of
path coverable. degreem — 2 having 2™~ 2 vertices. Suppose each; is (a) f-

Recall that a necessary condition for a grapho be paired fault paired many-to-mank-disjoint path coverable for any and
many-to-manyk-disjoint path coverable i&(G) > f+ 2k —1, k > 2 with f+ 2k < 6(G;) and (b) f-fault unpaired many-to-
and that a necessary condition f6fr to be unpaired many-to- manyk-disjoint path coverable for any andk > 1 with f+k <
many k-disjoint path coverable is(G) > f + k. For each of the §(G;) —2. Let Hy = Go ® G1 and H; = G2 @ G3. Furthermore,
two conditions, there exist a graph satisfying equality for sgimewe suppose eacH; is (c) f-fault paired many-to-mang-disjoint
and k. One might expect that for a gragh to be f-fault hybrid path coverable for any and k& > 2 with f + 2k < 6(H;) and
many-to-many(ky, k.. )-disjoint path coverable, it is necessary thafd) f-fault unpaired many-to-mank-disjoint path coverable for
k(G) > f + 2kp + ku + ¢ for somec = 0 or —1, and one might any f andk > 1 with f + k < §(H;) — 2. Then, Hy & H; is

I11. CONSTRUCTION OFPAIRED DISJOINT PATH COVERS
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S

f-fault paired many-to-many-disjoint path coverable for any s S Q & & 6L &
andk > 2 with f + 2k < §(Hy @ Hy) = m. o o @ij\?x
t, t ot G Uy by 0y
|

Proof of Theorem 5 will be addressed in the next subsection.

And then, the theorem is applied to the construction of dault P 5y —11=
pairedk-DPC of restricted HL-graphs in Subsection I1I-B and of 5 fj ’ ”%Vb
l‘r Lt

recursive circulantz(2™,4) in Subsection IlI-C.

(@ ki +k2>1 (b) k1 + k2 =0

A. Proof of Theorem 5 i ) ]
Fig. 3. lllustration of Procedure PairedDPC-A.

Given a fault setF’, a set ofk sourcesS = {si,s2,...,5%},
and a set ofk sinksT = {t1,t2,...,t;} in a graphG, a paired
many-to-manyk-disjoint path cover joiningS and T in G\F' is Procedure PairedDPC-A(H, & Hj, S, T, F)
denoted byk-DPCl{(s1,t1), (s2,12), .- ., (sk, t)}|G, F]. We areé . ypqer the condition ofc; > 1 or fo < f — 1. See Fig. 3. ¥/
to construct &-DP{(s1, t1), (52, 2), - . (sk, L)} Ho & Hy, F]) 1) Pick upk» free edges joining vertices i, and vertices
for any givenF with |[F| < f, S andT with |S| = |T| =k > 2 in H,. Let the free edges br;,y;), j € I», with z; €
such thatf + 2k < m. L 3 Yi) ) &2 J

V(Hyp).
Fy and Fy denote the sets of faulty elements i, and . i Y Y
Hj, respectively, and®, denotes the set of faulty edges joining 2) Z?IdH(()k(IJ’;]— k2)-DPQL(s;, 45)17 € ok U {(sjoz5)li €

vertices inHy and vertices inH1, so thatF = Fy U F} U Fy. Let
> 1

fo = |Fol, fi = |F1|, and f = |F,|. We also denote by; the 3) Casekn + k2 > 1 ‘ ,

number of source-sink pairs if;, i = 0,1, and byk; the number a) Find (k1 + k2)-DPC{(s;,1;)lj € 11} U{(y;, )17 €

: : I} Hy, F1).
of source-sink pairs betwedii, and H;. We assume w.l.0.g. that 25148, 71
P ! g b) Merge the two DPC's with thé, free edges.

ko > k1, and if kg = k1, fo > f1. 4) Casek; + ks = 0:

a) Let (u,v) be an edge on some path in thg + k2)-
DPC such that all the, (u,u), v, and(v, v) are fault-
free.

We let Iy = {17 2,... ,k()}, Iy = {k:() + 1,ko+2,...,ko + kg},
andl; ={ko+ko+1,ko+ka+2,...,ko+ka+ki}. We assume
that {s;,t;l7 € Io} U {s;|lj € I} C V(Ho) and {s;,t;|j € - _
Il}U{tj|j€IQ}§V(H1). b) FlndH[u,’U|H1,F1]. . -

We have|F| < f, k = ko + ki + ko > 2, and f + 2k < c) M.erge the (ko + k2)-DPC anq the hamiltonian path
m. Observe that a paired many-to-makwgisjoint path cover in W_'th edges(u, u) and (v, v). Discard the edgéu, v).
Ho @ H, with a virtual fault set 7 U F/, where F’ is a set of  Leémma 4:Whenk; >1or fo < f—1, Procedure PairedDPC-

A constructs anf-fault k-DPC.

arbitrary m — 2k — |F| fault-free edges, is also a paired many* X ) .
to-many k-disjoint path cover inHy @ H; with the fault setF. Pro?f: We.clalm that thek; free edges in S.tep 1 exist. There
Thus, we can assume are2™~ candldgte free edges arfot 2k blocking elemer)tsj( .
faults and2k terminals). The number of nonblocked candidates is
f+2k=m and|F| = f. at leas2™ ! — (f +2k) = 2™t —m > m > ko for anym > 5.
. . o Thus, the claim is proved. Thigo + k2)-DPC in Hy exists when
By the condition .(d), eact; is (m — 4)-fault ham!lton!an- ko+ke > 2;if k1 > 1, we havefy +2(ko + ko) < f+2(k—1) <
connected, or equivalently(f + 2k — 4)-fault hamiltonian- m—1,andif fo < f—1, we havefo+2(ko+k2) < (f—1)+2k <

connected. Sincex > 5 andk > 2, we have that m — 1. Whenkg + ky = 1, the (ko + k2)-DPC is a hamiltonian
H; is 1-fault hamiltonian-connected and path between two vertices iffy. The hamiltonian path exists
f-fault hamiltonian-connected. since Hy is f-fault hamiltonian-connected anfd < f. Similarly,

) ] ) we can show the existence ¢f; + k2)-DPC in Step 3(a) and
Hereafter in this section, qgﬁ_-fault k-DPC _re_fe_rs 0 anf-  the hamiltonian path in Step 4(b). We claim the edgev) in
fault paired many-to-mang-disjoint path cover joining the set of gtepy 4(a) exists. There are at le&8(Ho)| — fo — k candidate
sources and the set of sinks. There are four cases, Cases | thrQy@lbs “and at most, + f» elements can block the candidates.

V. Since each element blocks at most two candidates, the number of
Case l:ky >10r fo < f—1. nglrlbllocked cand|d5}qg(isl|s at led®t( Ho)| — fo—k—2(f1+ f2) >
In this case,Hy is fo-fault paired many-to-manyky + k2)- ;4_%— k—2f > 2 —2m > 6 for any m > 5. Note thEt
=m.

disjoint path coverable. By the assumptionigf > &y, if k1 +
ke > 1, Hy is fi-fault paired many-to-manyk; + ko)-disjoint Case Il: k1 =0, fo = f, ko > 1, ko > 1, and for somez € I,
path coverable. For a vertexin Hy & H;, we denote by the s, is not a terminal.
vertex adjacent t@ which is in a component different from the All the sources and all the faulty elements, if any, are contained
component in whichy is contained. in Hy. Notice thatH, may not befy-fault many-to-many(kg +
Definition 4: A vertexv is calledfreeif v is fault-free and not k-)-disjoint path coverable sincg + 2(ko + k2) = f + 2k £
a terminal, that isy ¢ F andv ¢ SUT. An edge(v, w) is called m — 1. Nevertheless, i > 3, there always exists affy + 1)-
freeif v andw are free andv,w) ¢ F'. fault (ko + k2 — 1)-DPC in Hy with s, being avirtual fault. The
We denote byH [v, w|G, F] a hamiltonian path ir?\ F joining (ko + k2 — 1)-DPC (instead of ko + k2)-DPC) can be utilized to
a pair of fault-free vertices andw in a graphG with a fault set construct anf-fault k-DPC in Hy & H;. In fact, (sq, so) plays a
F, that is,1-DPC{(v,w)}|G, F]. role of the free edge fos.-t. path.
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Fig. 5.

When k = 2, this approach will not be applied since th
existence of arffy + 1)-fault (kg + k2 — 1)-DPC, or equivalently
an (fo + 1)-fault hamiltonian path inf, is not guaranteed. We
consider the subcase = 2 first, as shown in the following

Procedure PairedDPC-B. The procedure is applicable for the c

k1 =0, fo = f, andkyg = ko = 1, regardless of whether the
$3, 2 € I, is a terminal or not. It utilizes fault-hamiltonicity of

S; 1

S,
©)
O o

S, Ss

o ©»\T‘

sl
uypo v

|
ME fV f?gyl l‘zjy
12

lllustration of Procedure PairedDPC-D.

Fig. 6.

Procedure PairedDPC-C constructs fafault k-DPC.

Proof: The existence oks — 1 free edges can be proved in
the same way as in the proof of Lemma 4. Tke+ k2 —1)-DPC
exists sincefo + 1+ 2(kg+ ko —1)=f+14+2(k—1)=m—1.
The existence oky-DPC is obvious. ]

Case lll: k1 =0, fo = f, ko > 1, eitherks =0 or ks > 1 and
for everyj € I, s; is a terminal.

This is one of the hardest cases. Apfault paired(kg + k2)-
disjoint path coverability off; is not guaranteed. The construc-
tion of an f-fault k-DPC relies on the construction ¢t — 1)-
DPC in H; or whenf > 1, k-DPC in Hy. Notice that ifv is a

Sree vertex or a terminal ifs;,tj]7 € I}, theno is always a

free vertex. We consider the subcdse > 2 first. In this case,
the fault-hamiltonicity ofHy and the pairedk — 1)-disjoint path
coverability of H; are employed.

ase

Procedure PairedDPC-DH & H1,S,T, F)
/* Under the condition ofk; = 0, fo = f, ko > 2, and either

componentsi, and H;. Its correctness is straightforward sincekz = 0 or k2 > 1 ands; is a sink for everyj € I>. See Fig. 6. */

eachH; is f-fault hamiltonian-connected andfault hamiltonian-
connected.

Procedure PairedDPC-BHy & H1, S, T, F)
/* Under the condition ofk; =0, fo = f, andky = ko = 1. See
Fig. 4. */
1) Regardings; as avirtual free vertex, find a hamiltonian path
P, = ];[[Sg,tﬂffo7 Fo]. Let P, = (s2, Pw,w, s1, P{,tl).
2) Casew # to:
a) Find a hamiltonian patt;, = H[w, t2|H1, ).
b) Let P, = (Sl,P{,tl) and P, = (SQ,Pw7’lU,P;L).
3) Casew = to:
a) Pick up an arbitrary edg@:, v) on Py, with u,v # w.
b) Find a hamiltonian patt®; = H{[u, v|H1, {t2}].
c) Let P = (Sl,Pll,tl) and P, = (s2, Pw,w,t2), and
then replace the edge, v) with (u, P;,v).

Procedure PairedDPC-CH, ¢ H1,S,T, F)

/* Under the condition of; =0, fo = f, ko > 1, k2 > 1, k > 3,
and there exists a soureg, a € I, with s, being not a terminal.
See Fig. 5. */

1) Pick upks—1 free edges joining vertices iH, and vertices
in Hy. Let the free edges ber;,y;), j € I2\a, with z; €
V (Hp).

Regarding s, as avirtual fault, find (kg + ko — 1)-
DPC{(s;,t;)17 € Lo} U{(sj,x;)|j € I2\a}|Ho, FoU{sa}].
Find k2-DPQ{(sa,ta)} U {(y;,t;)ls € I2\a}|H1,0].
Merge the two DPC’s with(s,, s,) and theks — 1 free
edges.

Lemma 5: Whenky =0, fo = f, ko > 1, ke > 1, k > 3, and
there exists a source,, a € I, with s, being not a terminal,

2)

3)
4)

1) Pick up k. free edgegx;,y;), j € I2, with z; € V(Hp)
andy; € V(H;) such thai(s;, z;) is an edge and fault-free.
Regardings; and¢; asvirtual free vertices, find a hamil-
tonian path H{se, to|Ho, Fo U F' U F"'], where F/ =
{sj,zjli € I} and F" = {s;,t;]5 € Ip\{1,2}}. Here,
F’ and F” arevirtual fault sets. Let the hamiltonian path
be (SQ,Pu,u,Sl,Pll,tl,’U,Pv,tQ).
Find (ko + ks — 1)-DPC{(y;,1;)]j € L} U {(55,5)]j €
Io\{1,2}} U {(z,2)}| Hy, 0.
Merge the hamiltonian path and the DPC with
{(sj ey y)li € o}y {(s5:5)): (1, 5)li € To\{1,2}},
and {(u, u), (v,v)}. Discard edge$si,u) and (¢1,v).
Lemma 6: Whenk; =0, fo = f, ko > 2, and eitherky = 0
or k; > 1 and s; is a terminal for everyj € I, Procedure
PairedDPC-D constructs aftfault k-DPC.

Proof: For eachj € I, we can pick up a free edde;, y;)
one by one since there algHy) = m — 1 candidates and at
most f 4+ 2(k — 1) = m — 2 blocking elementsf faulty elements,
2ko terminals,ko — 1 sources, and, — 1 free edges picked up).
The hamiltonian path iy exists sincefy + 2(kg — 2) + 2ks =
f+ 2k —4=m — 4. Obviously, the(ky + ko — 1)-DPC exists in
Hi. |

We come to the case th&t = 0, fo = f, ko = 1, and either
k2 = 0orky > 1 ands; is a terminal for everyj € I». By
the assumption of > 2, we havek, > 1. Furthermore, the case
ko = 1 was already considered in Procedure PairedDPC-B, and
thus we assuméy > 2. Therefore, we havé > 3 andm > 6.
Remembet, € V(Hy) andt¢; € V(H,) for all j > 2. There are
two procedures depending on whetlfer 1 or not. For the case
f > 1, we utilize the fault-hamiltonicity offfy and the0-fault
paired k-disjoint path coverability off;.

2)

3)

4)
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Fig. 7. lllustration of Procedure PairedDPC-E. s, is a free vertex for some terminal for everyi € I,
a €l

. Fig. 8. lllustrati f P d PairedDPC-F.
Procedure PairedDPC-E{Hy @ H1, S, T, F) 9 ustration of Frocedure Faire

/* Under the condition ofc; =0, fo = f > 1, ko = 1, ko > 2,
ands; is a sink for every;j € I,. See Fig. 7. */

1) Pick upky — 1 free edgeS(z;,y;), j € I2\2, with z; € a) Pick up two freededge$x2,y2) and (z3,y3) with
V(Hy) andy; € V(H1) such that(s;,z;) is an edge and 2,23 € V(Go) andyz, ys € V(H1).
fault-free. b) Find 2-DPC{(s2, z2), (s3,23)}|Go, 0].

2) Regardingss as avirtual free vertex, find a hamiltonian path _C) Find Hs1, t1|G1, 0].
P, = H[817t1|H0, Fy UF/], whereF’ = {Sj, l’J|] S 12\2}. 3) Find kQ'DPq{(yj’ tj)|.j E. 12}|H17 Q)]
3) There exists a free vertex, such thaf(s, z2) is an edge of ~ 4) Merge the two DPC’s with edges:;, y;), j € I.
P;,. Removingss andzy from Py, results in two subpaths Lemma 8: Whenk; =0, f =0, kg = 1, k2 > 2, ands; is

(51, Py, u) and (v, Py, t1). Letys = 2. a sink for every; € I, Procedure PairedDPC-F constructs an
4) Find (ko + k2)-DPC{(y;, t;)|j € I2} U {(@,v)}|H1,0]. f-fault k-DPC. . _ . .
5) Merge the hamiltonian path and the DPC with Proof: We first claim the existence af, in Step 1(a). When
{(sj,24,y)|7 € I} and {(u,a), (v,7)}. kK > 1,leta € I, andb € 4. Then,s, and s, are sources

Lemma 7: Whenk; =0, fo = f > 1, ko = 1, k2 > 2, ands; contained inGy andG1, respectively. There ama — 2 candidates
is a sink for everyj € I, Procedure PairedDPC-E constructs afPr #a in Go and at most2ko + (k2 — 1) blocking terminals.
f-fault k-DPC. Since2kg + (k2 — 1) = k = m — k < m — 3, there exists such

Proof: The existence of, — 1 free edges can be proved ind Vertexxz,. When k3 = 0 and s, is a free vertex for some
a very similar way as in the proof of Lemma 6. The hamiltoniafi € 2. let s, be an arbltrary source i6g with b € I2\a. By the
path P,, exists sincefy + 2(ko — 1) = f + 2k — 4 = m — 4. The structure ofGy & G1, (sp, Sa) € E. Letting x4 = g, the claim
(ko + k2)-DPC exists inH; since2(kg + ko) =m — f < m — 1. is proved. The existence of thg — 2 free edges in Step 1(b) is
m Straightforward. The&kg + k2 — 1)-DPC in Step 1(c) exists since

Finally, we havef = 0. We will show that for ‘some’k, free 1+ 2(ko +k2 —1) =2k —1=m — 1. By the choice ofr4, z; is
edges joining vertices i, and vertices infl;, there exist two @ free vertex different fronx,. Thus, a(ko + k2)-DPC in Hy is
DPC's: a(ko + k2)-DPC from sources to the union of simk and constructed successfully in Step 1Lklf = 0 ands; is a terminal
endvertices of the free edges Hy, and ko-DPC between sinks for everyi € I3, we can see that, = 2 and {s2, s3} = {s1,#1}.
and endvertices of the free edgesfih. The construction of a Since Gy is 0-fault paired many-to-manyk — 1)-disjoint path
(ko + k2)-DPC in Hy is a little complicated. It consists of two coverable and-, is hamiltonian-connected, @ + 2)-DPC can
subcases, as shown in Steps 1 and 2 of the following procedd®.constructed in Step 2. Existence of #eDPC in Step 3 is

For a vertexv in Gy (resp.G1), & denotes the vertex iy, due tokz < k, precisely speaking, due s = 2(k—1) <m—1.
(resp.Go) which is adjacent ta. Let 12 = {j € Io|sj € V(Go)} This completes the proof. u
andly = I>\I3, and letk; = |I3| andky = |15, sothatky+k3 =  Case IV: ky = k and fo=1.

ka. It is assumed w.l.o.g. that, > kj. To construct anf-fault k-DPC in this case, we mainly utilize

Procedure PairedDPC-FH, & H1,S,T, F) the unpaired many-to-many disjoint path coverability offy
/* Under the condition ofc; =0, f =0, ko = 1, kg > 2, ands; and thepaired many-to-many disjoint path coverability and the
is a sink for everyj € I». See Fig. 8. */ hamiltonicity ofsubcomponentS, andGs. By virtue of unpaired
1) Caseky > 1 or kY = 0 and s, is a free vertex for some many-to-many disjoint path coverability, we are able to keep out
ace I of some troublesome subcases although this is one of the hardest
cases.

a) Let z, be a free vertex iy such that(sq,z.) € F

However, there is an exceptional case in which we cannot
and (sy, zq) ¢ E for somea,b € I. P

: ~ N . apply the unpaired many-to-many disjoint path coverability of
b) Pick upk; 2 free edgesz;, y;), j € [2\{a, b}, with Hy, the case ofk = 2. We consider the exceptional case
z; € V(Ho) andy; € V(H,) such thatz; # o, first in the following Procedure PairedDPC-G. Its correctness is
) Find (ko + ko — 1)-DPC{(s1,t1), (5, 2a)} U . ng . 2
(55,2 € I\{a,b}}|Ho, F'], where F' = {sa} straightforward since eacH; is f-fault hamiltonian-connected
7% I I ’ - af- _ H Ao _dicini
Let the s,-path in the DPC bésy, P, y, za)- and 0-fault paired many-to-mang-disjoint path coverable.

d) Let sq-zq path be (sq,zq) and let sy-z;, path be Procedure PairedDPC-GHy @ H1,S,T, F)

(sp, P',xp). Let yq = 24 andyy, = . /* Under the condition ofts = k =2, fy = f. See Fig. 9. */
2) Caseky =0 ands; is a terminal for every € I5: 1) Find H]s1,s2|Ho, Fp]. Let the hamiltonian path be

[* ko =2, 52,83 € V(Gp), andsy, t1 € V(Gy) */ (s1, Pu,u,v, Py,s2) for some edge(u,v) with {a,o} N
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Fig. 9. |lllustration of Procedure PairedDPC-G.
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Fig. 10. lllustration of Procedure PairedDPC-H.
{t1,t2} = 0.
2) Find 2-DPC{(a, t1), (v,t2)}|H1, 0]

3)

Merge the hamiltonian path andDPC with edgeu, u)
and (v, 7).

We assumeé: > 3 and thusm > 6. For a vertexv in Go (resp.

G3), b denotes the vertex i3 (resp.G2) which is adjacent to

v. We letI; = {j € LI|t; € V(G2)} and Iy = I>)\I3, and let
ky = |I5| and k4 = |I4|. We assume w.l.o.g. either< k) < ki
or kb > ko — 1.

Procedure PairedDPC-HH @ H1, S, T, F)
/* Under the condition ofks = k > 3, fo = f,andf > 1 or
2 < kb < kY. See Fig. 10. */

1

2)

3)
4)

5)

Pick up k2 free edgegz;,y;), j € I2, With z; € V(Hp)
andy; € V(G2) such thaty; is not a terminal.
Find an fy-fault unpaired many-to-manyk,-disjoint path
cover joining{s;|j € Iz} and{z;|j € Iz} in Hy. Let s;-
path in the unpaired,-DPC joins; andz;;, j € I2.
Casef > 1: Find kQ-DPq{(yij,tj)‘j S ]2}‘H1,0].
Casef = 0 and2 < kb < kb: Find ko-DPC in H; as
follows.
a) Find k5-DPC{(ys,, t;)|j € I3}|G2, F'], where F' =
{yi,li € I3}
b) Find k3-DPC{(y;,, t;)lj € 15}|G3,0).
c) Merge thek;-DPC andk;-DPC with edgesy; ., 3, ),
jely.
Merge theunpairedks-DPC in Hy andks-DPC in Hy with
edges(xij,yij), j € Ir.

Lemma 9: Whenks =k >3, fo=f,andf >1o0r2 <k <
k4, Procedure PairedDPC-H constructs fafault k-DPC.

Proof: Thek, free edges in Step 1 exist since there2ife 2

candidates and at mogt-2k elements f faults and2k terminals)
block the candidates. Of cours#? 2 — (f +2k) =22 —m >
m > ko for any m > 6. The existence of unpairekh-DPC is

due

to thatfo + ks = f+k=m —k <m — 3. Theks-DPC in

Step 3 exists sincéky < (f —1)+2ko = f+2k—1=m—1.

The

existence ok,-DPC in Step 4(a) is due toF’| + 2k}

kY +2kh = 2k — ki < 2k—2 < m—2. Thek4-DPC in Step 4(b)

also exists sinceky = 2k — 2k < m — 2. ]
Now, we haveky = k > 3, f = 0, andk}, > ko —1. The subcase

kb = ko — 1 is considered first in the following. The vertexin

G2, which is adjacent to the sink i6's, plays an extraordinary

role in the construction. The unpaired many-to-many disjoint path

coverability of Hy, the hamiltonicity ofG», and the paired many-

to-many disjoint path coverability of'; are utilized.

Procedure PairedDPC-I(Hy @ H1, S, T, F)
/* Under the condition ofcy = k >3, f =0, andk}, = ko — 1.
See Fig. 11. */

1) Let t4, be the sink inGs, and leta = .

2) a) Casec is a sink:

Pick up k2 free edges(z;,y;), j € Iz, with z; €
V(H()) andyj € V(GQ)

b) Case bothh anda are free vertices:

Inclusive of (&, «), pick up ko free edges(z;,y;),
j € I, with Tj € V(Ho) andyj S V(GQ).

c) Caseax is a free vertex and: is a source, say,:
Pick up k2 — 1 free edges(z;,y;), j € I2\p, With
zj € V(Hp) andy; € V(G2).

a) Casecx is a sink or bothne and & are free vertices:

Find an unpaired k2-DPC joining {s;|; € I»} and

{z;]j € I} in Hy. Let s;-path in the unpaired DPC

join s; andx;, j € Io. We letty =« if « is a sink,
and lety;, = « if both o anda are free vertices.

Casea is a free vertex and: is a sourcesy:

Regardings;, as avirtual fault, find anunpaired (ks —

1)-DPC joining {s;|j € I2\p} and {z;|j € I>\p} in

Hy. Let sj-path in the unpaired DPC jois; andz;,

J € I\p. Let sp-path be(sp), and letz;, = s, and

Yi, = Q.

a) Casep # ka:

Let ¢ € Iy with ¢

Hly;, ,tq|G2, F'], where F' =

I\{p,q,k2}} U {yi,}. Let the hamiltonian

path  be (yi,, Pu,u, yl-p,P’,tp,qu,tq). Find

(k2 — 1)-qu{(ﬁ7@)7(y{k2’tk2)} U {(y;]7{])‘] €

I>\{p, q, k2}}|G3,0]. Merge the hamiltonian path and

(k2 — 1)-DPC with edges(u, @), (v,0), (i, ,Yix, )

and (yi,, 4i,), (tj,5), j € I2\{p, ¢, k2}.

Casep = ko:

Let q,r € Is with ¢, # ko. Find H[yiq,tq|G2,F'],

where F" = {y; ,t;|j € I2\{p,q,7}} U{y;,}. Let the
hamiltonian path be(y;, , Pu,u,y;,, P', tr, v, Py, tq).

Find (k; — 2)-DPC{(a,0)} U {(s,.;)li ¢

I\{p,q,7}}|G3, F"], where F" = {t;,}. Merge

the hamiltonian path andk, — 2)-DPC with edges

(u7 ﬂ)! (Uvﬁ)’ (yip’tkfz)! and (yi]‘?y%j)’ (tjvt})i

Jj € L\{p,q,r}.

5) Merge thek, disjoint paths joinings; andzx;, in Hy andk;
disjoint paths joiningy;, andt; in H; with edges(z;,, y;,),

j € Is.

Lemma 10: Whenks = k > 3, f = 0, and k),

Procedure PairedDPC-I construct&-®PC.

Proof: The existence of free edges in Step 2 can be shown
in a similar way to the proof of Lemma 9. Both the unpaired
ko-DPC in Step 3(a) and the-fault unpaired(ky — 1)-DPC in
Step 3(b) exist sincés =k =m — k < m — 3. Whenp # ks

3)

b)

4)
#

P, ko. Find
{vi; t;l5 €

b)

ko — 1,
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S, S, S, S, S, S, s, s,

(a) « sink (b) a, a free andp # ko

S S, 8 Sy S S, Sy

(c) a, a free andp = ko (d) « free, @ source, and
p # k2

(e) o free, @ source, and
p=ke

Fig. 11. |llustration of Procedure PairedDPC-I.

(Step 4(a)) the hamiltonian path betwegn andt, in G2 exists
since|F’| < 2(ka —3)+1 = 2k—5 = m— 5. By the construction,
thy & {0,990, } U {ui, 1517 € I2\{p,q, k2}}. The (k2 — 1)-
DPC in G3 exists since(ks — 1) = 2k — 2 = m — 2. Similarly,
whenp = k; (Step 4(b)), we can se, ¢ {9} U{y;,.t;|j €
I>\{p, q,7}} and the existence of the hamiltonian pattds and
1-fault (k2 — 2)-DPC in Gs. [ |

Whenks = k > 3, f = 0, and k, = ko, the following
Procedure PairedDPC-J construct&-aDPC. The procedure is
very similar to Procedure PairedDPC-I. Its correctness can be
shown in a similar way to the proof of Lemma 10, and it is
omitted in this paper.

Procedure PairedDPC-JH, @ H1,S,T, F)

T Fig. 12.

4)

(c) & source an # ko (d) & source and = kg

Illustration of Procedure PairedDPC-J.

1)-DPC joining {s;|7 € I2\p} and {z;|j € I2\p} in
Hy. Let s;-path in the unpaired DPC jois; andz;,
J € I2\p. Let sp-path be(sp), and letz;, = s, and
Yi, = Q.

a) Casep # ko:

b)

Let ¢ € I with ¢ # »pks. Find
H[yiqvtq|G27F/]! where F’ = {yij,tjlj €
I\{p,q.k2}} U {tp}. Let the hamiltonian
path be (yiq,Pu,u,yik2,P',tk2,v,Pv,tq). Find
(ks — 1)-DPCH(i,9), (v, p)} U {3, £)li €
I\{p, q, k2}}|G3, 0]. Merge the hamiltonian path and
(k2 — 1)-DPC with edgeS(u, @), (v,d), (tp,tp), and
Wiy Yiy)s (. 15), 5 € I2\{p, g, k2}.

Casep = ka:

Let q,r € I with ¢, # ko. Find H[yiq,tq|Gg,F'],
where F' = {y;,,t;|j € I2\{p,q,7}} U{ty,}. Let the
hamiltonian path bey;, , Pu,u,y;, , P’ tr,v, Po,tg).
Find (k2 — 2)-DPQ{(@.0)} U {(s,.5)li <
I\{p.q.7}}|Cs, F"), where F” = {y; }. Merge
the hamiltonian path andk, — 2)-DPC with edges
(u,ﬁ), (v7f))! (yipvtk2)1 and (yij7y/1:j)’ (tj7t})1
Jj € I\{p,q,7}.

5) Merge thek, disjoint paths joinings; andz;, in Hy andks
disjoint paths joiningy;, andt; in Iy with edges(z;,, y;, ),

* Under the condition ofks = k > 3, f = 0, andk}, = ko. See J € Iz
Fig. 12. */
1) Leta = t;,. Here,a is a free vertex inGs. B. Restricted HL-graphs
2) a) Casea is a free vertex: Vaidya et al[35] introduced a class of hypercube-like inter-

Let (z1,91) = (@,«). Pick up k2 — 1 free edges connection networks, callddL-graphs which can be defined by
(xj,y5), j € I2\1, with z; € V(Hp) andy; € V(G2). applying the® operation repeatedly as followsf Ly = {K1};

b) Casea is a source, sayy: for m > 1, HLym = {Go ® G1|Go,G1 € HLp_1}. Then,
Pick up k2 — 1 free edges(z;,y;), j € I\p, with  HL, = {Ks}; HLy = {C4}; HL3 = {Q3, G(8,4)}. Here,Cy is
zj € V(Hp) andy; € V(G2). a cycle graph withd vertices,Qs is a 3-dimensional hypercube,
3) a) Casea is a free vertex: and G(8,4) is a recursive circulant which is defined as follows:

Find an unpaired k2-DPC joining {s;|j € I2} and the vertex setifv;|0 <4 < 7} and the edge set iv;, v;)|i +1
{z;]j € I} in Hp. Let s;-path in the unpairedz- ori+4=j; (mod 8)}. G(8,4) is isomorphic to twisted cube
DPC joins; andz;,, j € I2. We lety;, = a. TQs and Mbbius ladder with four spokes as shown in Figure 13.
b) Casea is a sources: In [27], a subclass of nonbipartite HL-graphs, caltedtricted
Regardings;, as avirtual fault, find anunpaired(ke — HL-graphs was introduced by the authors, which is defined
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vl7 Vl V) V{
v, m
v, v, v, Vs v, v,

(b) TQ3

(@) G(8,4) (c) Mobius ladder
Fig. 13. Isomorphic graphs.
recursively as follows:RHL,, = HLy, for 0 < m < 2;

RHL3 = HL3\Q3 = {G(8,4)}; RHLm = {Go ® G1|Go,G1 €
RHL,,_;}form > 4. A graph which belongs t® H L, is called

anm-dimensional restricted HL-graptMany of the nonbipartite

10

thati + d* = j (mod N)}. G(N,d) is a circulant graph withv
vertices and jumps of powers df d°,d!,- .., dlosa N1-1,

In this work, our attention is restricted @&( N, d) with N = 2™
andd = 4. G(2™,4), whose degree i, compares favorably
to the hypercube),,. While retaining the attractive properties
of hypercube@,, such as node-symmetry, recursive structure,
the connectivity, etc., it achieves noticeable improvements in
diameter[26] and possesses a complete binary tree 2iith- 1
vertices as a subgraph[19}(N, d) with degree three or higher is
hamiltonian-connected[7{Z(V, d) with N = cd™ and1 < c¢ < d
is hamiltonian decomposable[1], [13], [21], that is, the set of
edges can be partitioned into edge-disjoint hamiltonian cycles
(and a 1-factor when the degree is odd). In [13], the edge
forwarding index and the bisection width of recursive circulants
were also analyzed.

hypercube-like interconnection networks such as crossed cubdn this subsection, we will construct a%t:fault paired many-
Mobius cube, twisted cube, multiply twisted cube, Mcube, gef-many k-DPC in recursive circulantz(2"™,4) for any f and
eralized twisted cube, etc. proposed in the literature are restricled 2 With f + 2k < m. The unpaired many-to-many disjoint

HL-graphs with the exception of recursive circula@{2™,4)

path coverability ofG(2",4) explored in [29] are shown below.

and “near” bipartite interconnection networks such as twisted 't Will be utilized to establish/ our result. We denote byx G’
cube. In fact, everyd(2™,4) with odd m is anm-dimensional the product of graphé’ and G".

restricted HL-graph. Some works on HL-graphs and restrictedLemma 13: [29] G(2™, 4) with m, > 3, G(2™ 1, 4) x K5 with
HL-graphs appeared in the literature; for example, hamiltonicity. > 4, andG(2™~2,4) x C4 with m > 5 are all f-fault unpaired
of HL-graphs[20], fault-hamiltonicity of restricted HL-graphs[27],many-to-manyk-disjoint path coverable for any andk > 1 with
and fault-panconnectivity and fault-pancyclicity of restricted HLf + k < m — 2.

graphs[30].

In this subsection, we are to construct afault paired many-
to-manyk-DPC in anm-dimensional restricted HL-graph for any g, ,cture G(2™, 4)
fandk > 2 with f + 2k < m by employing Theorem 5. For K] © [G(2m—2’ 4) x Ks]

Now, we consider the paired many-to-many disjoint path cov-
erability of recursive circulaniG(2™,4). Due to its recursive
is isomorphic to some grapj&/(2™ 2, 4) x
. To employ Theorem 5, we need to

our purpose, we need the unpaired many-to-many disjoint pffiyejop the paired many-to-many disjoint path coverability of
coverability of restricted HL-graphs with faulty elements. It Wagy(om=2 4)x I, as well agz(2™~2, 4). For this kind of technical

considered in [25] as follows.

Lemma 11: [25] Every m-dimensional restricted HL-graph
m > 3, is f-fault unpaired many-to-many-disjoint path cov-

erable for anyf andk > 1 with f +k <m — 2.
The existence of a paired many-to-marg¢DPC in 4-

dimensional restricted HL-graphs is checked by a compu

program for eachG(8,4) ¢ G(8,4) in RH L4, sourcess; and
s2, and sinkst; andty. Thus, we have the lemma.

Lemma 12: Every4-dimensional restricted HL-graphdsfault
paired many-to-mang-disjoint path coverable.

reasons, we will show a stronger result than the aforementioned,

'as stated in Theorem 7. The proof proceeds by inductiomon

Basis will be shown in Lemma 14.
Lemma 14: (a) G(2%,4) is 0-fault paired many-to-many-
irsjoint path coverable[24].
) G(2%,4) x K, is 1-fault paired many-to-mang-disjoint path
coverable.

Proof: The proof of (b) is completed according to the
proof of Theorem 5 given in Subsection IlI-A. Notice that Proce-

Now, we are ready to state the paired many-to-many disjoidlires PairedDPC-C, PairedDPC-E, PairedDPC-F, PairedDPC-H,

path coverability of restricted HL-graphs.
Theorem 6: Every m-dimensional restricted HL-graphp >

3, is f-fault paired many-to-many-disjoint path coverable for

any f andk > 2 with f + 2k < m.
Proof: The proof is by induction onn. For m = 3, the
theorem is vacantly true singé+ 2k > 4 > m. For m = 4, the

theorem holds true by Lemma 12. Let > 5. Theorem 5 and

Lemma 11 lead to the theorem. [ ]
Corollary 2: Every m-dimensional restricted HL-graphy >

3, is f-fault hybrid many-to-manyk,, k., )-disjoint path coverable

for any f, kp, andk, with kp + ko > 2 and f 4+ 2(kp + ku) < m.

C. Recursive circulan& (2™, 4)

PairedDPC-I, and PairedDPC-J are never employed since all of
the procedures assume> 3 andm > 6. ]

Theorem 7: G(2™,4) with m > 3, G(2™ 1, 4) x Ko with
m >4, andG(2™2,4) x C4 with m > 5 are all f-fault paired
many-to-manyk-disjoint path coverable for any andk > 2 with
f+2k<m.

Proof: Let G’ = G(2™2,4) andG” = G(2™3,4) x K.
Observe thati(2™ 1, 4) x K5 is isomorphic to some graghy”’ x
K2)®[G" x K3], and that each off(2™,4) andG (2™ 2,4) x C4
is isomorphic to some graglt’ x K»] @ [G’ x K2]. Furthermore,
G" x Ky is isomorphic toG(2"~3,4) x C4. The proof is by
induction onm. For G(23,4), the theorem is vacantly true. Base
cases hold forz(2%,4) by Lemma 14(a), forz(23,4) x Ko by

Recursive circulant is an interconnection network proposed iemma 12, and fo6/(2%, 4) x K> by Lemma 14(b). FoG(2™, 4)
[26]. Recursive circulanG (N, d), d > 2, is defined as follows: with m > 5, G(2" 71, 4) x Ko with m > 6, andG(2™72,4) x Cy

the vertex setl = {vg, vy, va, --

w vy_1}, and the edge set with m > 5, by Theorem 5 and Lemma 13, paired many-to-many

E = {(vi,v;) | there existsk, 0 < k < [logg N| — 1, such disjoint path covers are constructed. [ |
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