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Many-to-Many Disjoint Path Covers in the Presence
of Faulty Elements
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Abstract— A many-to-manyk-disjoint path cover (k-DPC) of a
graph G is a set ofk disjoint paths joining k sources andk sinks
in which each vertex ofG is covered by a path. It is called apaired
many-to-many disjoint path cover when each source should be
joined to a specific sink, and it is called anunpaired many-
to-many disjoint path cover when each source can be joined
to an arbitrary sink. In this paper, we discuss about paired
and unpaired many-to-many disjoint path covers including their
relationships, application to strong hamiltonicity, and necessary
conditions. And then, we give a construction scheme for paired
many-to-many disjoint path covers in the graphH0⊕H1 obtained
from connecting two graphsH0 and H1 with |V (H0)| = |V (H1)|
by |V (H0)| pairwise nonadjacent edges joining vertices inH0

and vertices in H1, where H0 = G0 ⊕ G1 and H1 = G2 ⊕ G3

for some graphs Gj ’s. Using the construction, we show that
everym-dimensional restricted HL-graph and recursive circulant
G(2m, 4) with f or less faulty elements have a pairedk-DPC for
any f and k ≥ 2 with f + 2k ≤ m.

Index Terms— Fault tolerance, disjoint path covers, intercon-
nection networks, restricted HL-graphs, recursive circulants,
strong hamiltonicity, fault-hamiltonicity.

I. I NTRODUCTION

V ARIOUS interconnection networks were proposed and their
graph-theoretic properties have been investigated with their

applications in parallel computing. Among the properties, finding
parallel paths among nodes in interconnection networks is one of
the important problems concerned with efficient data transmis-
sion. Usually interconnection networks are represented as graphs
and parallel paths are studied in terms of disjoint paths in graphs.
In this paper, we will use standard terminology in graphs (see
[2]).

Let G = (V, E) be an undirected simple graph. A set of paths
in G is calleddisjoint if they do not share any vertices. In disjoint
path problems, one or more source vertices and one or more sink
vertices are given to find disjoint paths between them. Depending
on the number of sources or sinks, there are one-to-one[22],
[3], [33], one-to-many[6], [23], and many-to-many disjoint path
problems[24], [25], [28]. Among them, the many-to-many disjoint
path problem is the most generalized one, and will be mainly
discussed in this paper.

For a setS = {s1, s2, . . . , sk} of k sources and a setT =

{t1, t2, . . . , tk} of k sinks inV (G), the many-to-manyk-disjoint
path problem is to determine whether there existk disjoint paths
each joining a source and a sink. There arepaired andunpaired
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types of many-to-manyk-disjoint path problems. In the paired
type, each source should be joined to a specific sink, that is,sj

should be joined totj . In the unpaired type, each source can
be joined to an arbitrary sink. The sources and sinks are called
terminals in general.

Disjoint path cover of a graphG is a set of disjoint paths
covering all the vertices ofG. The problem of finding disjoint
path covers is closely related to a well-known hamiltonian path
problem and concerned with the application where the full utiliza-
tion of vertices is important. The hamiltonian path problem can
be viewed as a specific case of the disjoint path cover problem.

The disjoint path cover problem can be extended to a graph
with some faulty elements (vertices and/or edges). Fault tolerance
is one of the important measures in networks. Especially, fault-
hamiltonicity of various interconnection networks was widely
investigated in the literature[14], [16], [17], [27], [32], [34]. A
graphG is calledf -fault hamiltonian(resp.f -fault hamiltonian-
connected) if there exists a hamiltonian cycle (resp. if each pair
of vertices are joined by a hamiltonian path) inG\F for any set
F of faulty elements with|F | ≤ f .

Considering all the above versions of disjoint path cover
problems, we give definitions for a graphG with a set F of
faulty elements.

Definition 1: Given a set ofk sourcesS = {s1, s2, . . . , sk}
and a set ofk sinksT = {t1, t2, . . . , tk} in G\F such thatS∩T =

∅, apaired many-to-manyk-disjoint path coverjoining S andT is
a set ofk fault-free disjoint pathsPj joining sj andtj , 1 ≤ j ≤ k,
that cover all the fault-free vertices ofG.

Definition 2: Given a set ofk sourcesS = {s1, s2, . . . , sk}
and a set ofk sinks T = {t1, t2, . . . , tk} in G\F such thatS ∩
T = ∅, an unpaired many-to-manyk-disjoint path coverjoining
S andT is a set ofk fault-free disjoint pathsPj joining sj and
tij

, 1 ≤ j ≤ k, with an arbitrary permutation(i1, i2, . . . , ik) of
{1, 2, . . . , k} that cover all the fault-free vertices ofG.

We can think of a situation in an interconnection network
where kp source-sink pairs are the paired type so that specific
sources should be joined to specific sinks, andku sources andku

sinks are the unpaired type so that they can be freely matched.
We call the(kp + ku)-disjoint path cover of the mixed type as
hybrid many-to-many(kp, ku)-disjoint path cover. Hereafter in
this paper, paired (resp. unpaired)k-DPC refers to a paired (resp.
unpaired) many-to-manyk-disjoint path cover. Similarly, hybrid
(kp, ku)-DPC refers to a hybrid many-to-many(kp, ku)-disjoint
path cover.

Given S and T in a graphG, the problem of determining
whether there exists a pairedk-DPC betweenS and T in G

was shown to be NP-complete for any fixedk ≥ 1 [28]. The
problem of determining the existence of an unpairedk-DPC (resp.
a hybrid(kp, ku)-DPC) is also NP-complete for any fixedk (resp.
any pair of fixedkp and ku). They can be reduced from the
HAMILTONIAN PATH BETWEEN TWO VERTICES problem
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Fig. 1. Examples ofG0 ⊕ G1 andH0 ⊕ H1.

[12] as the pairedk-DPC done in [28].
Only a few works can be found for many-to-manyk-disjoint

path cover problem withk ≥ 2. Paired k-DPC problems in
restricted HL-graphs and recursive circulants were investigated in
[28], and unpairedk-DPC problems in restricted HL-graphs and
recursive circulants were studied in [25] and [29], respectively.
The restricted HL-graphs are known to contain twisted cubes[15],
crossed cubes[11], multiply twisted cubes[10], Möbius cubes[8],
Mcubes[31], and generalized twisted cubes[4]. It was shown that
both m-dimensional restricted HL-graphs and recursive circulant
G(2m, 4) with f or less faulty elements have a pairedk-DPC for
any f and k ≥ 1 with f + 2k ≤ m − 1, and have an unpaired
k-DPC for anyf and k ≥ 1 with f + k ≤ m − 2. Every m-
dimensional crossed cube,m ≥ 5, was shown to have a paired
2-DPC consisting of two paths of equal length by Laiet al. in
[18].

In this paper, we consider a graph with faulty elements which
has ak-DPC for arbitraryk sources andk sinks rather than fixed
sources and sinks, which is called a many-to-manyk-disjoint path
coverable graph. It is defined as follows.

Definition 3: A graph G is called f -fault paired (resp. un-
paired) many-to-manyk-disjoint path coverableif f + 2k ≤
|V (G)| and for any setF of faulty elements with|F | ≤ f , G

has a paired (resp. unpaired)k-DPC for any setS of k sources
and any setT of k sinks inG\F such thatS ∩ T = ∅.

Many-to-many disjoint path coverability can also be defined for
the hybrid type. A graphG is calledf -fault hybrid many-to-many
(kp, ku)-disjoint path coverableif f + 2(kp + ku) ≤ |V (G)| and
for any setF of faulty elements with|F | ≤ f , G has a hybrid
(kp, ku)-DPC for any set ofkp source-sink pairs andku sources
and ku sinks of unpaired type. Of course, all the terminals are
distinct.

Many interconnection networks such as restricted HL-graphs
and recursive circulantG(2m, 4) can be constructed by connecting
two lower dimensional networks. We represent the construction
as follows. Given two graphsG0 and G1 with n vertices
each, we denote byVj and Ej the vertex set and edge set
of Gj , j = 0, 1, respectively. LetV0 = {v1, v2, . . . , vn} and
V1 = {w1, w2, . . . , wn}. With respect to a permutationM =

(i1, i2, . . . , in) of {1, 2, . . . , n}, we can “merge” the two graphs
into a graphG0 ⊕M G1 with 2n vertices in such a way that the
vertex setV = V0∪V1 and the edge setE = E0∪E1∪E2, where
E2 = {(vj , wij

)|1 ≤ j ≤ n}. We denote byG0 ⊕ G1 a graph
obtained by mergingG0 and G1 w.r.t. an arbitrary permutation
M . Here,G0 andG1 are calledcomponentsof G0⊕G1. Fig. 1(a)
shows an example ofG0 ⊕ G1.

In this paper, we discuss about some interesting properties
of f -fault paired, unpaired, and hybrid many-to-many disjoint
path covers from a graph-theoretic point of view, which include
their relationships, application to strong hamiltonicity, and some

necessary conditions. And then, forH0 = G0 ⊕ G1 and H1 =

G2 ⊕G3, we investigate how paired and unpaired many-to-many
disjoint path coverability ofGi’s and Hj ’s are translated into
paired many-to-many disjoint path coverability ofH0 ⊕ H1.

By applying our result to restricted HL-graphs and recursive
circulants, we show that everym-dimensional restricted HL-graph
and recursive circulantG(2m, 4) aref -fault paired many-to-many
k-disjoint path coverable for anyf andk ≥ 2 with f + 2k ≤ m.
The bound of “f +2k ≤ m−1” in [28] is improved by one. It also
implies that there exists a hybrid(kp, ku)-DPC inm-dimensional
restricted HL-graphs and recursive circulantG(2m, 4) for any kp

andku with k = kp + ku such thatf + 2k ≤ m.
The organization of this paper is as follows. In the next

section, we will address properties off -fault paired, unpaired,
and hybrid many-to-many disjoint path coverable graphs and their
relationships. In Section III, the paired many-to-many disjoint
path coverability ofH0 ⊕ H1, where H0 = G0 ⊕ G1 and
H1 = G2 ⊕ G3, will be developed and applied to restricted
HL-graphs and recursive circulants. Finally, in Section IV, the
concluding remarks of this paper will be given.

II. M ANY-TO-MANY DISJOINT PATH COVERS

In this section, we discuss about the relationships among many-
to-many disjoint path covers of the three types, their applicability
to strong hamiltonicity, and their fundamental properties. Some
aspects of paired many-to-many disjoint path covers were ad-
dressed in [28].

A path in a graph is represented as a sequence of vertices. A
v-w path refers to a path from vertexv to w, and av-path refers
to a path whose starting vertex isv.

A. Unpaired many-to-many DPC

Given k sourcess1, s2, . . . , sk and sinkst1, t2, . . . , tk in a
graphG with fault setF , construction of an unpairedk-DPC is
easier, in general, than construction of a pairedk-DPC. A paired
k-DPC is, by definition, an unpairedk-DPC.

Proposition 1: An f -fault paired many-to-manyk-disjoint
path coverable graph isf -fault unpaired many-to-manyk-disjoint
path coverable.

It is known from [28] that for anyk ≥ 2, an f -fault paired
many-to-manyk-disjoint path coverable graph is alwaysf -fault
paired many-to-many(k−1)-disjoint path coverable. It is a quite
natural question of whether or not the corresponding property
holds true in unpaired many-to-many disjoint path covers. Unfor-
tunately, the answer is negative even whenf = 0 as shown in the
following lemma.

Lemma 1: A complete bipartite graphKm,m, m ≥ 2, is (0-
fault) unpaired many-to-manym-disjoint path coverable. How-
ever, it is not (0-fault) unpaired many-to-manyk-disjoint path
coverable for any1 ≤ k < m.

Proof: Let X, Y be the bipartition sets ofKm,m. Since
there arem sources andm sinks in Km,m, every vertex is a
terminal. LetSX and TX be the set of sources and the set of
sinks inX, respectively.SY andTY are defined similarly. Then,
|SX | = |TY | and|TX | = |SY |. The subgraph induced bySX∪TY

is a complete bipartite graph and it has a perfect matchingM1.
Similarly, the subgraph induced byTX ∪ SY also has a perfect
matchingM2. M1 ∪ M2 constitutes an unpairedm-DPC.

Now, we showKm,m is not unpairedk-disjoint path coverable
for any k, 1 ≤ k < m. Suppose all the sinks are inY . Also
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suppose the sourcess1, s2, . . . , sk−1 are in X, and sk is in Y .
Assume there exists an unpairedk-DPC. Everysi-path,1 ≤ i < k,
in thek-DPC has even number of vertices, and thus has the same
number of vertices inX andY . But thesk-path should have one
more vertex inY than inX, which contradicts|X| = |Y |.

B. Strong hamiltonicity

Many-to-many disjoint path coverability is closely related to
hamiltonicity. Whenk = 1, an unpairedk-DPC is equivalent to a
pairedk-DPC by definition. Also, the1-DPC is a hamiltonian path
joining a source and a sink. It was known that for a graphG to be
f -fault hamiltonian-connected, it is necessary thatf ≤ δ(G)− 3,
whereδ(G) is the minimum degree ofG.

Proposition 2: The following statements are equivalent.
(a) A graphG is f -fault paired many-to-many1-disjoint path
coverable.
(b) A graphG is f -fault unpaired many-to-many1-disjoint path
coverable.
(c) A graphG is f -fault hamiltonian-connected.

The problem of finding a hamiltonian path/cycle in a graph
passing through all the edges in a given set of prescribed edges
of the graph was considered in the literature. For hypercubes,
hamiltonian paths with prescribed edges and hamiltonian cycles
with prescribed edges were studied in [9] and [5], respectively.
In [28], the construction of a hamiltonian path/cycle passing
through prescribed edges using a paired many-to-manyk-DPC
was suggested. It was shown that ifG is f -fault paired many-to-
manyk(≥ 2)-disjoint path coverable, then for any fault setF with
|F | ≤ f and for any verticess, t and any sequence of pairwise
nonadjacentk − 1 edges((x1, y1), (x2, y2), . . . , (xk−1, yk−1)) in
G\F such thats ̸= xi, yi and t ̸= xi, yi for all 1 ≤ i ≤ k − 1,
there exists ans-t hamiltonian path inG\F that passes through
the edges in the order given. Thes-t hamiltonian path passes
through the edge(xi, yi) from xi to yi, that is, we can assign the
direction of how to pass through the edge.

Given a single prescribed edge(x, y), we can find a hamiltonian
path passing through the edge using an unpaired2-DPC by
Theorem 1 in the following. The difference in this construction
of hamiltonian path compared with that using a paired2-DPC is
that we cannot assign the direction of how to pass through the
edge. That is, we cannot force thes-t hamiltonian path to pass
through the edge fromx to y, or vice versa.

Theorem 1: If G is f -fault unpaired many-to-many2-disjoint
path coverable, then for any fault setF with |F | ≤ f and any
verticess, t and edge(x, y) such that{s, t} ∩ {x, y} = ∅, there
exists ans-t hamiltonian path inG\F that passes through the
edge(x, y).

Proof: There exists an unpaired2-DPC joining {s, t} and
{x, y} in G\F . Let Ps and Pt be thes-path and thet-path in
the unpaired2-DPC, respectively. Then,(Ps, P

R
t ) is the desired

hamiltonian path. Here,PR
t is the reverse of the pathPt.

Corollary 1: If G is f -fault unpaired many-to-many2-disjoint
path coverable, then for any fault setF with |F | ≤ f and any
two nonadjacent edges(v, w) and(x, y), there exists a hamiltonian
cycle in G\F that passes through both edges(v, w) and (x, y).

C. Necessity

A necessary condition for a graphG to bef -fault paired many-
to-manyk-disjoint path coverable was studied in [28] as follows.
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Fig. 2. Illustration of the proof of Theorem 2.

Lemma 2: [28] If G is f -fault paired many-to-manyk-disjoint
path coverable, thenκ(G) ≥ f + 2k − 1, where κ(G) is the
connectivity ofG.

There exists a graph in which equality of the condition given
in Lemma 2 holds true for somef andk. A complete graphK4

with four vertices is such a graph forf = 0 andk = 2. However,
Theorem 2 shown below is suggestive of room for improvement
in the necessary condition of Lemma 2.

Theorem 2: With the unique exception ofK4, no 3-regular
graph is0-fault paired many-to-many2-disjoint path coverable.

Proof: Let G be an arbitrary3-regular graph, which is not
isomorphic toK4. Then, the number of vertices inG is even and
at least6. Let x andy be two vertices adjacent to each other such
that |N(x) ∩ N(y)| is the maximum possible. Here,N(v) is the
neighborhood set ofv, which is defined as{w|(v, w) ∈ E(G)}.
Let R = V (G)\(N(x)∪N(y)). If |N(x)∩N(y)| = 2, we are done
due to Lemma 2. Observe in this case thatN(x)∩N(y) is a vertex
cut of size2 and thusκ(G) ≤ 2. See Fig. 2. If|N(x)∩N(y)| = 1

(|R| ≥ 1), we let z ∈ N(x) ∩ N(y), N(x) = {z, y, x1} and
N(y) = {z, x, y1}. It is straightforward to check that there does
not exist a paired2-DPC for {s1, t1} = {x, x1} and {s2, t2} =

{z, y1}.
Finally, we assumeN(x) ∩ N(y) = ∅, and let N(x) =

{y, x1, x2} andN(y) = {x, y1, y2}. If R ̸= ∅, there is no paired
2-DPC for{s1, t1} = {x1, x2} and{s2, t2} = {y1, y2}. If R = ∅,
we have|V (G)| = 6 and (xi, yj) ∈ E(G) for all 1 ≤ i, j ≤ 2.
Note that(x1, x2), (y1, y2) /∈ E(G) by the choice ofx andy. The
graph is isomorphic to a complete bipartiteK3,3. It was shown
not to be unpaired2-disjoint path coverable in Lemma 1, and
thus it is not paired2-disjoint path coverable. This completes the
proof.

In terms of connectivity and the minimum degree, necessary
conditions for a graphG to be f -fault unpaired many-to-many
k-disjoint path coverable can be derived as follows.

Theorem 3: Let G be anf -fault unpaired many-to-manyk(≥
2)-disjoint path coverable graph, thenκ(G) ≥ f +k. Furthermore,
if κ(G) = f + k, then for any vertex cutC of size f + k, the
number of vertices contained in anyp− 1 connected components
of G\C is strictly less thank, wherep is the number of connected
components ofG\C.

Proof: Supposeκ(G) ≤ f + k − 1. G is not isomorphic
to a complete graph; suppose otherwise,|V (G)| ≥ f + 2k by
definition andκ(G) ≥ f +2k−1, which is a contradiction. Thus,
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there exists a vertex cutC of size f + k − 1 or less. LetX be
the vertex set of the smallest connected component inG\C and
let Y be the vertex set of all the other connected components.
If |C| ≤ f , letting the fault setF = C, we have a disconnected
graph G\F . It is obvious that for some setsS of sources and
T of sinks, there exists no unpairedk-DPC joining S and T .
Assume|C| > f . Let F be an arbitrary subset off vertices inC.
If |Y | ≥ k, we let T ⊆ Y and letS be a set such thatS ⊃ C\F
and S ∩ X ̸= ∅. Then, there exists no fault-free path joining a
source inX and a sink inY without passing through any source
in C. Finally, we assume|Y | < k. We let all the vertices inY
and anyk − |Y | vertices inC\F be sinks, and letS be any set
of k fault-free vertices such thatS ∩ T = ∅. In this case, the
number of vertices inC\F which are not contained inT is less
than |Y | since|C\F | ≤ k − 1. Thus, not every sink inY can be
joined to a source by a fault-free path. Therefore, it was proved
that κ(G) ≥ f + k.

Supposeκ(G) = f + k and there is a vertex cutC of size
f + k such that the setY of vertices contained in somep − 1

connected components ofG\C has at leastk vertices. LetX =

V (G)\(C ∪ Y ). X is the vertex set of a connected component of
G\C. We let F ⊂ C be a fault set with|F | = f . For S = C\F
and anyT ⊂ Y with |T | = k, there exists no unpairedk-DPC
joining S and T . No path joining a source and a sink can pass
through a vertex inX as an intermediate vertex. Thus, we have
the theorem.

Notice that equality in the necessary condition ofκ(G) ≥ f +

k given in Theorem 3 holds true in a complete bipartite graph
Km,m, m ≥ 2, for f = 0 andk = m, by Lemma 1.

Lemma 3: Let G be anf -fault unpaired many-to-manyk(≥
2)-disjoint path coverable graph withf +2k+1 or more vertices.
Then,δ(G) ≥ f + k + 1.

Proof: Supposeδ(G) ≤ f + k. By Theorem 3, we have
δ(G) = κ(G) = f +k. There exists a vertexv in G whose degree
is equal toδ(G). The neighborhood setN(v) of v forms a vertex
cut of sizef + k. In G\N(v), there is a connected component
consisting of the vertexv only. Therefore, the number of vertices
in all connected components butv is at leastk, which contradicts
Theorem 3. This completes the proof.

D. Hybrid many-to-many DPC

When kp = 0, a hybrid (kp, ku)-DPC is equivalent to an
unpairedku-DPC, and whenku = 0 or 1, it is equivalent to
a paired(kp +ku)-DPC. By definition, a paired(kp +ku)-DPC is
a hybrid(kp, ku)-DPC, and a hybrid(kp, ku)-DPC is an unpaired
(kp + ku)-DPC.

Proposition 3: (a) An f -fault paired many-to-manyk-disjoint
path coverable graph isf -fault hybrid many-to-many(kp, ku)-
disjoint path coverable for anykp andku with k = kp + ku.
(b) An f -fault hybrid many-to-many(kp, ku)-disjoint path cover-
able graph isf -fault unpaired many-to-many(kp + ku)-disjoint
path coverable.

Recall that a necessary condition for a graphG to be paired
many-to-manyk-disjoint path coverable isκ(G) ≥ f + 2k − 1,
and that a necessary condition forG to be unpaired many-to-
manyk-disjoint path coverable isκ(G) ≥ f + k. For each of the
two conditions, there exist a graph satisfying equality for somef

andk. One might expect that for a graphG to bef -fault hybrid
many-to-many(kp, ku)-disjoint path coverable, it is necessary that
κ(G) ≥ f + 2kp + ku + c for somec = 0 or −1, and one might

guess that there exists a graph in which equality holds true for
somef , kp, andku. However, as shown in the following theorem,
the situation is worse than expected.

Theorem 4: Let kp ≥ 1. If a graphG is f -fault hybrid many-
to-many(kp, ku)-disjoint path coverable, thenκ(G) ≥ f +2k−1,
wherek = kp + ku.

Proof: SupposeG is f -fault hybrid many-to-many(kp, ku)-
disjoint path coverable andκ(G) ≤ f + 2k − 2. Then,G is not a
complete graph; suppose otherwise, we haveκ(G) = |V (G)|−1 ≤
f + 2k − 2, which contradicts|V (G)| ≥ f + 2k. There exists a
vertex cutC of sizef +2k−2 or less. If a sources1 and its pair
sink t1 are placed in different connected components ofG\C,
and if every vertex inC is either a faulty vertex or a terminal
(other thans1 andt1), then everys1-t1 path should pass through
a faulty vertex or a terminal as an intermediate vertex. This is a
contradiction.

III. C ONSTRUCTION OFPAIRED DISJOINT PATH COVERS

It was shown in [28] that everym-dimensional restricted HL-
graph and recursive circulantG(2m, 4), m ≥ 3, aref -fault paired
many-to-manyk-disjoint path coverable for anyf and k ≥ 1

with f + 2k ≤ m− 1. Both graphs are of degreem and have2m

vertices. Their connectivities are equal to degreem. The necessary
condition given in Lemma 2 says “f+2k ≤ m+1.” In this section,
we construct anf -fault pairedk-DPC for anyf andk ≥ 2 with
f +2k ≤ m in m-dimensional restricted HL-graphs and recursive
circulantG(2m, 4), m ≥ 3.

The bound onf + 2k is improved by one as compared with
[28]. Thus, the gap between the bound achieved and the bound
m + 1 of necessity is just one. Anf -fault paired many-to-many
k-disjoint path coverable graph is alwaysf -fault hybrid many-
to-many (kp, ku)-disjoint path coverable providedkp + ku = k.
Therefore, the gap between the bound off +2k for hybrid many-
to-many disjoint path covers and the bound of necessity given in
Theorem 4 is one also. On the other hand, it has been shown in
[25] and [29] that bothm-dimensional restricted HL-graphs and
G(2m, 4), m ≥ 3, aref -fault unpaired many-to-manyk-disjoint
path coverable for anyf andk ≥ 1 with f+k ≤ m−2. Interesting
enough, the gap for unpaired many-to-many disjoint path covers
is also one. Refer to Lemma 3.

Let H0 = G0 ⊕ G1 andH1 = G2 ⊕ G3. Here,G0 andG1 are
calledsubcomponentsof H0 ⊕H1. The main problem studied in
this section is how paired many-to-many disjoint path coverability
and unpaired many-to-many disjoint path coverability ofGi’s
and Hj ’s are translated into paired many-to-many disjoint path
coverability of H0 ⊕ H1. To achieve simpler construction, we
make an assumption that eachGi has 2m−2 vertices and is of
degreem−2. Thus,Hj has2m−1 vertices and is of degreem−1.
The main theorem will be stated as follows.

Theorem 5: Let m ≥ 5. Let Gi, i = 0, 1, 2, 3, be a graph of
degreem − 2 having 2m−2 vertices. Suppose eachGi is (a) f -
fault paired many-to-manyk-disjoint path coverable for anyf and
k ≥ 2 with f + 2k ≤ δ(Gi) and (b)f -fault unpaired many-to-
manyk-disjoint path coverable for anyf andk ≥ 1 with f +k ≤
δ(Gi)− 2. Let H0 = G0 ⊕G1 andH1 = G2 ⊕G3. Furthermore,
we suppose eachHj is (c) f -fault paired many-to-manyk-disjoint
path coverable for anyf and k ≥ 2 with f + 2k ≤ δ(Hi) and
(d) f -fault unpaired many-to-manyk-disjoint path coverable for
any f and k ≥ 1 with f + k ≤ δ(Hi) − 2. Then, H0 ⊕ H1 is
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f -fault paired many-to-manyk-disjoint path coverable for anyf
andk ≥ 2 with f + 2k ≤ δ(H0 ⊕ H1) = m.

Proof of Theorem 5 will be addressed in the next subsection.
And then, the theorem is applied to the construction of anf -fault
pairedk-DPC of restricted HL-graphs in Subsection III-B and of
recursive circulantG(2m, 4) in Subsection III-C.

A. Proof of Theorem 5

Given a fault setF , a set ofk sourcesS = {s1, s2, . . . , sk},
and a set ofk sinks T = {t1, t2, . . . , tk} in a graphG, a paired
many-to-manyk-disjoint path cover joiningS and T in G\F is
denoted byk-DPC[{(s1, t1), (s2, t2), . . . , (sk, tk)}|G, F ]. We are
to construct ak-DPC[{(s1, t1), (s2, t2), . . . , (sk, tk)}|H0⊕H1, F ]

for any givenF with |F | ≤ f , S andT with |S| = |T | = k ≥ 2

such thatf + 2k ≤ m.
F0 and F1 denote the sets of faulty elements inH0 and

H1, respectively, andF2 denotes the set of faulty edges joining
vertices inH0 and vertices inH1, so thatF = F0 ∪F1 ∪F2. Let
f0 = |F0|, f1 = |F1|, andf2 = |F2|. We also denote byki the
number of source-sink pairs inHi, i = 0, 1, and byk2 the number
of source-sink pairs betweenH0 andH1. We assume w.l.o.g. that

k0 ≥ k1, and if k0 = k1, f0 ≥ f1.

We let I0 = {1, 2, . . . , k0}, I2 = {k0 + 1, k0 + 2, . . . , k0 + k2},
andI1 = {k0 +k2 +1, k0 +k2 +2, . . . , k0 +k2 +k1}. We assume
that {sj , tj |j ∈ I0} ∪ {sj |j ∈ I2} ⊆ V (H0) and {sj , tj |j ∈
I1} ∪ {tj |j ∈ I2} ⊆ V (H1).

We have |F | ≤ f , k = k0 + k1 + k2 ≥ 2, and f + 2k ≤
m. Observe that a paired many-to-manyk-disjoint path cover in
H0 ⊕ H1 with a virtual fault setF ∪ F ′, whereF ′ is a set of
arbitrary m − 2k − |F | fault-free edges, is also a paired many-
to-manyk-disjoint path cover inH0 ⊕ H1 with the fault setF .
Thus, we can assume

f + 2k = m and |F | = f.

By the condition (d), eachHi is (m − 4)-fault hamiltonian-
connected, or equivalently,(f + 2k − 4)-fault hamiltonian-
connected. Sincem ≥ 5 andk ≥ 2, we have that

Hi is 1-fault hamiltonian-connected and
f -fault hamiltonian-connected.

Hereafter in this section, anf -fault k-DPC refers to anf -
fault paired many-to-manyk-disjoint path cover joining the set of
sources and the set of sinks. There are four cases, Cases I through
IV.

Case I: k1 ≥ 1 or f0 ≤ f − 1.
In this case,H0 is f0-fault paired many-to-many(k0 + k2)-

disjoint path coverable. By the assumption ofk0 ≥ k1, if k1 +

k2 ≥ 1, H1 is f1-fault paired many-to-many(k1 + k2)-disjoint
path coverable. For a vertexv in H0 ⊕ H1, we denote bȳv the
vertex adjacent tov which is in a component different from the
component in whichv is contained.

Definition 4: A vertexv is calledfree if v is fault-free and not
a terminal, that is,v /∈ F andv /∈ S∪T . An edge(v, w) is called
free if v andw are free and(v, w) /∈ F .

We denote byH[v, w|G, F ] a hamiltonian path inG\F joining
a pair of fault-free verticesv andw in a graphG with a fault set
F , that is,1-DPC[{(v, w)}|G, F ].
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(b) k1 + k2 = 0

Fig. 3. Illustration of Procedure PairedDPC-A.

Procedure PairedDPC-A(H0 ⊕ H1, S, T, F )
/* Under the condition ofk1 ≥ 1 or f0 ≤ f − 1. See Fig. 3. */

1) Pick up k2 free edges joining vertices inH0 and vertices
in H1. Let the free edges be(xj , yj), j ∈ I2, with xj ∈
V (H0).

2) Find (k0 + k2)-DPC[{(sj , tj)|j ∈ I0} ∪ {(sj , xj)|j ∈
I2}|H0, F0].

3) Casek1 + k2 ≥ 1:
a) Find (k1 + k2)-DPC[{(sj , tj)|j ∈ I1} ∪ {(yj , tj)|j ∈

I2}|H1, F1].
b) Merge the two DPC’s with thek2 free edges.

4) Casek1 + k2 = 0:
a) Let (u, v) be an edge on some path in the(k0 + k2)-

DPC such that all thēu, (u, ū), v̄, and(v, v̄) are fault-
free.

b) Find H[ū, v̄|H1, F1].
c) Merge the(k0 + k2)-DPC and the hamiltonian path

with edges(u, ū) and (v, v̄). Discard the edge(u, v).
Lemma 4: Whenk1 ≥ 1 or f0 ≤ f−1, Procedure PairedDPC-

A constructs anf -fault k-DPC.
Proof: We claim that thek2 free edges in Step 1 exist. There

are2m−1 candidate free edges andf + 2k blocking elements (f
faults and2k terminals). The number of nonblocked candidates is
at least2m−1 − (f +2k) = 2m−1 −m > m > k2 for any m ≥ 5.
Thus, the claim is proved. The(k0 +k2)-DPC inH0 exists when
k0 +k2 ≥ 2; if k1 ≥ 1, we havef0 +2(k0 +k2) ≤ f +2(k−1) ≤
m−1, and iff0 ≤ f−1, we havef0+2(k0+k2) ≤ (f−1)+2k ≤
m − 1. Whenk0 + k2 = 1, the (k0 + k2)-DPC is a hamiltonian
path between two vertices inH0. The hamiltonian path exists
sinceH0 is f -fault hamiltonian-connected andf0 ≤ f . Similarly,
we can show the existence of(k1 + k2)-DPC in Step 3(a) and
the hamiltonian path in Step 4(b). We claim the edge(u, v) in
Step 4(a) exists. There are at least|V (H0)| − f0 − k candidate
edges, and at mostf1 + f2 elements can block the candidates.
Since each element blocks at most two candidates, the number of
nonblocked candidates is at least|V (H0)|−f0−k−2(f1 +f2) ≥
2m−1 − k − 2f > 2m−1 − 2m ≥ 6 for any m ≥ 5. Note that
f + 2k = m.

Case II: k1 = 0, f0 = f , k0 ≥ 1, k2 ≥ 1, and for somea ∈ I2,
s̄a is not a terminal.

All the sources and all the faulty elements, if any, are contained
in H0. Notice thatH0 may not bef0-fault many-to-many(k0 +

k2)-disjoint path coverable sincef0 + 2(k0 + k2) = f + 2k ̸≤
m − 1. Nevertheless, ifk ≥ 3, there always exists an(f0 + 1)-
fault (k0 + k2 − 1)-DPC in H0 with sa being avirtual fault. The
(k0 + k2 − 1)-DPC (instead of(k0 + k2)-DPC) can be utilized to
construct anf -fault k-DPC in H0 ⊕ H1. In fact, (sa, s̄a) plays a
role of the free edge forsa-ta path.



IEEE TRANSACTIONS ON COMPUTERS (FINAL MANUSCRIPT) 6

t
2

s
2

s
1

t
1

w

w

(a) w̄ ̸= t2

s
2

s
1

t
1

vu

v
t

2

u

w

(b) w̄ = t2

Fig. 4. Illustration of Procedure PairedDPC-B.

t2t1

t5t4
t3

s2
s1 s5

s4

x4

y4s3

x5

y5

s3

Fig. 5. Illustration of Procedure PairedDPC-C.

When k = 2, this approach will not be applied since the
existence of an(f0 + 1)-fault (k0 + k2 − 1)-DPC, or equivalently
an (f0 + 1)-fault hamiltonian path inH0 is not guaranteed. We
consider the subcasek = 2 first, as shown in the following
Procedure PairedDPC-B. The procedure is applicable for the case
k1 = 0, f0 = f , and k0 = k2 = 1, regardless of whether the
s̄2, 2 ∈ I2, is a terminal or not. It utilizes fault-hamiltonicity of
componentsH0 and H1. Its correctness is straightforward since
eachHi is f -fault hamiltonian-connected and1-fault hamiltonian-
connected.

Procedure PairedDPC-B(H0 ⊕ H1, S, T, F )
/* Under the condition ofk1 = 0, f0 = f , andk0 = k2 = 1. See
Fig. 4. */

1) Regardings1 as avirtual free vertex, find a hamiltonian path
Ph = H[s2, t1|H0, F0]. Let Ph = (s2, Pw, w, s1, P ′

1, t1).
2) Casew̄ ̸= t2:

a) Find a hamiltonian pathP ′
h = H[w̄, t2|H1, ∅].

b) Let P1 = (s1, P ′
1, t1) andP2 = (s2, Pw, w, P ′

h).

3) Casew̄ = t2:

a) Pick up an arbitrary edge(u, v) on Ph with u, v ̸= w.
b) Find a hamiltonian pathP ′

h = H[ū, v̄|H1, {t2}].
c) Let P1 = (s1, P ′

1, t1) and P2 = (s2, Pw, w, t2), and
then replace the edge(u, v) with (u, P ′

h, v).

Procedure PairedDPC-C(H0 ⊕ H1, S, T, F )
/* Under the condition ofk1 = 0, f0 = f , k0 ≥ 1, k2 ≥ 1, k ≥ 3,
and there exists a sourcesa, a ∈ I2, with s̄a being not a terminal.
See Fig. 5. */

1) Pick upk2−1 free edges joining vertices inH0 and vertices
in H1. Let the free edges be(xj , yj), j ∈ I2\a, with xj ∈
V (H0).

2) Regarding sa as a virtual fault, find (k0 + k2 − 1)-
DPC[{(sj , tj)|j ∈ I0}∪{(sj , xj)|j ∈ I2\a}|H0, F0∪{sa}].

3) Find k2-DPC[{(s̄a, ta)} ∪ {(yj , tj)|j ∈ I2\a}|H1, ∅].
4) Merge the two DPC’s with(sa, s̄a) and thek2 − 1 free

edges.

Lemma 5: Whenk1 = 0, f0 = f , k0 ≥ 1, k2 ≥ 1, k ≥ 3, and
there exists a sourcesa, a ∈ I2, with s̄a being not a terminal,
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v

vu
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s5s4
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y4 y5s3 t3

Fig. 6. Illustration of Procedure PairedDPC-D.

Procedure PairedDPC-C constructs anf -fault k-DPC.
Proof: The existence ofk2 − 1 free edges can be proved in

the same way as in the proof of Lemma 4. The(k0+k2−1)-DPC
exists sincef0 + 1 + 2(k0 + k2 − 1) = f + 1 + 2(k − 1) = m− 1.
The existence ofk2-DPC is obvious.

Case III: k1 = 0, f0 = f , k0 ≥ 1, eitherk2 = 0 or k2 ≥ 1 and
for every j ∈ I2, s̄j is a terminal.

This is one of the hardest cases. Anf0-fault paired(k0 + k2)-
disjoint path coverability ofH0 is not guaranteed. The construc-
tion of an f -fault k-DPC relies on the construction of(k − 1)-
DPC in H1 or whenf ≥ 1, k-DPC in H1. Notice that ifv is a
free vertex or a terminal in{sj , tj |j ∈ I0}, then v̄ is always a
free vertex. We consider the subcasek0 ≥ 2 first. In this case,
the fault-hamiltonicity ofH0 and the paired(k − 1)-disjoint path
coverability ofH1 are employed.

Procedure PairedDPC-D(H0 ⊕ H1, S, T, F )
/* Under the condition ofk1 = 0, f0 = f , k0 ≥ 2, and either
k2 = 0 or k2 ≥ 1 and s̄j is a sink for everyj ∈ I2. See Fig. 6. */

1) Pick up k2 free edges(xj , yj), j ∈ I2, with xj ∈ V (H0)

andyj ∈ V (H1) such that(sj , xj) is an edge and fault-free.
2) Regardings1 and t1 as virtual free vertices, find a hamil-

tonian path H[s2, t2|H0, F0 ∪ F ′ ∪ F ′′], where F ′ =

{sj , xj |j ∈ I2} and F ′′ = {sj , tj |j ∈ I0\{1, 2}}. Here,
F ′ and F ′′ are virtual fault sets. Let the hamiltonian path
be (s2, Pu, u, s1, P ′

1, t1, v, Pv, t2).
3) Find (k0 + k2 − 1)-DPC[{(yj , tj)|j ∈ I2} ∪ {(s̄j , t̄j)|j ∈

I0\{1, 2}} ∪ {(ū, v̄)}|H1, ∅].
4) Merge the hamiltonian path and the DPC with

{(sj , xj , yj)|j ∈ I2}, {(sj , s̄j), (tj , t̄j)|j ∈ I0\{1, 2}},
and{(u, ū), (v, v̄)}. Discard edges(s1, u) and (t1, v).

Lemma 6: When k1 = 0, f0 = f , k0 ≥ 2, and eitherk2 = 0

or k2 ≥ 1 and s̄j is a terminal for everyj ∈ I2, Procedure
PairedDPC-D constructs anf -fault k-DPC.

Proof: For eachj ∈ I2, we can pick up a free edge(xj , yj)

one by one since there areδ(H0) = m − 1 candidates and at
mostf +2(k−1) = m−2 blocking elements (f faulty elements,
2k0 terminals,k2 − 1 sources, andk2 − 1 free edges picked up).
The hamiltonian path inH0 exists sincef0 + 2(k0 − 2) + 2k2 =

f + 2k − 4 = m − 4. Obviously, the(k0 + k2 − 1)-DPC exists in
H1.

We come to the case thatk1 = 0, f0 = f , k0 = 1, and either
k2 = 0 or k2 ≥ 1 and s̄j is a terminal for everyj ∈ I2. By
the assumption ofk ≥ 2, we havek2 ≥ 1. Furthermore, the case
k2 = 1 was already considered in Procedure PairedDPC-B, and
thus we assumek2 ≥ 2. Therefore, we havek ≥ 3 and m ≥ 6.
Remembert1 ∈ V (H0) and tj ∈ V (H1) for all j ≥ 2. There are
two procedures depending on whetherf ≥ 1 or not. For the case
f ≥ 1, we utilize the fault-hamiltonicity ofH0 and the0-fault
pairedk-disjoint path coverability ofH1.
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Fig. 7. Illustration of Procedure PairedDPC-E.

Procedure PairedDPC-E(H0 ⊕ H1, S, T, F )
/* Under the condition ofk1 = 0, f0 = f ≥ 1, k0 = 1, k2 ≥ 2,
and s̄j is a sink for everyj ∈ I2. See Fig. 7. */

1) Pick up k2 − 1 free edges(xj , yj), j ∈ I2\2, with xj ∈
V (H0) and yj ∈ V (H1) such that(sj , xj) is an edge and
fault-free.

2) Regardings2 as avirtual free vertex, find a hamiltonian path
Ph = H[s1, t1|H0, F0∪F ′], whereF ′ = {sj , xj |j ∈ I2\2}.

3) There exists a free vertexx2 such that(s2, x2) is an edge of
Ph. Removings2 andx2 from Ph results in two subpaths
(s1, Pu, u) and (v, Pv, t1). Let y2 = x̄2.

4) Find (k0 + k2)-DPC[{(yj , tj)|j ∈ I2} ∪ {(ū, v̄)}|H1, ∅].
5) Merge the hamiltonian path and the DPC with

{(sj , xj , yj)|j ∈ I2} and{(u, ū), (v, v̄)}.
Lemma 7: Whenk1 = 0, f0 = f ≥ 1, k0 = 1, k2 ≥ 2, and s̄j

is a sink for everyj ∈ I2, Procedure PairedDPC-E constructs an
f -fault k-DPC.

Proof: The existence ofk2 − 1 free edges can be proved in
a very similar way as in the proof of Lemma 6. The hamiltonian
pathPh exists sincef0 + 2(k2 − 1) = f + 2k − 4 = m − 4. The
(k0 + k2)-DPC exists inH1 since2(k0 + k2) = m − f ≤ m − 1.

Finally, we havef = 0. We will show that for ‘some’k2 free
edges joining vertices inH0 and vertices inH1, there exist two
DPC’s: a(k0 +k2)-DPC from sources to the union of sinkt1 and
endvertices of the free edges inH0, andk2-DPC between sinks
and endvertices of the free edges inH1. The construction of a
(k0 + k2)-DPC in H0 is a little complicated. It consists of two
subcases, as shown in Steps 1 and 2 of the following procedure.

For a vertexv in G0 (resp.G1), v̂ denotes the vertex inG1

(resp.G0) which is adjacent tov. Let I ′2 = {j ∈ I2|sj ∈ V (G0)}
andI ′′2 = I2\I ′2, and letk′2 = |I ′2| andk′′2 = |I ′′2 |, so thatk′2+k′′2 =

k2. It is assumed w.l.o.g. thatk′2 ≥ k′′2 .

Procedure PairedDPC-F(H0 ⊕ H1, S, T, F )
/* Under the condition ofk1 = 0, f = 0, k0 = 1, k2 ≥ 2, and s̄j

is a sink for everyj ∈ I2. See Fig. 8. */
1) Casek′′2 ≥ 1 or k′′2 = 0 and ŝa is a free vertex for some

a ∈ I ′2:
a) Let xa be a free vertex inH0 such that(sa, xa) ∈ E

and (sb, xa) ̸∈ E for somea, b ∈ I2.
b) Pick upk2−2 free edges(xj , yj), j ∈ I2\{a, b}, with

xj ∈ V (H0) andyj ∈ V (H1) such thatxj ̸= xa.
c) Find (k0 + k2 − 1)-DPC[{(s1, t1), (sb, xa)} ∪

{(sj , xj)|j ∈ I2\{a, b}}|H0, F ′], whereF ′ = {sa}.
Let thesb-path in the DPC be(sb, P

′, xb, xa).
d) Let sa-xa path be (sa, xa) and let sb-xb path be

(sb, P
′, xb). Let ya = x̄a andyb = x̄b.

2) Casek′′2 = 0 and ŝi is a terminal for everyi ∈ I ′2:
/* k2 = 2, s2, s3 ∈ V (G0), ands1, t1 ∈ V (G1) */
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Fig. 8. Illustration of Procedure PairedDPC-F.

a) Pick up two free edges(x2, y2) and (x3, y3) with
x2, x3 ∈ V (G0) andy2, y3 ∈ V (H1).

b) Find 2-DPC[{(s2, x2), (s3, x3)}|G0, ∅].
c) Find H[s1, t1|G1, ∅].

3) Find k2-DPC[{(yj , tj)|j ∈ I2}|H1, ∅].
4) Merge the two DPC’s with edges(xj , yj), j ∈ I2.
Lemma 8: When k1 = 0, f = 0, k0 = 1, k2 ≥ 2, and s̄j is

a sink for everyj ∈ I2, Procedure PairedDPC-F constructs an
f -fault k-DPC.

Proof: We first claim the existence ofxa in Step 1(a). When
k′′2 ≥ 1, let a ∈ I ′2 and b ∈ I ′′2 . Then, sa and sb are sources
contained inG0 andG1, respectively. There arem−2 candidates
for xa in G0 and at most2k0 + (k2 − 1) blocking terminals.
Since2k0 + (k2 − 1) = k = m − k ≤ m − 3, there exists such
a vertexxa. When k′′2 = 0 and ŝa is a free vertex for some
a ∈ I ′2, let sb be an arbitrary source inG0 with b ∈ I2\a. By the
structure ofG0 ⊕ G1, (sb, ŝa) ̸∈ E. Letting xa = ŝa, the claim
is proved. The existence of thek2 − 2 free edges in Step 1(b) is
straightforward. The(k0 + k2 − 1)-DPC in Step 1(c) exists since
1 + 2(k0 + k2 − 1) = 2k − 1 = m− 1. By the choice ofxa, xb is
a free vertex different fromxa. Thus, a(k0 + k2)-DPC in H0 is
constructed successfully in Step 1. Ifk′′2 = 0 and ŝi is a terminal
for every i ∈ I ′2, we can see thatk2 = 2 and{ŝ2, ŝ3} = {s1, t1}.
Since G0 is 0-fault paired many-to-many(k − 1)-disjoint path
coverable andG1 is hamiltonian-connected, a(k0 +k2)-DPC can
be constructed in Step 2. Existence of thek2-DPC in Step 3 is
due tok2 < k, precisely speaking, due to2k2 = 2(k−1) ≤ m−1.
This completes the proof.

Case IV: k2 = k andf0 = f .
To construct anf -fault k-DPC in this case, we mainly utilize

the unpaired many-to-many disjoint path coverability ofH0

and thepaired many-to-many disjoint path coverability and the
hamiltonicity ofsubcomponentsG2 andG3. By virtue of unpaired
many-to-many disjoint path coverability, we are able to keep out
of some troublesome subcases although this is one of the hardest
cases.

However, there is an exceptional case in which we cannot
apply the unpaired many-to-many disjoint path coverability of
H0, the case ofk = 2. We consider the exceptional case
first in the following Procedure PairedDPC-G. Its correctness is
straightforward since eachHi is f -fault hamiltonian-connected
and0-fault paired many-to-many2-disjoint path coverable.

Procedure PairedDPC-G(H0 ⊕ H1, S, T, F )
/* Under the condition ofk2 = k = 2, f0 = f . See Fig. 9. */

1) Find H[s1, s2|H0, F0]. Let the hamiltonian path be
(s1, Pu, u, v, Pv, s2) for some edge(u, v) with {ū, v̄} ∩
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Fig. 10. Illustration of Procedure PairedDPC-H.

{t1, t2} = ∅.
2) Find 2-DPC[{(ū, t1), (v̄, t2)}|H1, ∅].
3) Merge the hamiltonian path and2-DPC with edges(u, ū)

and (v, v̄).

We assumek ≥ 3 and thusm ≥ 6. For a vertexv in G2 (resp.
G3), v̂ denotes the vertex inG3 (resp.G2) which is adjacent to
v. We let I ′2 = {j ∈ I2|tj ∈ V (G2)} and I ′′2 = I2\I ′2, and let
k′2 = |I ′2| andk′′2 = |I ′′2 |. We assume w.l.o.g. either2 ≤ k′2 ≤ k′′2
or k′2 ≥ k2 − 1.

Procedure PairedDPC-H(H0 ⊕ H1, S, T, F )
/* Under the condition ofk2 = k ≥ 3, f0 = f , and f ≥ 1 or
2 ≤ k′2 ≤ k′′2 . See Fig. 10. */

1) Pick up k2 free edges(xj , yj), j ∈ I2, with xj ∈ V (H0)

andyj ∈ V (G2) such thatŷj is not a terminal.
2) Find an f0-fault unpaired many-to-manyk2-disjoint path

cover joining{sj |j ∈ I2} and {xj |j ∈ I2} in H0. Let sj-
path in the unpairedk2-DPC join sj andxij

, j ∈ I2.
3) Casef ≥ 1: Find k2-DPC[{(yij

, tj)|j ∈ I2}|H1, ∅].
4) Casef = 0 and 2 ≤ k′2 ≤ k′′2 : Find k2-DPC in H1 as

follows.

a) Find k′2-DPC[{(yij
, tj)|j ∈ I ′2}|G2, F ′], whereF ′ =

{yij
|j ∈ I ′′2 }.

b) Find k′′2 -DPC[{(ŷij
, tj)|j ∈ I ′′2 }|G3, ∅].

c) Merge thek′2-DPC andk′′2 -DPC with edges(yij
, ŷij

),
j ∈ I ′′2 .

5) Merge theunpairedk2-DPC inH0 andk2-DPC inH1 with
edges(xij

, yij
), j ∈ I2.

Lemma 9: Whenk2 = k ≥ 3, f0 = f , andf ≥ 1 or 2 ≤ k′2 ≤
k′′2 , Procedure PairedDPC-H constructs anf -fault k-DPC.

Proof: Thek2 free edges in Step 1 exist since there are2m−2

candidates and at mostf+2k elements (f faults and2k terminals)
block the candidates. Of course,2m−2− (f +2k) = 2m−2−m ≥
m ≥ k2 for any m ≥ 6. The existence of unpairedk2-DPC is
due to thatf0 + k2 = f + k = m − k ≤ m − 3. The k2-DPC in
Step 3 exists since2k2 ≤ (f − 1) + 2k2 = f + 2k − 1 = m − 1.
The existence ofk′2-DPC in Step 4(a) is due to|F ′| + 2k′2 =

k′′2 +2k′2 = 2k−k′′2 ≤ 2k− 2 ≤ m− 2. Thek′′2 -DPC in Step 4(b)
also exists since2k′′2 = 2k − 2k′2 ≤ m − 2.

Now, we havek2 = k ≥ 3, f = 0, andk′2 ≥ k2−1. The subcase
k′2 = k2 − 1 is considered first in the following. The vertexα in
G2, which is adjacent to the sink inG3, plays an extraordinary
role in the construction. The unpaired many-to-many disjoint path
coverability ofH0, the hamiltonicity ofG2, and the paired many-
to-many disjoint path coverability ofG3 are utilized.

Procedure PairedDPC-I(H0 ⊕ H1, S, T, F )
/* Under the condition ofk2 = k ≥ 3, f = 0, andk′2 = k2 − 1.
See Fig. 11. */

1) Let tk2 be the sink inG3, and letα = ˆtk2 .
2) a) Caseα is a sink:

Pick up k2 free edges(xj , yj), j ∈ I2, with xj ∈
V (H0) andyj ∈ V (G2).

b) Case bothα and ᾱ are free vertices:
Inclusive of (ᾱ, α), pick up k2 free edges(xj , yj),
j ∈ I2, with xj ∈ V (H0) andyj ∈ V (G2).

c) Caseα is a free vertex and̄α is a source, saysp:
Pick up k2 − 1 free edges(xj , yj), j ∈ I2\p, with
xj ∈ V (H0) andyj ∈ V (G2).

3) a) Caseα is a sink or bothα and ᾱ are free vertices:
Find an unpaired k2-DPC joining {sj |j ∈ I2} and
{xj |j ∈ I2} in H0. Let sj-path in the unpaired DPC
join sj andxij

, j ∈ I2. We let tp = α if α is a sink,
and letyip

= α if both α and ᾱ are free vertices.
b) Caseα is a free vertex and̄α is a sourcesp:

Regardingsp as avirtual fault, find anunpaired(k2−
1)-DPC joining {sj |j ∈ I2\p} and {xj |j ∈ I2\p} in
H0. Let sj-path in the unpaired DPC joinsj andxij

,
j ∈ I2\p. Let sp-path be(sp), and letxip

= sp and
yip

= α.
4) a) Casep ̸= k2:

Let q ∈ I2 with q ̸= p, k2. Find
H[yiq

, tq|G2, F ′], where F ′ = {yij
, tj |j ∈

I2\{p, q, k2}} ∪ {yik2
}. Let the hamiltonian

path be (yiq
, Pu, u, yip

, P ′, tp, v, Pv, tq). Find
(k2 − 1)-DPC[{(û, v̂), ( ˆyik2

, tk2)} ∪ {(ŷij
, t̂j)|j ∈

I2\{p, q, k2}}|G3, ∅]. Merge the hamiltonian path and
(k2 − 1)-DPC with edges(u, û), (v, v̂), (yik2

, ˆyik2
),

and (yij
, ŷij

), (tj , t̂j), j ∈ I2\{p, q, k2}.
b) Casep = k2:

Let q, r ∈ I2 with q, r ̸= k2. Find H[yiq
, tq|G2, F ′],

whereF ′ = {yij
, tj |j ∈ I2\{p, q, r}} ∪ {yip

}. Let the
hamiltonian path be(yiq

, Pu, u, yir
, P ′, tr, v, Pv, tq).

Find (k2 − 2)-DPC[{(û, v̂)} ∪ {(ŷij
, t̂j)|j ∈

I2\{p, q, r}}|G3, F ′′], where F ′′ = {tk2}. Merge
the hamiltonian path and(k2 − 2)-DPC with edges
(u, û), (v, v̂), (yip

, tk2), and (yij
, ŷij

), (tj , t̂j),
j ∈ I2\{p, q, r}.

5) Merge thek2 disjoint paths joiningsj andxij
in H0 andk2

disjoint paths joiningyij
andtj in H1 with edges(xij

, yij
),

j ∈ I2.

Lemma 10: When k2 = k ≥ 3, f = 0, and k′2 = k2 − 1,
Procedure PairedDPC-I constructs ak-DPC.

Proof: The existence of free edges in Step 2 can be shown
in a similar way to the proof of Lemma 9. Both the unpaired
k2-DPC in Step 3(a) and the1-fault unpaired(k2 − 1)-DPC in
Step 3(b) exist sincek2 = k = m − k ≤ m − 3. Whenp ̸= k2
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Fig. 11. Illustration of Procedure PairedDPC-I.

(Step 4(a)) the hamiltonian path betweenyiq
and tq in G2 exists

since|F ′| ≤ 2(k2−3)+1 = 2k−5 = m−5. By the construction,
tk2 ̸∈ {û, v̂, ˆyik2

} ∪ {ŷij
, t̂j |j ∈ I2\{p, q, k2}}. The (k2 − 1)-

DPC in G3 exists since2(k2 − 1) = 2k − 2 = m − 2. Similarly,
whenp = k2 (Step 4(b)), we can seetk2 ̸∈ {û, v̂} ∪ {ŷij

, t̂j |j ∈
I2\{p, q, r}} and the existence of the hamiltonian path inG2 and
1-fault (k2 − 2)-DPC in G3.

When k2 = k ≥ 3, f = 0, and k′2 = k2, the following
Procedure PairedDPC-J constructs ak2-DPC. The procedure is
very similar to Procedure PairedDPC-I. Its correctness can be
shown in a similar way to the proof of Lemma 10, and it is
omitted in this paper.

Procedure PairedDPC-J(H0 ⊕ H1, S, T, F )
/* Under the condition ofk2 = k ≥ 3, f = 0, andk′2 = k2. See
Fig. 12. */

1) Let α = ˆtk2 . Here,α is a free vertex inG3.
2) a) Caseᾱ is a free vertex:

Let (x1, y1) = (ᾱ, α). Pick up k2 − 1 free edges
(xj , yj), j ∈ I2\1, with xj ∈ V (H0) andyj ∈ V (G2).

b) Caseᾱ is a source, saysp:
Pick up k2 − 1 free edges(xj , yj), j ∈ I2\p, with
xj ∈ V (H0) andyj ∈ V (G2).

3) a) Caseᾱ is a free vertex:
Find an unpaired k2-DPC joining {sj |j ∈ I2} and
{xj |j ∈ I2} in H0. Let sj-path in the unpairedk2-
DPC join sj andxij

, j ∈ I2. We let yip
= α.

b) Caseᾱ is a sourcesp:
Regardingsp as avirtual fault, find anunpaired(k2−
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Fig. 12. Illustration of Procedure PairedDPC-J.

1)-DPC joining {sj |j ∈ I2\p} and {xj |j ∈ I2\p} in
H0. Let sj-path in the unpaired DPC joinsj andxij

,
j ∈ I2\p. Let sp-path be(sp), and letxip

= sp and
yip

= α.
4) a) Casep ̸= k2:

Let q ∈ I2 with q ̸= p, k2. Find
H[yiq

, tq|G2, F ′], where F ′ = {yij
, tj |j ∈

I2\{p, q, k2}} ∪ {tp}. Let the hamiltonian
path be (yiq

, Pu, u, yik2
, P ′, tk2 , v, Pv, tq). Find

(k2 − 1)-DPC[{(û, v̂), (yip
, t̂p)} ∪ {(ŷij

, t̂j)|j ∈
I2\{p, q, k2}}|G3, ∅]. Merge the hamiltonian path and
(k2 − 1)-DPC with edges(u, û), (v, v̂), (tp, t̂p), and
(yij

, ŷij
), (tj , t̂j), j ∈ I2\{p, q, k2}.

b) Casep = k2:
Let q, r ∈ I2 with q, r ̸= k2. Find H[yiq

, tq|G2, F ′],
whereF ′ = {yij

, tj |j ∈ I2\{p, q, r}} ∪ {tk2}. Let the
hamiltonian path be(yiq

, Pu, u, yir
, P ′, tr, v, Pv, tq).

Find (k2 − 2)-DPC[{(û, v̂)} ∪ {(ŷij
, t̂j)|j ∈

I2\{p, q, r}}|G3, F ′′], where F ′′ = {yip
}. Merge

the hamiltonian path and(k2 − 2)-DPC with edges
(u, û), (v, v̂), (yip

, tk2), and (yij
, ŷij

), (tj , t̂j),
j ∈ I2\{p, q, r}.

5) Merge thek2 disjoint paths joiningsj andxij
in H0 andk2

disjoint paths joiningyij
andtj in H1 with edges(xij

, yij
),

j ∈ I2.

B. Restricted HL-graphs

Vaidya et al.[35] introduced a class of hypercube-like inter-
connection networks, calledHL-graphs, which can be defined by
applying the⊕ operation repeatedly as follows:HL0 = {K1};
for m ≥ 1, HLm = {G0 ⊕ G1|G0, G1 ∈ HLm−1}. Then,
HL1 = {K2}; HL2 = {C4}; HL3 = {Q3, G(8, 4)}. Here,C4 is
a cycle graph with4 vertices,Q3 is a 3-dimensional hypercube,
and G(8, 4) is a recursive circulant which is defined as follows:
the vertex set is{vi|0 ≤ i ≤ 7} and the edge set is{(vi, vj)|i+1

or i + 4 ≡ j (mod 8)}. G(8, 4) is isomorphic to twisted cube
TQ3 and Möbius ladder with four spokes as shown in Figure 13.

In [27], a subclass of nonbipartite HL-graphs, calledrestricted
HL-graphs, was introduced by the authors, which is defined
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Fig. 13. Isomorphic graphs.

recursively as follows:RHLm = HLm for 0 ≤ m ≤ 2;
RHL3 = HL3\Q3 = {G(8, 4)}; RHLm = {G0 ⊕ G1|G0, G1 ∈
RHLm−1} for m ≥ 4. A graph which belongs toRHLm is called
an m-dimensional restricted HL-graph.Many of the nonbipartite
hypercube-like interconnection networks such as crossed cube,
Möbius cube, twisted cube, multiply twisted cube, Mcube, gen-
eralized twisted cube, etc. proposed in the literature are restricted
HL-graphs with the exception of recursive circulantG(2m, 4)

and “near” bipartite interconnection networks such as twistedm-
cube. In fact, everyG(2m, 4) with odd m is an m-dimensional
restricted HL-graph. Some works on HL-graphs and restricted
HL-graphs appeared in the literature; for example, hamiltonicity
of HL-graphs[20], fault-hamiltonicity of restricted HL-graphs[27],
and fault-panconnectivity and fault-pancyclicity of restricted HL-
graphs[30].

In this subsection, we are to construct anf -fault paired many-
to-manyk-DPC in anm-dimensional restricted HL-graph for any
f and k ≥ 2 with f + 2k ≤ m by employing Theorem 5. For
our purpose, we need the unpaired many-to-many disjoint path
coverability of restricted HL-graphs with faulty elements. It was
considered in [25] as follows.

Lemma 11: [25] Every m-dimensional restricted HL-graph,
m ≥ 3, is f -fault unpaired many-to-manyk-disjoint path cov-
erable for anyf andk ≥ 1 with f + k ≤ m − 2.

The existence of a paired many-to-many2-DPC in 4-
dimensional restricted HL-graphs is checked by a computer
program for eachG(8, 4) ⊕ G(8, 4) in RHL4, sourcess1 and
s2, and sinkst1 and t2. Thus, we have the lemma.

Lemma 12: Every4-dimensional restricted HL-graph is0-fault
paired many-to-many2-disjoint path coverable.

Now, we are ready to state the paired many-to-many disjoint
path coverability of restricted HL-graphs.

Theorem 6: Every m-dimensional restricted HL-graph,m ≥
3, is f -fault paired many-to-manyk-disjoint path coverable for
any f andk ≥ 2 with f + 2k ≤ m.

Proof: The proof is by induction onm. For m = 3, the
theorem is vacantly true sincef + 2k ≥ 4 > m. For m = 4, the
theorem holds true by Lemma 12. Letm ≥ 5. Theorem 5 and
Lemma 11 lead to the theorem.

Corollary 2: Every m-dimensional restricted HL-graph,m ≥
3, is f -fault hybrid many-to-many(kp, ku)-disjoint path coverable
for any f , kp, andku with kp + ku ≥ 2 andf +2(kp + ku) ≤ m.

C. Recursive circulantG(2m, 4)

Recursive circulant is an interconnection network proposed in
[26]. Recursive circulantG(N, d), d ≥ 2, is defined as follows:
the vertex setV = {v0, v1, v2, · · ·, vN−1}, and the edge set
E = {(vi, vj) | there existsk, 0 ≤ k ≤ ⌈logd N⌉ − 1, such

that i + dk ≡ j (mod N)}. G(N, d) is a circulant graph withN
vertices and jumps of powers ofd, d0, d1, · · · , d⌈logd N⌉−1.

In this work, our attention is restricted toG(N, d) with N = 2m

and d = 4. G(2m, 4), whose degree ism, compares favorably
to the hypercubeQm. While retaining the attractive properties
of hypercubeQm such as node-symmetry, recursive structure,
the connectivity, etc., it achieves noticeable improvements in
diameter[26] and possesses a complete binary tree with2m − 1

vertices as a subgraph[19].G(N, d) with degree three or higher is
hamiltonian-connected[7].G(N, d) with N = cdm and1 ≤ c < d

is hamiltonian decomposable[1], [13], [21], that is, the set of
edges can be partitioned into edge-disjoint hamiltonian cycles
(and a 1-factor when the degree is odd). In [13], the edge
forwarding index and the bisection width of recursive circulants
were also analyzed.

In this subsection, we will construct anf -fault paired many-
to-many k-DPC in recursive circulantG(2m, 4) for any f and
k ≥ 2 with f + 2k ≤ m. The unpaired many-to-many disjoint
path coverability ofG(2m, 4) explored in [29] are shown below.
It will be utilized to establish our result. We denote byG × G′

the product of graphsG andG′.

Lemma 13: [29] G(2m, 4) with m ≥ 3, G(2m−1, 4)×K2 with
m ≥ 4, andG(2m−2, 4)×C4 with m ≥ 5 are allf -fault unpaired
many-to-manyk-disjoint path coverable for anyf andk ≥ 1 with
f + k ≤ m − 2.

Now, we consider the paired many-to-many disjoint path cov-
erability of recursive circulantG(2m, 4). Due to its recursive
structure,G(2m, 4) is isomorphic to some graph[G(2m−2, 4) ×
K2] ⊕ [G(2m−2, 4) × K2]. To employ Theorem 5, we need to
develop the paired many-to-many disjoint path coverability of
G(2m−2, 4)×K2 as well asG(2m−2, 4). For this kind of technical
reasons, we will show a stronger result than the aforementioned,
as stated in Theorem 7. The proof proceeds by induction onm.
Basis will be shown in Lemma 14.

Lemma 14: (a) G(24, 4) is 0-fault paired many-to-many2-
disjoint path coverable[24].
(b) G(24, 4)×K2 is 1-fault paired many-to-many2-disjoint path
coverable.

Proof: The proof of (b) is completed according to the
proof of Theorem 5 given in Subsection III-A. Notice that Proce-
dures PairedDPC-C, PairedDPC-E, PairedDPC-F, PairedDPC-H,
PairedDPC-I, and PairedDPC-J are never employed since all of
the procedures assumek ≥ 3 andm ≥ 6.

Theorem 7: G(2m, 4) with m ≥ 3, G(2m−1, 4) × K2 with
m ≥ 4, andG(2m−2, 4) × C4 with m ≥ 5 are all f -fault paired
many-to-manyk-disjoint path coverable for anyf andk ≥ 2 with
f + 2k ≤ m.

Proof: Let G′ = G(2m−2, 4) andG′′ = G(2m−3, 4) × K2.
Observe thatG(2m−1, 4)×K2 is isomorphic to some graph[G′′×
K2]⊕ [G′′×K2], and that each ofG(2m, 4) andG(2m−2, 4)×C4

is isomorphic to some graph[G′×K2]⊕ [G′×K2]. Furthermore,
G′′ × K2 is isomorphic toG(2m−3, 4) × C4. The proof is by
induction onm. For G(23, 4), the theorem is vacantly true. Base
cases hold forG(24, 4) by Lemma 14(a), forG(23, 4) × K2 by
Lemma 12, and forG(24, 4)×K2 by Lemma 14(b). ForG(2m, 4)

with m ≥ 5, G(2m−1, 4)×K2 with m ≥ 6, andG(2m−2, 4)×C4

with m ≥ 5, by Theorem 5 and Lemma 13, paired many-to-many
disjoint path covers are constructed.
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IV. CONCLUDING REMARKS

In this paper, we considered many-to-many disjoint path covers
of the three types: paired, unpaired, and hybrid type, and inves-
tigated some interesting properties including their relationships,
application to strong hamiltonicity, and necessary conditions.
Also, we gave a construction scheme for paired many-to-many
disjoint path covers inH0 ⊕ H1, where H0 = G0 ⊕ G1 and
H1 = G2 ⊕G3. Mainly utilizing the construction, we proved that
everym-dimensional restricted HL-graph and recursive circulant
G(2m, 4) aref -fault paired many-to-manyk-disjoint path cover-
able for anyf and k ≥ 2 with f + 2k ≤ m. The boundm on
f + 2k is improved by one as compared with [28], and thus the
gap between the bound achieved and the boundm+1 of necessity
is now one.

To construct anf -fault paired many-to-manyk-disjoint path
cover for the hardest case ofk2 = k and f0 = f (Case IV), the
unpaired many-to-many disjoint path coverability of component
H0 of H0 ⊕ H1 was employed. It has the effect of keeping
out some troublesome cases, and thus the construction is greatly
simplified. If hybrid many-to-many disjoint path coverability of
H0 were available, the construction for the case ofk0 ≥ 1 and
k2 ≥ 2 would be simplified, too. Of course, this approach is
applicable for any graphs which can be defined recursively.

It is open to bridge the “gap” between the bounds achieved
and the bounds of necessity for the three kinds of many-to-
many disjoint path covers in restricted HL-graphs and recursive
circulant G(2m, 4) addressed in Section III. Among them, we
conjecture that for some constantm0, every m-dimensional
restricted HL-graph andG(2m, 4) with m ≥ m0 aref -fault hybrid
many-to-many(kp, ku)-disjoint path coverable for anykp ≥ 1 and
ku ≥ 2 with f +2k ≤ m+1, wherek = kp +ku. Under the same
condition of f + 2k ≤ m + 1, the hybrid many-to-many disjoint
path cover is more possible compared with the paired counterpart.
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