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Abstract

A Disjoint Path Cover (DPC for short) of a graph is a set of pairwise (inter-
nally) disjoint paths that altogether cover every vertex of the graph. Given
a set S of k sources and a set T of k sinks, a many-to-many k-DPC between
S and T is a disjoint path cover each of whose paths joins a pair of source
and sink. It is classified as paired if each source of S must be joined to a
designated sink of T , or unpaired if there is no such constraint. In this paper,
we show that every m-dimensional restricted hypercube-like graph with at
most m − 3 faulty vertices and/or edges being removed has a paired (and
unpaired) 2-DPC joining arbitrary two sources and two sinks where m ≥ 5.
The bound m − 3 on the number of faults is optimal for both paired and
unpaired types.

Keywords: Disjoint path cover, hypercube-like graph, hamiltonian path,
hamiltonian cycle, RHL graph, fault tolerance, interconnection network.

1. Introduction

An interconnection network is frequently modeled as a graph in which
the vertices and edges represent nodes and links, respectively. Since node
and/or link failure is inevitable in a large network, fault tolerance is essential
to the network performance. One of the central issues in the study of inter-
connection networks is to detect (vertex-)disjoint paths, which is naturally
related to routing among nodes and fault tolerance of the network [17, 25].
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Disjoint path is one of the fundamental notions in graph theory from
which many properties of a graph can be deduced [2, 25]. A disjoint path
cover (DPC for short) of a graph is a set of pairwise (internally) disjoint
paths that collectively cover every vertex of the graph. The disjoint path
cover problem finds applications in many areas such as software testing,
database design, and code optimization [1, 27]. In addition, the problem
is concerned with applications where full utilization of network nodes is
important [32].

Let G be an undirected graph. For a set of k sources S = {s1, s2, . . . , sk}
and a set of k sinks T = {t1, t2, . . . , tk} such that S∩T = ∅, a many-to-many
k-DPC is a disjoint path cover composed of k paths each of which joins a
pair of source and sink. It partitions the vertex set V (G) into k subsets.
The many-to-many k-DPC is called paired if each source si should be joined
to a specific sink ti, whereas it is called unpaired if each source si can be
freely joined to a sink tj under an arbitrary bijection σ from S to T where
tj = σ(si). The other two possible k-disjoint path covers are of one-to-
many type joining S = {s} and T = {t1, t2, . . . , tk}, and of one-to-one type
joining S = {s} and T = {t}, which are clearly understandable. For more
discussion, refer to [23, 32].

Definition 1. A graph G is called f -fault paired (resp. unpaired) k-disjoint
path coverable if f + 2k ≤ |V (G)| and G has a paired (resp. unpaired) k-
DPC joining an arbitrary set S of k sources and a set T of k sinks in G \F
for any fault set F where S ∩ T = ∅ and |F | ≤ f .

An f -fault paired k-disjoint path coverable graph is, by definition, f -
fault unpaired k-disjoint path coverable. Given S and T in a graph G, it
is NP-complete to determine if there exists a one-to-one, one-to-many, or
many-to-many k-DPC joining S and T for any fixed k ≥ 1 [32, 33]. The
disjoint path cover problems have been studied for graphs such as hypercubes
[5, 6, 7, 10, 13, 19, 24], recursive circulants [20, 21, 32, 33], and hypercube-like
graphs [18, 22, 28, 33], cube of a connected graph [29, 30], and k-ary n-cubes
[35, 37]. Necessary conditions for a graph G to be f -fault many-to-many
k-disjoint path coverable have been established in terms of its connectivity
κ(G) and its minimum degree δ(G) [32, 33], as shown below.

Lemma 1. (a) If a graph G with |V (G)| ≥ f + 2k + 1 is f -fault unpaired
k(≥ 2)-disjoint path coverable, then f + k ≤ δ(G)− 1 [33].
(b) If a graph G is f -fault paired k-disjoint path coverable, then f + 2k ≤
κ(G) + 1 [32].
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Meanwhile, Restricted Hypercube-Like graphs (RHL graphs for short)
[31] are a subset of nonbipartite hypercube-like graphs that have received
much attention over the recent decades. For example, crossed cubes [12],
Möbius cubes [8], twisted cubes [14], multiply twisted cubes [11], Mcubes
[36], and generalized twisted cubes [4] are all RHL graphs. Anm-dimensional
RHL graph, which will be defined in the next section, has 2m vertices. It is
an m-regular graph of connectivity m.

Every m-dimensional RHL graph with m ≥ 3 is known to be (a) f -
fault unpaired k-disjoint path coverable for any f and k ≥ 1 subject to
f + k ≤ m− 2 [28], and (b) f -fault paired k-disjoint path coverable for any
f and k ≥ 2 subject to f + 2k ≤ m [33]. The bound m− 2 on f + k for the
unpaired type and the bound m on f+2k for the paired type respectively are
one less than the optimal bounds of the necessary conditions of Lemma 1.
It is still an open problem whether the optimal bounds can be achieved for
all RHL graphs.

The problem has been partially solved in the sense that recursive cir-
culants have the optimal bounds. Note that every odd-dimensional recur-
sive circulant G(2m, 4) is included in RHL graphs (while not every even-
dimensional recursive circulant is). Every m-dimensional recursive circulant
G(2m, 4) with m ≥ 5 is known to be (a) f -fault unpaired k-disjoint path
coverable for any f and k ≥ 2 subject to f + k ≤ m− 1 [20], and (b) f -fault
paired k-disjoint path coverable for any f and k ≥ 2 subject to f+2k ≤ m+1
[21].

In this paper, we achieve the optimal bounds of the necessary conditions
of Lemma 1 for all RHL graphs where k = 2. In other words, we prove our
main theorem that every m-dimensional RHL graph is (m− 3)-fault paired
2-disjoint path coverable where m ≥ 5. This leads to the fact that the graph
is also (m−3)-fault unpaired 2-disjoint path coverable. The bound m−3 on
the number of faults is the maximum possible for both paired and unpaired
types.

Our contribution can also be seen as a generalization of fault-hamiltonicity
of RHL-graphs, discovered in [31], that every m-dimensional RHL graph is
(m−3)-fault hamiltonian-connected, where a graph is said to be hamiltonian-
connected if every pair of vertices are joined by a hamiltonian path. Note
that a paired (or unpaired) 2-disjoint path coverable graph is always hamiltonian-
connected [32]. To be precise, a graph G has a hamiltonian path from s to
t passing through a prescribed edge (x, y), where {x, y}∩{s, t} = ∅ and x is
required to be visited before y, if and only if G has a paired 2-DPC joining
the (s, x) and (y, t) pairs (i.e., s1 = s, t1 = x, s2 = y, and t2 = t). If the
order in which the two end-vertices of the prescribed edge (x, y) are encoun-
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(c) Möbius ladder

Figure 1: The 3-dimensional RHL graph.

tered during traversal of a hamiltonian path from s to t does not matter,
it suffices to employ an unpaired 2-DPC joining S = {s, t} and T = {x, y}
(instead of the paired one).

The rest of this paper is organized as follows. We give preliminaries in
Section 2. Sections 3 and 4 are then devoted to a proof of our main theorem.
Finally, we conclude in Section 5.

2. Preliminaries

A 3-dimensional RHL graph is isomorphic to recursive circulant G(8, 4)
that has a vertex set {vi : 0 ≤ i ≤ 7} and an edge set {(vi, vj) : i + 1 or
i + 4 ≡ j (mod 8)}. The 3-dimensional RHL graph is also isomorphic to a
3-dimensional twisted cube TQ3 or a Möbius ladder with four spokes [26]
shown in Figure 1. An m-dimensional RHL graph, m ≥ 4, is recursively
defined with a graph operation ⊕. Given two graphs G0 and G1 with the
same number of vertices and a bijection φ from V (G0) to V (G1), we denote
by G0 ⊕φ G1 the graph whose vertex set is V (G0) ∪ V (G1) and edge set is
E(G0)∪E(G1)∪{(v, φ(v)) : v ∈ V (G0)}. To simplify the notation, we often
omit the bijection φ from ⊕φ when it is clear in the context.

Definition 2. ([31]) A graph that belongs to RHLm is called an m-dimensional
RHL graph where

• RHL3 = {G(8, 4)}, and

• RHLm = {G0⊕φG1 : G0, G1 ∈ RHLm−1, φ is a bijection from V (G0)
to V (G1)} for m ≥ 4.
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Every m-dimensional RHL graph, m ≥ 3, is nonbipartite and has 2m

vertices of degree m. It can be easily verified by induction on m that the
graph has no triangle (cycle of length three) and there exist at most two
common neighbors for any pair of vertices in the graph. Construction of
paired DPCs in RHL graphs was suggested in [32] and improved in [33] as
follows.

Lemma 2. ([33]) Every m-dimensional RHL graph, m ≥ 3, is f -fault
paired k-disjoint path coverable for any f and k ≥ 2 subject to f + 2k ≤ m.

The disjoint path cover of a graph is naturally related to its hamiltonian
properties. For instance, a hamiltonian path between two distinct vertices
in a graph G is in fact a 1-DPC, irrespective of its type, of G joining the
vertices. By definition, a graph of order at least three has a one-to-many
2-DPC for any S = {s} and T = {t1, t2} if and only if it is hamiltonian-
connected. Also, a graph has a one-to-one 2-DPC for any S = {s} and
T = {t} if and only if it is hamiltonian. The hamiltonian properties of RHL
graphs were studied in [31] as shown below, where a graph G is said to
be f -fault hamiltonian-connected (resp. hamiltonian) if any pair of vertices
are joined by a hamiltonian path (resp. there exists a hamiltonian cycle) in
G \ F for any fault set F where |F | ≤ f . For more discussion, refer to, for
example, [15, 16, 34].

Lemma 3. ([31]) Every m-dimensional RHL graph, m ≥ 3, is (m−3)-fault
hamiltonian-connected and is (m− 2)-fault hamiltonian.

Using a many-to-many disjoint path cover, constructions of a hamilto-
nian path/cycle passing through prescribed edges were suggested in [29, 32,
33]. It was shown that if G is f -fault paired k(≥ 2)-disjoint path coverable,
then for any fault set F where |F | ≤ f , graph G \F has a hamiltonian path
between arbitrary two vertices s and t that passes through any sequence of
k − 1 pairwise nonadjacent edges ((x1, y1), (x2, y2), . . . , (xk−1, yk−1)) in the
specified order where s 6= xi, yi and t 6= xi, yi for all 1 ≤ i ≤ k − 1. The s-t
hamiltonian path passes through each edge (xi, yi) in the direction from xi
to yi. For the problem of hamiltonian path/cycle through prescribed edges,
refer to [3, 9].

Hereafter, a disjoint path cover whose type is not specified is assumed
to be paired. We denote by k-DPC[{(s1, t1), . . . , (sk, tk)}|G,F ] a k-DPC
joining S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} in G\F where S∩T = ∅.
Thus, 1-DPC[{(v, w)}|G,F ] is a hamiltonian path between two vertices v
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and w in G \ F . In a generalized k-DPC[{(s1, t1), . . . , (sk, tk)}|G,F ], we
allow any source si to be identical to its sink ti. If si = ti, then the si-ti
path in the generalized k-DPC is necessarily one-vertex path. A generalized
2-DPC[{(s1, t1), (s2, t2)}|G,F ] can be derived from one of the following three
DPCs unless s1 = t1 and s2 = t2:

• 2-DPC[{(s1, t1), (s2, t2)}|G,F ] if s1 6= t1 and s2 6= t2,

• 1-DPC[{(s1, t1)}|G,F ∪ {s2}] if s1 6= t1 and s2 = t2, and

• 1-DPC[{(s2, t2)}|G,F ∪ {s1}] if s1 = t1 and s2 6= t2.

Both of the sources and sinks are called terminals. A vertex v is called
to be free if it is neither a fault nor a terminal. An edge (v, w) is called
to be free if it is nonfaulty and both v and w are free. Graphs G0 and G1

are called the components of G0 ⊕ G1. For a vertex v in a component Gi,
we denote by v̄ the vertex adjacent to v in the other component G1−i, for
i = 0, 1.

3. Paired 2-DPCs in RHL Graphs

In this section, we prove our main theorem by induction on m; however,
three exceptional cases of the proof will be deferred to the next section.
The induction hypothesis is that both components G0 and G1 of an m-
dimensional RHL graph G0 ⊕ G1 are (m − 4)-fault paired 2-disjoint path
coverable for m ≥ 6. Sometimes, we will employ Lemma 2. Another useful
fact from Lemma 3 is that both G0 and G1 are (m − 4)-fault hamiltonian-
connected and (m− 3)-fault hamiltonian for m ≥ 5.

In case when a single component Gi contains all the m − 3 faults, we
need some stronger properties, stated in Lemma 4, than the aforementioned
property that Gi \ F has a hamiltonian cycle. For a graph G with a hamil-
tonian cycle C, a nonfaulty edge (x, y) of G is called an x-chord or y-chord
w.r.t. (with respect to) C if x, y ∈ V (C) and (x, y) /∈ E(C). A path in a
graph is represented as a sequence of vertices.

Lemma 4. Suppose that a graph Gi of RHLm−1, m ≥ 5, has a fault set F
where |F | = m − 3. Let Ch be a hamiltonian cycle of Gi \ F , and u and v
be arbitrary two vertices on the cycle Ch.
(a) Gi \ F has a u-chord or a v-chord w.r.t. Ch unless m = 5 and p = 2
where p is the number of faulty common neighbors of u and v.
(b) Let Ch be represented by (u, x, v, y, P ) for some subpath P . Then, Gi \F
has a u-chord different from (u, y) w.r.t. Ch if there is no v-chord w.r.t. Ch.

6



Proof. Among the m− 1 edges incident to u, there exist m− 3 candidates
for u-chords excluding the two edges of Ch. Similarly, there also exist m− 3
candidates for v-chords. The total number of candidates for u-chords and
v-chords is 2m− 6 if (u, v) 6∈ E(G) \ E(Ch); otherwise, the total number is
2m − 7. Observe that a single faulty edge excludes at most one edge from
the candidates; a single faulty vertex excludes one edge from the candidates
if it is a neighbor of u or v, but not both; however, a single faulty vertex
excludes two edges from the candidates if it is a common neighbor of u and
v. Keep in mind that Gi has no triangle and any pair of vertices of Gi have
at most two common neighbors.

Suppose for the first case that (u, v) 6∈ E(G) \ E(Ch). At most |F | + p
edges are eventually excluded from the 2m − 6 candidates (where p is the
number of faulty common neighbors of u and v). Thus, the number of
remaining candidate chords is at least (2m − 6) − (|F | + p) = (2m − 6) −
(m − 3 + p) = m − 3 − p. The number is at least one unless m = 5 and
p = 2 since m ≥ 5 and p ≤ 2. Suppose for the second case that (u, v) ∈
E(G) \ E(Ch). There exists no common neighbor of u and v since Gi has
no triangle. Therefore, at most |F | edges are eventually excluded from the
2m−7 candidates. As a result, (2m−7)−|F | = (2m−7)−(m−3) = m−4 > 0
for every m ≥ 5. Lemma 4a is proved.

Suppose that Ch is (u, x, v, y, P ) and there is no v-chord w.r.t. Ch. By
Lemma 4a, there exists a u-chord. Suppose the u-chord is (u, y); otherwise,
we are done. Then, u and v have two nonfaulty common neighbors, x and
y. Furthermore, all the m − 3 faults are adjacent or incident to v since no
v-chord exists. These imply that no fault is adjacent or incident to u, since
every common neighbor of u and v is nonfaulty and (u, v) 6∈ E(G). Thus,
the number of the u-chords is at least m − 3 ≥ 2, which means that there
exists another u-chord different from (u, y). Therefore, Lemma 4b is also
proved. �

Now, we are ready to prove our main theorem. We do not explicitly
separate the base step of m = 5 from the inductive step of m ≥ 6 to avoid
repetition. The three exceptional cases, deferred to the next section, will
occur only in the base step of m = 5.

Theorem 1. Every m-dimensional RHL graph is (m − 3)-fault paired 2-
disjoint path coverable where m ≥ 5.

Proof. Let G0 ⊕ G1 be an m-dimensional RHL graph where G0, G1 ∈
RHLm−1 and m ≥ 5. For a virtual faulty edge set F ′, a 2-DPC of G0 ⊕

7



G1 \ (F ∪ F ′) is also a 2-DPC of G0 ⊕G1 \ F . Thus, by treating arbitrary
m− 3− |F | nonfaulty edges as virtually faulty, we assume that

|F | = m− 3.

F0 and F1 denote the fault sets in G0 and G1, respectively. F2 denotes
the set of faulty edges between G0 and G1. Then, F = F0 ∪ F1 ∪ F2. Let
f0 = |F0|, f1 = |F1|, and f2 = |F2| so that f = |F | = f0 + f1 + f2 = m− 3.
We also denote the number of source-sink pairs in Gi by ki where i = 0, 1,
and the number of source-sink pairs between G0 and G1 by k2. Then,
k = k0 + k1 + k2 = 2. We assume without loss of generality (wlog) that

k0 ≥ k1 and if k0 = k1, f0 ≥ f1.

Furthermore, it is assumed that

• s1, s2, t1, t2 ∈ V (G0) if k0 = 2,

• s1, s2, t1 ∈ V (G0) and t2 ∈ V (G1) if k0 = k2 = 1,

• s1, t1 ∈ V (G0) and s2, t2 ∈ V (G1) if k0 = k1 = 1, and

• s1, s2 ∈ V (G0) and t1, t2 ∈ V (G1) if k2 = 2.

We will construct a 2-DPC[{(s1, t1), (s2, t2)}|G0 ⊕G1, F ] for any sets F , S,
and T where |S| = |T | = 2, S ∩ T = ∅, and |F | = m − 3. There are three
cases depending on the distribution of faults.

Case 1: f0 = f = m− 3.
There exists a hamiltonian cycle Ch in G0 \ F0 by Lemma 3. We have four
subcases.

Case 1.1: k0 = 2.
The hamiltonian cycle Ch can be divided into four disjoint subpaths. For
example, let Ch be (s1, Px, x, s2, Py, y, t1, Pz, z, t2, Pw, w). Then, the cy-
cle Ch can be divided into subpaths (s1, Px, x), (s2, Py, y), (t1, Pz, z), and
(t2, Pw, w). The subpath (s1, Px, x) is a one-vertex path (s1) if s1 = x,
which means that s1 is adjacent to s2 in Ch. Each of the subpaths (s2, Py, y),
(t1, Pz, z), and (t2, Pw, w) may also be a one-vertex path. Even if the order
of the terminals in Ch is different from that in the aforementioned example,
we can always extract four disjoint paths from Ch. As shown in Figure 2a,
it suffices to merge the four paths of G0 and a 2-DPC of G1 to obtain the
final 2-DPC of G0 ⊕ G1. For the aforementioned example, we must use a
2-DPC[{(x̄, z̄), (ȳ, w̄)}|G1, ∅] with the edges (x, x̄), (y, ȳ), (z, z̄), and (w, w̄).
The existence of 2-DPC in G1 is due to Lemma 2.
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(a) Case 1.1 (b) Repr. 1 of Case 1.2

(c) Repr. 2 of Case 1.2 (d) Repr. 3 of Case 1.2

Figure 2: Illustrations of Cases 1.1 and 1.2 in the proof of Theorem 1.
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Case 1.2: k0 = k2 = 1.
The hamiltonian cycle Ch of G0 \ F0 can be expressed in one of the follow-
ing three representations by traversing it in the reverse order if necessary.
Vertices u and v are used instead of s1 and t1 such that {u, v} = {s1, t1}.

Repr. 1: Ch = (u, P, x, v, P ′, y, s2, P
′′, z) where x̄, ȳ 6= t2. Each of the

subpaths (u, P, x), (v, P ′, y), and (s2, P
′′, z) may be a one-vertex path. As

shown in Figure 2b, it suffices to merge Ch and a generalized 2-DPC[{(x̄, ȳ), (z̄, t2)}|G1, ∅]
with (x, x̄), (y, ȳ), and (z, z̄) and discard (x, v), (y, s2), and (z, u). The gen-
eralized 2-DPC exists by Lemma 2 if z̄ 6= t2, and by Lemma 3 otherwise.

Repr. 2: Ch = (u, t̄2, v, w, P, y, s2, P
′, z) where v, w, y, and s2 are

all distinct. As shown in Figure 2c, it suffices to merge Ch and a 2-
DPC[{(ȳ, z̄), (w̄, t2)}|G1, ∅] with (w, w̄), (y, ȳ), and (z, z̄) and discard (v, w),
(y, s2), and (z, u). The existence of 2-DPC in G1 is due to Lemma 2.

Repr. 3: Ch = (u, v, s2, P, z) where v̄ = t2. As shown in Figure 2d,
it suffices to merge Ch and 1-DPC[{(z̄, t2)}|G1, ∅] with (z, z̄) and discard
(v, s2) and (z, u). The 1-DPC of G1 exists by Lemma 3.

Case 1.3: k0 = k1 = 1.
The hamiltonian cycle Ch of G0 \F0 can be expressed in one of the following
three representations.

Repr. 1: Ch = (s1, x, P, y, t1, P
′) where x and y are distinct and moreover

x̄ or ȳ is free. If one of x̄ and ȳ is a terminal, let wlog x̄ be s2. It suffices
to merge Ch and a generalized 2-DPC[{(s2, x̄), (ȳ, t2)}|G1, ∅] with the edges
(x, x̄) and (y, ȳ) and discard the edges (s1, x) and (y, t1). The generalized
2-DPC exists by Lemma 2 if x̄ 6= s2, and by Lemma 3 otherwise.

Repr. 2: Ch = (s1, t1, σ2, P, τ2) where {σ̄2, τ̄2} = {s2, t2}. There exists
an s1-chord or t1-chord w.r.t. Ch by Lemma 4a since s1 and t1 have no
common neighbor. Assume wlog that an s1-chord (s1, w) exists. Then,
w 6∈ {t1, σ2, τ2} and Ch can be represented by (s1, t1, σ2, Pw, w, z, Pz, τ2).
Notice that z 6= τ2; otherwise, G0 would have a triangle (s1, w, τ2), which is
a contradiction. It suffices to merge Ch and a 1-DPC[{(σ̄2, z̄)}|G1, {τ̄2}] with
the edges (s1, w), (z, z̄), and (τ2, τ̄2) and discard the edges (s1, t1), (w, z),
and (τ2, s1).

Repr. 3: Ch = (s1, x, t1, σ2, P, τ2) where {σ̄2, τ̄2} = {s2, t2}. There exists
an x-chord or σ2-chord w.r.t. Ch by Lemma 4a since x and σ2 have a non-
faulty common neighbor t1. Suppose for the first case that there exists an x-
chord (x,w). Then, w 6∈ {s1, t1, σ2, τ2}. In addition, there exists a vertex z 6∈
{w, σ2, τ2} such that Ch can be represented by (s1, x, t1, σ2, Pw, w, z, Pz, τ2)
or (s1, x, t1, σ2, Pz, z, w, Pw, τ2). Let wlog Ch be the former one. It suffices
to merge Ch and a 1-DPC[{(σ̄2, z̄)}|G1, {τ̄2}] with the edges (x,w), (z, z̄),
and (τ2, τ̄2) and discard the edges (x, t1), (w, z), and (τ2, s1). Suppose for
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the second case that there exists no x-chord but a σ2-chord (σ2, w). Then,
w 6∈ {x, t1}; moreover, w is not s1 by Lemma 4b even though w might be τ2.
In addition, Ch can be represented by (s1, x, t1, σ2, Pz, z, w, Pw, τ2) for some
z 6∈ {σ2, w}. It suffices to merge Ch and a 1-DPC[{(σ̄2, z̄)}|G1, {τ̄2}] with
the edges (σ2, w), (z, z̄), and (τ2, τ̄2) and discard the edges (t1, σ2), (z, w),
and (τ2, s1).

Case 1.4: k2 = 2.
The hamiltonian cycle Ch of G0 \F0 can be expressed in one of the following
four representations.

Repr. 1: Ch = (s1, s2, P ). Then, for some distinct vertices x and y,
Ch can be represented by (s1, s2, Px, x, y, Py) where {x̄, ȳ} ∩ {t1, t2} = ∅.
It suffices to merge Ch and a 2-DPC[{(x̄, t2), (ȳ, t1)}|G1, ∅] with the edges
(x, x̄) and (y, ȳ) and discard (s1, s2) and (x, y).

Repr. 2: Ch = (s1, P, x, s2, P
′, y) where x̄ 6= t2, ȳ 6= t1, and {x̄, ȳ} 6=

{t1, t2}. It suffices to merge Ch and a generalized 2-DPC[{(x̄, t1), (ȳ, t2)}|G1, ∅]
with (x, x̄) and (y, ȳ) and discard (x, s2) and (y, s1).

Repr. 3: Ch = (si, τi, sj , P, τj) where {i, j} = {1, 2}, τ̄i = ti, and τ̄j = tj .
Let i = 1 and j = 2 wlog. Then, Ch = (s1, τ1, s2, P, τ2) where τ̄1 = t1
and τ̄2 = t2. There exists a τ1-chord or τ2-chord by Lemma 4a. Suppose
that there exists a τ1-chord (τ1, w). Then w 6∈ {s1, s2, τ2}; moreover, Ch
can be represented by (s1, τ1, s2, Pz, z, w, Pw, τ2) for some z 6= s2, w. It suf-
fices to merge Ch and a 1-DPC[{(z̄, t2)}|G1, {t1}] with the edges (τ1, t1),
(τ1, w) and (z, z̄) and discard the edges (s1, τ1), (τ1, s2), and (z, w). Suppose
that there exists no τ1-chord but a τ2-chord (τ2, w). Then w 6∈ {s1, τ1};
furthermore, w 6= s2 by Lemma 4b. Thus, Ch can be represented by
(s1, τ1, s2, Pw, w, z, Pz, τ2) for some z 6= w, τ2. It suffices to merge Ch and
a 1-DPC[{(z̄, t2)}|G1, {t1}] with the edges (τ1, t1), (τ2, w), and (z, z̄) and
discard the edges (τ1, s2), and (w, z), and (τ2, s1).

Repr. 4: Ch = (s1, τ1, P, τ2, s2, u, P
′) where u 6∈ {s1, s2}, τ̄1 = t1, and

τ̄2 = t2. There exists a τ1-chord or τ2-chord by Lemma 4a unless m = 5
and p = 2 where p is the number of faulty common neighbors of τ1 and
τ2. The exceptional case that m = 5 and p = 2 will be dealt with later in
Lemma 14 of Section 4.2. Assume wlog that a τ1-chord (τ1, w) exists. We
have three subcases depending on the location of w. In the first subcase
of w = s2, it suffices to merge Ch and a 1-DPC[{(ū, t1)}|G1, {t2}] with the
edges (τ1, s2), (τ2, t2), and (u, ū) and discard the edges (s1, τ1), (τ2, s2), and
(s2, u). In the second subcase that w is on the subpath (P, τ2) of Ch, Ch
can be represented by (s1, τ1, Pz, z, w, Pw, τ2, s2, u, P

′), where the subpath
(w,Pw, τ2) may be a one-vertex path (τ2). It suffices to merge Ch and a
2-DPC[{(ū, t1), (z̄, t2)}|G1, ∅] with the edges (τ1, w), (z, z̄), and (u, ū) and
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discard the edges (s1, τ1), (z, w), and (s2, u). In the final subcase that w is
on (u, P ′), Ch can be represented by (s1, τ1, P, τ2, s2, u, Pw, w, z, Pz), where
(u, Pw, w) may be a one-vertex path (u). It suffices to merge Ch and a
2-DPC[{(z̄, t1), (ū, t2)}|G1, ∅] with the edges (τ1, w), (u, ū), and (z, z̄) and
discard the edges (s1, τ1), (s2, u), and (w, z).

Case 2: f1 = f = m− 3.
There is a hamiltonian cycle Ch in G1 \ F1 from Lemma 3. We have only
two subcases since we assume that k0 ≥ k1 and moreover f0 ≥ f1 whenever
k0 = k1.

Case 2.1: k0 = 2.
Suppose m ≥ 7 for the first case. Then, there exists a pair of free vertices u
and v in G0 such that (ū, v̄) is an edge of Ch. Since G0 is paired 3-disjoint
path coverable by Lemma 2, there exists a 3-DPC[{(s1, u), (v, t1), (s2, t2)}|G0, ∅].
It suffices to merge the 3-DPC and Ch with (u, ū) and (v, v̄) and discard
(ū, v̄). Suppose m = 6 for the second case. We claim that there exists a pair
of terminal u and free vertex v in G0 such that (ū, v̄) is an edge of Ch. Since
G0 has four terminals and G1 has three faults, there exists a terminal u such
that ū is nonfaulty. Let Ch = (x1, x2, . . . , xq) for some q ≥ 25 − 3 = 29, and
ū be x3 wlog. If x̄2 is not a terminal, it suffices to pick up the pair (u, x̄2);
similarly, if x̄4 is not a terminal, it suffices to pick up (u, x̄4). Now assume
that both x̄2 and x̄4 (as well as x̄3) are terminals. Then, x̄1 or x̄5, say x̄1, is
not a terminal. It suffices to pick up a pair of terminal x̄2 and free vertex
x̄1. Thus, the claim is proved. Assume wlog that s1 is such terminal u of the
claim. It suffices to merge Ch and a 2-DPC[{(v, t1), (s2, t2)}|G0, {s1}] with
(s1, s̄1) and (v, v̄) and discard (s̄1, v̄). The existence of the 1-fault 2-DPC in
G0 is due to Lemma 2. The last case of m = 5 will be dealt with later in
Lemma 15 of Section 4.2.

Case 2.2: k0 = k2 = 1.
Let the hamiltonian cycle Ch of G1 \F1 be (t2, x, P, y) where t2 6= x, y. Sup-
pose {x̄, ȳ} 6= {s1, t1} for the first case. We assume wlog that x̄ /∈ {s1, t1}.
Then, it suffices to merge Ch and a generalized 2-DPC[{(s1, t1), (s2, x̄)}|G0, ∅]
with the edge (x̄, x) and discard the edge (t2, x). Suppose {x̄, ȳ} = {s1, t1}
for the second case. There exists an x-chord or y-chord w.r.t. Ch by Lemma 4a.
Assume wlog that an x-chord (x,w) exists. Then, w 6∈ {t2, y}; moreover,
Ch can be represented by (t2, x, Pz, z, w, Pw, y) for some z 6= x,w. It suffices
to merge Ch and a generalized 2-DPC[{(s1, t1), (s2, z̄)}|G0, ∅] with the edges
(z̄, z) and (x,w) and discard the edges (t2, x) and (z, w).

Case 3: f0 < f and f1 < f .
We have four subcases depending on the distribution of terminals: k0 = 2,
k0 = k2 = 1, k0 = k1 = 1, and k2 = 2. Suppose k0 = 2 for the
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first subcase. Then, there exists a 2-DPC[{(s1, t1), (s2, t2)}|G0, F0] unless
m = 5 and f0 = 1. The 2-DPC exists by the induction hypothesis if
m ≥ 6, and by Lemma 2 if m = 5 and f0 = 0. The exceptional case
that m = 5 and f0 = 1 will be dealt with later in Lemma 16 of Sec-
tion 4.2. A path in the 2-DPC of G0 has an edge (u, v) such that both
(u, ū) and (v, v̄) are free. It suffices to merge the 2-DPC of G0 and a 1-
DPC[{(ū, v̄)}|G1, F1] with the edges (u, ū) and (v, v̄) and discard the edge
(u, v). Suppose k0 = k2 = 1 for the second subcase. Unless m = 5
and f0 = 1, there exists a 2-DPC[{(s1, t1), (s2, x)}|G0, F0] for some ver-
tex x such that (x, x̄) is free. The exceptional case that m = 5 and
f0 = 1 is deferred to Lemma 16. It suffices to merge the 2-DPC of G0

and a 1-DPC[{(x̄, t2)}|G1, F1] with edge (x, x̄). In the third subcase of
k0 = k1 = 1, it suffices to merge a 1-DPC[{(s1, t1)}|G0, F0] and a 1-
DPC[{(s2, t2)}|G1, F1]. Suppose k2 = 2 for the last subcase. Unless m = 5
and f0 = 1, there exists a 2-DPC[{(s1, x), (s2, y)}|G0, F0] for some ver-
tices x and y such that (x, x̄) and (y, ȳ) are free. The exceptional case
is deferred to Lemma 16. It suffices to merge the 2-DPC of G0 and a 2-
DPC[{(x̄, t1), (ȳ, t2)}|G1, F1] with edges (x, x̄) and (y, ȳ). The 2-DPC of G1

exists by the induction hypothesis if m ≥ 6, and by Lemma 2 if m = 5
and f1 = 0. We do not have to consider the situation that m = 5 and
f1 = 1 since it arises only in the deferred case that m = 5 and f0 = 1. This
completes the entire proof. �

Corollary 1. Every m-dimensional RHL graph is (m − 3)-fault unpaired
2-disjoint path coverable where m ≥ 5.

Corollary 2. Suppose that a graph G in RHLm has a fault set F where
m ≥ 5 and |F | ≤ m − 3. Then, the graph G \ F has a hamiltonian path
between any two vertices s and t that passes through an arbitrary prescribed
edge (x, y) in the direction from x to y provided {s, t} ∩ {x, y} = ∅.

4. Three Exceptional Cases

We first study several properties on DPCs of 4-dimensional RHL graphs
in Section 4.1, and then, utilizing them, deal with the three exceptional
cases of the proof of Theorem 1 in Section 4.2.

4.1. Properties of RHL4

The DPC properties of RHL4 are addressed in Lemmas 5 through 13.
All the lemmas given in this subsection, except Lemma 12, were verified by
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computer programs that exhaustively searched (generalized) DPCs in the
4-dimensional RHL graphs mostly on the basis of depth-first-search.

Every graph in RHL4 is 1-fault hamiltonian-connected by Lemma 3;
however, none is 2-fault hamiltonian-connected. The following lemma shows
that given two faults, there exist at least two nonfaulty vertices that have a
hamiltonian path to any other nonfaulty vertex.

Lemma 5. Let G ∈ RHL4 have a fault set F , |F | = 2. Then, there exists
a subset X of nonfaulty vertices, |X| ≥ 2, such that for each x ∈ X, there
exists a 1-DPC[{(x, y)}|G,F ] for any nonfaulty vertex y 6= x.

Every graph in RHL4 is (paired) 2-disjoint path coverable by Lemma 2;
however, none except one graph is 1-fault 2-disjoint path coverable.1 The
following lemma shows that given a single fault and three terminals s1, t1,
and s2, there exists a generalized 2-DPC joining pairs (s1, t1) and (s2, x) for
some nonfaulty vertex x.

Lemma 6. Let G ∈ RHL4 have a fault set F , |F | = 1, and three terminals
s1, t1, and s2 be given in G \ F . Then, there exists a subset X of nonfaulty
vertices, |X| ≥ 3, such that for each x ∈ X, there exists a generalized 2-
DPC[{(s1, t1), (s2, x)}|G,F ].

No graph in RHL4 is (1-fault) 3-disjoint path coverable by Lemma 1b.
Lemmas 7 and 8 show that given a fault set F , |F | ≤ 1, and four terminals s1,
t1, s2, and t2, we can always pick up two nonfaulty vertices x and y such that
there exists a generalized 3-DPC: one path of the generalized 3-DPC joins
si and ti, and the other two join {sj , tj} and {x, y}, where {i, j} = {1, 2}.

Lemma 7. Let four terminals s1, t1, s2, and t2 be given in G ∈ RHL4.
Then, for any vertex x in G (whether it is a terminal or not), there exists a
subset Yx of vertices (depending on x), |Yx| ≥ 3, such that for each y ∈ Yx,
at least one of the following four DPCs exists where F = ∅:
• a generalized 3-DPC[{(s1, t1), (s2, x), (y, t2)}|G,F ],
• a generalized 3-DPC[{(s1, t1), (s2, y), (x, t2)}|G,F ],
• a generalized 3-DPC[{(s1, x), (y, t1), (s2, t2)}|G,F ], and
• a generalized 3-DPC[{(s1, y), (x, t1), (s2, t2)}|G,F ].

1The unique 4-dimensional RHL graph that is 1-fault 2-disjoint path coverable is a
graph G0 ⊕φ G1 under a bijection φ such that φ(vi) = w3i for every i, where V (G0) =
{v0, v1, . . . , v7}, V (G1) = {w0, w1, . . . , w7}, vi is adjacent to both vi+1 and vi+4 for every
i, and similarly for wi. Here, all arithmetic on the indices of vertices is done modulo 8.
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Lemma 8. Let G ∈ RHL4 have a fault set F , |F | = 1, and four terminals
s1, t1, s2, and t2 be given in G\F . Then, there exists a subset X of nonfaulty
vertices (whether terminals or not), |X| ≥ 2, such that for each x ∈ X, there
exists a subset Yx of nonfaulty vertices, |Yx| ≥ 2, such that for each y ∈ Yx,
at least one of the four DPCs of Lemma 7 exists.

Hereafter, we are concerned with 4-dimensional RHL graphs with two
terminals s1 and s2 given. We introduce the notions of good, excellent, and
perfect vertices.

Definition 3. Let G ∈ RHL4 have a fault set F , and two terminals s1

and s2 be given in G \ F . For a free vertex x, we let Yx be the set of free
vertices such that any y ∈ Yx admits both a 2-DPC[{(s1, x), (s2, y)}|G,F ]
and a 2-DPC[{(s1, y), (s2, x)}|G,F ]. Then, x is said to be good, excellent,
and perfect, respectively, if |Yx| ≥ 4, |Yx| ≥ 8, and |Yx| = |V (G) \ (F ∪
{s1, s2, x})|.

Lemma 9. Let G ∈ RHL4 have a fault set F , |F | = 1, and two terminals
s1 and s2 be given in G \ F .
(a) G \ F has at least eight excellent vertices.
(b) If G \ F has exactly eight excellent vertices, then (i) all the free vertices
are good, (ii) at least two free vertices are perfect, and (iii) there exists a
subset Y of free vertices, |Y | ≥ 4, such that for each y ∈ Y , there exists a
generalized 2-DPC[{(s1, s1), (s2, y)}|G,F ] (and symmetrically, there exists a
subset Y ′ of free vertices, |Y ′| ≥ 4, such that for each y ∈ Y ′, there exists a
generalized 2-DPC[{(s1, y), (s2, s2)}|G,F ]).

The remaining part of this subsection is concerned with the first excep-
tional case of the proof of Theorem 1 where f0 = f = 2 and k2 = 2. Two
graphs Ha and Hb introduced below are useful to describe the component
G0 of a 5-dimensional RHL graph G0 ⊕ G1 in the first exceptional case.
Each of the two graphs Ha and Hb has 14 vertices and 24 edges as shown in
Figure 3. The four vertices of each are labeled with ṡ1, ṡ2, τ̇1, and τ̇2 so that
{ṡ1, ṡ2} = {9, 12}, τ̇1 = 1, and τ̇2 = 4. The two graphs have a structural
similarity that Ha \ {ṡ1, ṡ2} is isomorphic to Hb \ {ṡ1, ṡ2}.

Lemma 10. Let G0 ∈ RHL4 have a fault set F composed of two vertices.
Given two sources s1 and s2 and two free vertices τ1 and τ2 in G0\F , suppose
that there exists no pair of vertices u and v in G0 \ F such that u 6= τ2,
v 6= τ1, {u, v} 6= {τ1, τ2}, and a generalized 2-DPC[{(s1, u), (s2, v)}|G0, F ]
exists. Then, G0 \ F is isomorphic to Ha or Hb under a mapping ρ such
that ρ(s1) = ṡ1, ρ(s2) = ṡ2, ρ(τ1) = τ̇1, and ρ(τ2) = τ̇2.
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(a) Ha (b) Hb

Figure 3: Graphs Ha and Hb.

Lemma 11. For each triple (u, v, {x, y}) of the following 26 ones, Ha has
a 3-DPC[{(ṡ1, u), (ṡ2, v), (x, y)}|Ha, ∅] and {u, v, x, y} ∩ {ṡ1, ṡ2, τ̇1, τ̇2} = ∅:
(2, 6, {8, 13}), (2, 8, {11, 13}), (2, 10, {8, 13}), (2, 13, {7, 8}), (6, 7, {8, 13}),
(6, 13, {8, 10}), (7, 3, {8, 13}), (7, 8, {10, 13}), (7, 10, {8, 13}), (7, 13, {8, 15}),
(8, 3, {6, 13}), (8, 6, {13, 14}), (8, 7, {11, 13}), (8, 10, {7, 13}), (8, 13, {10, 11}),
(10, 8, {6, 13}), (10, 11, {8, 13}), (11, 3, {8, 13}), (11, 6, {8, 13}), (11, 8, {13, 14}),
(11, 13, {6, 8}), (13, 3, {8, 10}), (13, 6, {8, 11}), (13, 8, {6, 7}), (13, 10, {8, 15}),
and (13, 11, {7, 8}).

Lemma 12. For each (u, v, {x, y}) of the 26 triples of Lemma 11, Hb also
has a 3-DPC[{(ṡ1, u), (ṡ2, v), (x, y)}|Hb, ∅] and {u, v, x, y}∩{ṡ1, ṡ2, τ̇1, τ̇2} =
∅.

Proof. It holds that {u, v, x, y} ∩ {ṡ1, ṡ2, τ̇1, τ̇2} = ∅ since {ṡ1, ṡ2, τ̇1, τ̇2} of
Hb is equal to that ofHa. Suppose that there is a 3-DPC[{(ṡ1, u), (ṡ2, v), (x, y)}|Ha, ∅]
in Ha for some triple (u, v, {x, y}). Then, the path starting from ṡ1 in the
3-DPC definitely includes subpath (9, 1, 2) since τ̇1 of degree two should
be an intermediate vertex of a path in the DPC. Similarly, the path start-
ing from ṡ2 includes subpath (12, 4, 3). If the two subpaths (9, 1, 2) and
(12, 4, 3) respectively are replaced with (12, 1, 2) and (9, 4, 3), the result-
ing DPC is indeed a 3-DPC[{(ṡ1, u), (ṡ2, v), (x, y)}|Hb, ∅] of Hb for the same
triple (u, v, {x, y}). �

Definition 4 is also concerned with the first exceptional case of the proof
of Theorem 1 where f0 = f = 2 and k2 = 2; thus, two sinks t1 and t2 are
given in the component G1 of a 5-dimensional RHL graph G0 ⊕G1.
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Definition 4. For a graph G1 ∈ RHL4 with two sinks t1 and t2 given, a
triple (u, v, {x, y}) with {u, v, x, y} ∩ {t1, t2} = ∅ is called to be successful if
at least one of the following four DPCs exists:
• a 3-DPC[{(t1, u), (t2, x), (v, y)}|G1, ∅],
• a 3-DPC[{(t1, u), (t2, y), (v, x)}|G1, ∅],
• a 3-DPC[{(t2, v), (t1, x), (u, y)}|G1, ∅], and
• a 3-DPC[{(t2, v), (t1, y), (u, x)}|G1, ∅].

Lemma 13. Let G0 satisfy the conditions of Lemma 10 (i.e., its fault set
F is composed of two vertices; two sources s1 and s2 and two free ver-
tices τ1 and τ2 are given in G0 \ F ; there exists no pair of vertices u and
v in G0 \ F such that u 6= τ2, v 6= τ1, {u, v} 6= {τ1, τ2}, and a gen-
eralized 2-DPC[{(s1, u), (s2, v)}|G0, F ] exists). Let G1 be another graph
in RHL4 with two sinks t1 and t2 given. Then, for every bijection φ
from V (G0) to V (G1) such that φ(τ1) = t1 and φ(τ2) = t2, there exists
a triple (u, v, {x, y}) in G0 with {u, v, x, y} ∩ {s1, s2, τ1, τ2} = ∅ such that
a 3-DPC[{(s1, u), (s2, v), (x, y)}|G0, F ] exists and its corresponding triple
(φ(u), φ(v), {φ(x), φ(y)}) of G1 is successful.

Lemma 13 was verified by an expedient discussed below, because a
straightforward examination of every bijection is extremely time-consuming
and practically impossible. Each graph G0 of Lemma 13 with F being re-
moved is isomorphic to Ha or Hb by Lemma 10 under a mapping ρ such
that ρ(s1) = ṡ1, ρ(s2) = ṡ2, ρ(τ1) = τ̇1 and ρ(τ2) = τ̇2. Thus, we can restrict
our attention to Ha and Hb although a dozen or so graphs in RHL4 satisfy
the conditions of Lemma 10. Besides, Ha and Hb fortunately have the same
set of 26 triples shown in Lemma 11 such that for each triple (u, v, {x, y})
with {u, v, x, y} ∩ {ṡ1, ṡ2, τ̇1, τ̇2} = ∅, there exists a 3-DPC for pairs (ṡ1, u),
(ṡ2, v), and (x, y). Thus, we again restrict our attention only to Ha.

Each graph in RHL4 with two sinks given turned out to have a dom-
inantly large number of successful triples. Thus, we list the triples not
successful for each pair of terminals t1 and t2 in an arbitrary graph G1 of
RHL4 such that for each triple (u, v, {x, y}) with {u, v, x, y} ∩ {t1, t2} = ∅,
there exists none of the four DPCs of Definition 4. After that, it suffices to
check whether or not there exists a bijection φ from V (Ha)∪{0, 5} to V (G1)
such that φ(τ1) = t1, φ(τ2) = t2, and all of the 26 triples of Lemma 11 are
mapped to the triples of G1 not successful. No such bijection was detected
for any pair of terminals t1 and t2 in the graph G1. As a result, Lemma 13
was verified.
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(a) A desirable pair (u, v) exists. (b) No desirable pair exists.

Figure 4: Illustration of the proof of Lemma 14.

4.2. Lemmas for the Exceptional Cases

The DPC properties of RHL4 discussed in Section 4.1 allow us to prove
the three exceptional cases of the proof of Theorem 1. All of the exceptional
cases are for m = 5, which will be dealt with one by one in the following
lemmas.

Lemma 14. Every 5-dimensional RHL graph G0⊕G1 has a paired 2-DPC
when f0 = f = 2, k2 = 2, G0 contains two faulty vertices, and G0 \ F has a
hamiltonian cycle of the form (s1, t̄1, P, t̄2, s2, u, P

′).

Proof. Suppose that there exists a desirable pair of vertices u and v in
G0 \ F such that u 6= t̄2, v 6= t̄1, {u, v} 6= {t̄1, t̄2}, and a generalized 2-
DPC[{(s1, u), (s2, v)}|G0, F ] exists. As shown in Figure 4a, it suffices to
merge the generalized 2-DPC ofG0 and a generalized 2-DPC[{(ū, t1), (v̄, t2)}|G1, ∅]
with edges (u, ū) and (v, v̄). On the contrary, suppose that there exists
no such desirable pair in G0 \ F . Then, G0 satisfies the conditions of
Lemma 10 under the assumption that t̄1 = τ1 and t̄2 = τ2. Thus, there
exists a triple (u, v, {x, y}) in G0 \ F with {u, v, x, y} ∩ {s1, s2, τ1, τ2} = ∅,
by Lemma 13, such that a 3-DPC[{(s1, u), (s2, v), (x, y)}|G0, F ] exists and
its corresponding triple (ū, v̄, {x̄, ȳ}) of G1 is successful. So, at least one
of the four 3-DPCs of Definition 4 exists. Whichever 3-DPC exists, say a
3-DPC[{(t1, ū), (t2, x̄), (v̄, ȳ)}|G1, ∅], it suffices to merge the 3-DPC of G0

and the 3-DPC of G1 with edges (u, ū), (v, v̄), (x, x̄), and (y, ȳ) as shown in
Figure 4b. �

Lemma 15. Every 5-dimensional RHL graph G0⊕G1 has a paired 2-DPC
when f1 = f = 2 and k0 = 2.
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Proof. There exists a nonfaulty vertex x in G1, by Lemma 5, such that
a 1-DPC[{(x, x′)}|G1, F1] exists for any nonfaulty vertex x′ 6= x. Then,
for the vertex x̄ in G0, there exists at least one vertex ȳ in G0, y /∈ F1,
such that one of the four generalized 3-DPCs of Lemma 7 exists. Recall
that |F1| = 2. Whichever generalized 3-DPC exists, say a generalized 3-
DPC[{(s1, t1), (s2, x̄), (ȳ, t2)}|G0, ∅], it suffices to merge the generalized 3-
DPC of G0 and a 1-DPC[{(x, y)}|G1, F1] of G1 with edges (x, x̄) and (y, ȳ).

�

Lemma 16. Every 5-dimensional RHL graph G0⊕G1 has a paired 2-DPC
when f0 = 1 and f1 + f2 = 1.

Proof. The case of k0 = k1 = 1 was already covered in the proof of Theo-
rem 1. There remain three cases.

Case 1: k0 = 2.
There exists a pair of nonfaulty vertices x and y in G0, by Lemma 8, such
that one of the four generalized 3-DPCs of Lemma 7 exists in G0 and x̄,
(x, x̄), ȳ, and (y, ȳ) are all nonfaulty. Recall that f1 + f2 = 1. Whichever
generalized 3-DPC exists, it suffices to merge the generalized 3-DPC of G0

and a 1-DPC[{(x̄, ȳ)}|G1, F1] with edges (x, x̄) and (y, ȳ).
Case 2: k0 = k2 = 1.

There exists at least one nonfaulty vertex x in G0, by Lemma 6, such that
x̄ 6= t2, x̄ /∈ F , (x, x̄) /∈ F , and a generalized 2-DPC[{(s1, t1), (s2, x)}|G0, F0]
exits. It suffices to merge the generalized 2-DPC ofG0 and a 1-DPC[{(x̄, t2)}|G1, F1]
with edge (x, x̄).

Case 3: k2 = 2.
Case 3.1: f1 = 0 (f2 = 1).

Since G0 \ F0 has at least eight excellent vertices by Lemma 9a, there is
an excellent vertex x of G0 such that (x, x̄) is free. Then, there exists a
free vertex y 6= x in G0, due to Definition 3, such that (y, ȳ) is free and a
2-DPC[{(s1, x), (s2, y)}|G0, F0] exists. It suffices to merge the 2-DPC of G0

and a 2-DPC[{(x̄, t1), (ȳ, t2)}|G1, ∅] in G1 with edges (x, x̄) and (y, ȳ).
Case 3.2: f1 = 1 (f2 = 0).

There are 16 nonfaulty edges of the type (x, x̄) for x ∈ V (G0) since f2 =
0. Suppose for the first case that there exists an edge (x, x̄) such that
x and x̄ are excellent vertices of G0 and G1, respectively. Then, there
exists a subset Yx of free vertices, |Yx| ≥ 8, in G0 such that for each
y ∈ Yx, a 2-DPC[{(s1, x), (s2, y)}|G0, F0] exists. In addition, there ex-
ists a subset Yx̄ of free vertices, |Yx̄| ≥ 8, in G1 such that for each z ∈
Yx̄, a 2-DPC[{(t1, x̄), (t2, z)}|G1, F1] exists. Since x /∈ Yx and x̄ /∈ Yx̄,
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there exists a free vertex y ∈ Yx where ȳ ∈ Yx̄. It suffices to merge
a 2-DPC[{(s1, x), (s2, y)}|G0, F0] and a 2-DPC[{(t1, x̄), (t2, ȳ)}|G1, F1] with
(x, x̄) and (y, ȳ).

Now, suppose for the second case that there exists no such edge (x, x̄).
Since each of G0 and G1 has at least eight excellent vertices by Lemma 9a,
each should have exactly eight excellent vertices. Thus, there exists a perfect
vertex x in G0, by Lemma 9b, such that x̄ /∈ F1. Then, for any free vertex
w 6= x in G0, there exists a 2-DPC[{(s1, x), (s2, w)}|G0, F0] as well as a 2-
DPC[{(s1, w), (s2, x)}|G0, F0]. We have two subcases depending on whether
x̄ is a terminal or not. Suppose for the first subcase that x̄ /∈ {t1, t2}.
Then, x̄ is a good vertex of G1 by Lemma 9b since G1 has exactly eight
excellent vertices. Thus, there is a subset Yx̄ of free vertices, |Yx̄| ≥ 4,
in G1 such that for each y ∈ Yx̄, a 2-DPC[{(t1, x̄), (t2, y)}|G1, F1] exists.
Since |Yx̄| ≥ 4, it is possible to pick up a vertex y in Yx̄ such that ȳ is
free. It suffices to merge a 2-DPC[{(s1, x), (s2, ȳ)}|G0, F0] and the 2-DPC
of G1 with edges (x, x̄) and (ȳ, y). Suppose for the second subcase that
x̄ ∈ {t1, t2}. Let x̄ be t1 first. Then, there exists a subset Y of free vertices,
|Y | ≥ 4, in G1, by Lemma 9b, such that for each y ∈ Y , a generalized
2-DPC[{(t1, t1), (t2, y)}|G1, F1] exists. It suffices to pick up y in Y such
that ȳ is free, and merge a 2-DPC[{(s1, x), (s2, ȳ)}|G0, F0] and the gener-
alized 2-DPC of G1 with (x, x̄) and (ȳ, y). If x̄ is t2, then symmetrically,
it suffices to merge a 2-DPC[{(s1, ȳ), (s2, x)}|G0, F0] and a generalized 2-
DPC[{(t1, y), (t2, t2)}|G1, F1], for some y, with (x, x̄) and (ȳ, y). �

5. Conclusion

We proved that every m-dimensional RHL graph, m ≥ 5, is (m − 3)-
fault paired 2-disjoint path coverable, and thus it is also (m − 3)-fault un-
paired 2-disjoint path coverable. The bound m− 3 on the number of faults
is the maximum possible for the m-dimensional RHL graph to be paired
(resp. unpaired) 2-disjoint path coverable. It is our conjecture that every
m-dimensional RHL graph, m ≥ 5, is (a) f -fault unpaired k-disjoint path
coverable for any f and k ≥ 2 subject to f+k ≤ m−1, and (b) f -fault paired
k-disjoint path coverable for any f and k ≥ 2 subject to f + 2k ≤ m+ 1.
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[8] P. Cull and S. Larson, “The Möbius cubes,” in Proc. of the 6th IEEE
Distributed Memory Computing Conf., pp. 699–702, 1991.
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