
Paired Many-to-Many Disjoint Path Covers in Faulty
Hypercubes I

Shinhaeng Joa, Jung-Heum Parkb, Kyung-Yong Chwaa,∗

aDepartment of Computer Science, KAIST, Daejeon 305-701, Korea
bSchool of Computer Science and Information Engineering, The Catholic University of

Korea, Bucheon 420-743, Korea

Abstract

A paired many-to-many k-disjoint path cover (k-DPC for short) of a graph
is a set of k disjoint paths joining k distinct source-sink pairs that cover all
the vertices of the graph. Extending the notion of DPC, we define a paired
many-to-many bipartite k-DPC of a bipartite graph G to be a set of k disjoint
paths joining k distinct source-sink pairs that altogether cover the same number
of vertices as the maximum number of vertices covered when the source-sink
pairs are given in the complete bipartite, spanning supergraph of G. We show
that every m-dimensional hypercube, Qm, under the condition that f or less
faulty elements (vertices and/or edges) are removed, has a paired many-to-many
bipartite k-DPC joining any k distinct source-sink pairs for any f and k ≥ 1
subject to f + 2k ≤ m. This implies that Qm with m− 2 or less faulty elements
is strongly Hamiltonian-laceable.

Keywords: Disjoint path cover, hypercube, fault-tolerance, strongly
Hamiltonian-laceability, graph theory.

1. Introduction

Finding node-disjoint paths is one of the most important issues in various
interconnection networks, which is concerned with routing among nodes and
embedding of linear arrays. Node-disjoint paths can be used as parallel paths
to avoid congestion and provide fault-tolerance. Also, each of the node-disjoint
paths can be utilized in its own pipeline computation. Interconnection networks
are usually modeled as graphs, in which vertices and edges respectively corre-
spond to nodes and links. In the rest of this paper, we use standard terminology
in graphs (See [1]).

IThis research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (grant number 2010-0010626).

∗Corresponding author
Email addresses: josh@jupiter.kaist.ac.kr (Shinhaeng Jo), j.h.park@catholic.ac.kr

(Jung-Heum Park), kychwa@jupiter.kaist.ac.kr (Kyung-Yong Chwa)

Preprint submitted to Theoretical Computer Science October 11, 2013

Let G = (V,E) be a simple graph. Paths are disjoint if they share no vertices.
Let S = {s1, s2, . . . , sk} be the set of k sources and T = {t1, t2, . . . , tk} be the
set of k sinks such that S, T ⊂ V and S ∩ T = ∅. Many-to-many k-disjoint
paths joining S and T are k disjoint paths P1, P2, . . . , Pk such that each Pi runs
between si and tφ(i), where φ is a bijection on {1, 2, . . . , k}. They are called
paired if φ(i) = i for every i. Otherwise, they are called unpaired. Generally,
sources and sinks are called terminals.

A many-to-many k-disjoint path cover (k-DPC for short) joining S and T
in G is a set of many-to-many k-disjoint paths joining S and T that cover all
the vertices of G. A graph G is called many-to-many k-disjoint path coverable
if |V | ≥ 2k and there exists a many-to-many k-DPC joining S and T for any
pairwise disjoint S and T . For other kinds of DPC, readers are referred to
[18, 19]. The k-DPC problem, originated from the community of interconnec-
tion networks, is concerned with applications where the full utilization of nodes
is important [18]. Every paired many-to-many k-disjoint path coverable graph
is Hamiltonian-connected for any k ≥ 1 [18], i.e., every pair of vertices is joined
by a Hamiltonian path. The existence of Hamiltonian paths and cycles is of cru-
cial importance in parallel computing, since they are used in many distributed
algorithms and they admit paths of various lengths.

However, no bipartite graph except for the complete graph on two vertices
is Hamiltonian-connected. This stems from the nature of bipartite graphs that
vertices of different balances appear alternatively in a path. For a bipartite
graph G = (V,E) with the bipartition V = V b ∪ V w, where the vertices of V b

are referred to as black and the vertices of V w as white, let β(u), the balance of a
vertex u, be −1 if u is black; 1 if u is white. We further define the balance of an
edge as zero and the balance of a vertex pair (s, t) as β((s, t)) = (β(s)+β(t))/2.
To describe Hamiltonian properties of bipartite graphs, the concept of strongly
Hamiltonian-laceability was introduced, as found in [11, 17]. A bipartite graph
with a fault set F is said to be strongly Hamiltonian-laceable if every fault-free
vertex pair (s, t) is joined by a path of G\F that contains |V \F |− |β(V \F)−
β((s, t))| vertices. Here, G \ F is the resultant graph by removing all the faulty
elements of F from G, and β(X) =

∑
x∈X β(x) for a set X of graph elements

(vertices and edges) and vertex pairs.
As a consequence, no bipartite graph is paired many-to-many k-disjoint path

coverable for any fixed k ≥ 1 either, with the unique exception of the complete
graph on two vertices for k = 1. A question regarding the upper bound on
the number of vertices that can be covered by paired many-to-many k-disjoint
paths in bipartite graphs then naturally arises. The tight upper bound can be
established in terms of V , F , and K as follows, where K denotes the set of
source-sink pairs, i.e., K = {(si, ti) : 1 ≤ i ≤ k}. Many-to-many k-disjoint
paths joining S and T altogether may cover at most |V \F |− |β(V \F)−β(K)|
vertices (as shown in Lemma 1 of the next section). Hereafter, let β(V, F,K)
or simply β(G) denote |β(V \ F)− β(K)|. This motivates us to define a many-
to-many bipartite DPC (BiDPC for short) as a set of many-to-many disjoint
paths that pass through the same number of vertices as the upper bound.

2

Definition 1. Given a set of k sources S = {s1, s2, . . . , sk} and a set of k
sinks T = {t1, t2, . . . , tk} in G \F such that S ∩ T = ∅, a paired many-to-many
bipartite k-DPC joining S and T is a set of fault-free disjoint paths Pi joining
si and ti, for 1 ≤ i ≤ k, that cover |V \ F | − β(G) vertices of G \ F .

Definition 2. A bipartite graph G is f -fault paired many-to-many k-bicov-
erable if |V | ≥ f + 2k and there exists a paired many-to-many bipartite k-
DPC joining S and T in G \ F for any F , S, and T such that |F | ≤ f ,
|S| = |T | = k ≥ 1, and S ∩ T = ∅.

A bipartite graph is paired many-to-many 1-bicoverable, by definition, if
and only if it is strongly Hamiltonian-laceable. The unpaired many-to-many
bipartite k-DPC and f -fault unpaired many-to-many k-bicoverable graph can
be defined analogously. Notice that a many-to-many k-DPC becomes a many-
to-many bipartite k-DPC, and the converse holds true if and only if β(G) = 0.

The Hypercube is one of the most popular interconnection networks possess-
ing many attractive properties such as regularity, symmetry, small diameter, etc.
The m-dimensional hypercube Qm is a bipartite graph with 2m vertices. It was
shown by Gregor and Dvořák [7] that Qm has a paired k-DPC if 2k − e < m
and β(G) = 0, where e is the number of source-sink pairs that form edges of
Qm. Let fv denote the number of faulty vertices and let fe denote the num-
ber of faulty edges. In the presence of faulty vertices, Dvořák and Gregor [6]
showed that Qm \ F has a paired k-DPC when fe = 0, 3fv + 2k ≤ m− 3, and
β(G) = 0. Chen [4] proved that, in the presence of faulty edges, Qm \ F has a
paired k-DPC if fv = 0, fe + 2k < m, and β((si, ti)) = 0 for every 1 ≤ i ≤ k.
Unpaired many-to-many disjoint paths were studied in [3].

The problem of embedding long paths and cycles in faulty hypercubes has
attracted much attention in the literature. For path embedding, Qm \ F is
strongly Hamiltonian-laceable if fv = 0 and fe ≤ m− 2 [20], and Qm \F has a
path joining a pair of vertices s and t that covers at least 2m − 2fv − |β((s, t))|
vertices when fe = 0 and fv ≤ m−2 [10]. For cycle embedding, Qm\F contains
a cycle of length at least 2m − 2fv if fe ≤ m − 4 and fv + fe ≤ m − 1 [24],
or if fe = 0 and fv ≤ 2m − 4 [9]. These problems have been also studied in
[8, 21, 23] under the so-called conditional fault model. For more discussion on
the Hamiltonian paths/cycles in hypercubes, refer to, for example, [12, 13].

In this paper, we prove that Qm is f -fault paired many-to-many k-bicover-
able for any f and k ≥ 1 subject to f + 2k ≤ m. This is a generalization of
previous works on the paired DPC problem on faulty hypercubes [4, 6] in that
hybrid faults are tolerated, the bound f + 2k ≤ m is expanded, and the case
when β(G) 6= 0 is also taken into account. Furthermore, our result for k = 1 is
equivalent to Qm being (m− 2)-fault strongly Hamiltonian-laceable, which im-
plies that Qm\F contains a cycle of length 2m−2 max{f b, fw} when f ≤ m−2,
where f b and fw respectively are the numbers of black and white faulty vertices.
The strongly Hamiltonian-laceability is an improvement of the aforementioned
results in [10, 20]. The length 2m − 2 max{f b, fw} of a cycle is the longest in
the true sense, and is also greater than the length 2m − 2fv = 2m − 2(f b + fw)
of [9, 24] when f b, fw ≥ 1.

3

This paper is organized as follows: Section 2 gives preliminaries. In Section 3,
we present some basic construction methods for bipartite disjoint path cover.
These methods are applied to give a constructive proof of our main theorem in
Sections 4 and 5. Section 6 presents the conclusion.

2. Preliminary

We begin with the upper bound, mentioned in the previous section, on the
number of vertices that can be covered by paired many-to-many k-disjoint paths.
Let G = (V,E) be a bipartite graph with the bipartition V b ∪ V w. An s-t path
denotes a path joining two vertices s and t.

Lemma 1. Let P be a set of paired many-to-many k disjoint paths joining
S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} in G \ F such that S ∩ T = ∅.
Then, (a) P covers at most |V b \F |+ β(K) white vertices and at most |V b \F |
black vertices when β(V \F) ≥ β(K), (b) P covers at most |V w\F | white vertices
and at most |V w \ F | − β(K) black vertices when β(V \ F) ≤ β(K), and (c) P
covers at most |V \F |−β(G) vertices in total, where β(G) = |β(V \F)−β(K)|.
Proof. If each si-ti path in P covers nwi white vertices and nbi black vertices,
then nwi = nbi + β((si, ti)). Summing up the equalities over all 1 ≤ i ≤ k,
it follows

∑
i n

w
i =

∑
i n

b
i + β(K). Plugging this into

∑
i n

w
i ≤ |V w \ F | and∑

i n
b
i ≤ |V b \ F | results in the following:∑

nwi ≤ min{|V w \ F |, |V b \ F |+ β(K)}∑
nbi ≤ min{|V b \ F |, |V w \ F | − β(K)}

Since β(V \F) = |V w \F | − |V b \F |, the two inequalities above lead to (a) and
(b). If β(V \ F) ≥ β(K), then, by (a) of this lemma,∑

nwi +
∑

nbi ≤ (|V b \ F |+ β(K)) + |V b \ F |
= (|V b \ F |+ β(K)) + (|V w \ F | − β(V \ F))

= |V \ F | − (β(V \ F)− β(K)) = |V \ F | − β(G).

If β(V \ F) ≤ β(K), then, by (b) of this lemma,∑
nwi +

∑
nbi ≤ |V w \ F |+ (|V w \ F | − β(K))

= (|V b \ F |+ β(V \ F)) + (|V w \ F | − β(K))

= |V \ F |+ (β(V \ F)− β(K)) = |V \ F | − β(G).

Thus, the statement (c) was also proved.

Corollary 1. If P of Lemma 1 is a paired many-to-many bipartite k-DPC,
then (a) P covers exactly |V b \ F | + β(K) white vertices and |V b \ F | black
vertices when β(V \ F) > β(K), (b) P covers exactly |V w \ F | white vertices
and |V w \ F | − β(K) black vertices when β(V \ F) < β(K), and (c) P covers
exactly |V w\F | white vertices and |V b\F | black vertices when β(V \F) = β(K).

4

According to Corollary 1, the fault-free vertices that are not covered by P
are all white when β(V \ F) > β(K), and are all black when β(V \ F) < β(K).
Notice that β(G) is the very number of vertices that are not covered by P.
Therefore, P becomes a paired many-to-many k-DPC if and only if β(G) = 0.

Each vertex of an m-dimensional hypercube Qm is represented by a binary
string in {0, 1}m, and two vertices u and v are joined by an edge uv ∈ E if
they differ in exactly one bit position. Hereafter, we use G = (V,E) with the
bipartition V b ∪ V w to denote Qm. Let Gp = (Vp, Ep) be the subgraph of G
induced by Vp, where Vp is the set of binary strings (of length m) prefixed with
p. We denote by l(p) the length of a binary string p. Then, Gp is isomorphic to
Qm−l(p). When p is equal to the empty string ε, we usually omit the reference

to p for consistency. In addition, we let V bp = Vp ∩ V b and V wp = Vp ∩ V w. If
l(p) < m, then Vp = Vp0 ∪ Vp1 and Ep = Ep0 ∪ Ep1 ∪ Ep2, where Ep2 is the set
of edges between Gp0 and Gp1, i.e., Ep2 = {uv ∈ Ep : u ∈ Vp0, v ∈ Vp1}. Ep2 is

further decomposed into Eb,wp2 and Ew,bp2 , where Eb,wp2 is defined as {uv ∈ Ep2 :

u ∈ V bp0, v ∈ V wp1} and Ew,bp2 is defined similarly.
In this paper, a unit refers to a vertex, an edge, or an ordered pair of vertices.

We represent an edge joining u and v as uv, and an ordered pair of u and v
as (u, v). For a set of units X, we denote by Xp the set of units in X that
are contained in Gp, i.e., Xp = X ∩ (Vp ∪ Ep ∪ (Vp × Vp)). If l(p) < m, then
Xp = Xp0 ∪ Xp1 ∪ Xp2, where Xp2 is defined as Xp \ (Xp0 ∪ Xp1). Also, the
units can be classified according to their balances. For a set of units X, we use
Xb, Xw, and Xo to denote {x ∈ X : β(x) = −1}, {x ∈ X : β(x) = 1}, and
{x ∈ X : β(x) = 0}, respectively. That is, Xb is the subset of black vertices
and pairs of black vertices, Xw is the subset of white vertices and pairs of white
vertices, and Xo is the subset of edges and pairs of different colored vertices,
Thus, X = Xb∪Xw∪Xo. Moreover, we let Xc

p = Xp∩Xc and Xc
p2 = Xp2∩Xc,

where c ∈ {b, w, o}.
For the fault set F and the set of source-sink pairs K, we follow the same

notation ofXp, X
c, andXc

p described above, since F andK are also sets of units.

For example, F0 is the set of faulty elements in G0, F b is the set of black faulty
vertices, F o is the set of faulty edges, and F2 = F ∩E2. Thus, F = F0∪F1∪F2

and F = F b∪Fw∪F o. Also, we have K = K0∪K1∪K2 and K2 = Kw
2 ∪Kb

2∪Ko
2 .

Here, Ko
2 is the set of vertex pairs (s, t) such that (s, t) ∈ (V0×V1)∪(V1×V0) and

β((s, t)) = 0. To distinguish which vertex of (s, t) ∈ Ko
2 is black (or white), we

further define Kb,w
2 = Ko

2 ∩ ((V b0 ×V w1)∪ (V w1 ×V b0)). Kw,b
2 is defined similarly,

thus Ko
2 = Kb,w

2 ∪ Kw,b
2 . To represent the cardinalities of these sets, we use

lower case letters such as f = |F |, f b = |F b|, fw0 = |Fw0 |, k = |K|, k2 = |K2|,
and kb,w2 = |Kb,w

2 |.
For a set of units X, let U(X) = (X ∩ (V ∪E))∪{x, y : (x, y) ∈ X}. We say

two sets of units C and C ′ are disjoint if U(C) and U(C ′) are disjoint. A vertex
v is free with respect to X if v /∈ U(X), and an edge uv is free with respect to
X if u, v, uv /∈ U(X). A vertex or an edge is simply said to be free if it is free
with respect to S ∪ T ∪ F .

A set of ordered pairs of vertices C = {(uj , vj) : 1 ≤ j ≤ l} is called a u1-vl

5

chain if its members can be ordered to form a sequence (ui1 , vi1), (ui2 , vi2), . . . ,
(uil , vil) such that vijuij+1 forms an edge for every 1 ≤ j < l; such edges vijuij+1

are called linking edges. If there exists a uj-vj path for every j, then a u1-vl
path can be constructed by merging the uj-vj paths with the l−1 linking edges.
A set C of vertices and/or ordered pairs of vertices is also called a u1-vl chain if
C ′ is a u1-vl chain, where C ′ = {(u, v) : (u, v) ∈ C} ∪ {(w,w) : w ∈ C}. A u1-vl
path can be obtained if there exists a uj-vj path for every j such that uj 6= vj .

A u1-vl chain is closed if u1vl forms an edge. Especially, we regard that
u1vl is also a linking edge of a closed u1-vl chain. A u1-vl chain C is free
if every vertex of U(C) (except u1 and vl) is free and all of its linking edges
are also free. A free chain C is simple if its members share no vertex, i.e.,
{ui, vi} ∩ {uj , vj} = ∅ for any (ui, vi), (uj , vj) ∈ C; {ui, vi} ∩ {w} = ∅ for any
(ui, vi), w ∈ C; and w 6= w′ for any w,w′ ∈ C. We write C � (u1, vl) if C is
a free and simple u1-vl chain. If C = {(u1, v1), (u2, v2), . . . , (ul, vl)} is a simple
u1-vl chain such that vjuj+1 is a linking edge for every 1 ≤ j < l, then

β(C) =

l∑
j=1

β((uj , vj)) =
β(u1)

2
+
β(vl)

2
+

l−1∑
j=1

β((vj , uj+1)) = β((u1, vl)). (1)

We list some works from the literature on paired DPC and strongly Hamil-
tonian-laceability of the hypercube Qm in the following. They will be utilized
for our construction of paired many-to-many bipartite DPCs in Qm.

Lemma 2. [2, 5, 15] Qm without faulty elements has a paired 2-DPC joining
S and T if m ≥ 3 and β((si, ti)) = 0 for each i ∈ {1, 2}, or if m ≥ 4 and
β(K) = 0.

Lemma 3. [7] Qm without faulty elements has a paired k-DPC joining S and
T if β(K) = 0 and 2k − e < m, where e is the number of source-sink pairs that
form edges of Qm.

Lemma 4. Qm with fault set F is strongly Hamiltonian-laceable if fv = 0 and
fe ≤ m− 2 [20], or if fv ≤ 1 and fv + fe ≤ m− 2 [14].

3. Construction of Paired Many-to-Many Bipartite DPC in Qm

We present basic approaches for constructing a paired many-to-many bi-
partite DPC in an m-dimensional hypercube Qm. We denote by (f ′-fault
k′-)BiDPC[K ′|G′, F ′] a paired many-to-many bipartite k′-DPC of a bipartite
graph G′ with the fault set F ′ joining a set of source-sink pairs K ′, where
f ′ = |F ′| and k′ = |K ′|. Recall that G is an equitable bipartite graph, i.e.,
|V b| = |V w| = 2m−1. It follows β(V \F) = −β(F) and β(G) = |−β(F)−β(K)|.
Without loss of generality, we assume β(F) +β(K) ≥ 0; otherwise, it suffices to
recolor all black vertices in white and vice versa. Thus,

β(G) = β(F) + β(K) ≥ 0.

6

G00

x4x3

s1

t2

x1

s2 u1

u3

u4

u6

v3v2

v1

t1

u2

u5

G01

G1

x2

Figure 1: Divide-and-conquer approach.

Given a set of faulty elements F , a set of sources S = {s1, s2, . . . , sk}, and
a set of sinks T = {t1, t2, . . . , tk} in G, we construct f -fault k-BiDPC[K|G,F].
From Corollary 1, the BiDPC covers all of the white fault-free vertices and
leaves β(G) black fault-free vertices not covered. We state our main theorem as
follows, which will be proved hereafter in this paper.

Theorem 1. An m-dimensional hypercube Qm, m ≥ 2, is f -fault paired many-
to-many k-bicoverable for any f and k ≥ 1 subject to f + 2k ≤ m.

The proof will proceed with induction on m. The proof for m = 2 is trivial,
and the proof for m = 3 is due to Lemma 4. Let m ≥ 4. We assume, as the
induction hypothesis, that Qm′ with 2 ≤ m′ < m is f -fault k-bicoverable for
any f and k ≥ 1 with f + 2k ≤ m′.

Divide-and-conquer will be a natural approach to construct a BiDPC of
G. That is, we divide G into subcubes, find a BiDPC in every subcube, and
merge the BiDPCs of subcubes into a BiDPC of G. For example, suppose
that we are given F = {x1, x2, x3, x4} and K = {(s1, t1), (s2, t2)}, as shown
in Figure 1, where β(G) = 1 and G is divided into subcubes G00, G01, and
G1. If we select inter-subcube edges u1u2, u3u4, and u5u6 as linking edges, we
then obtain an s1-t1 simple chain C[1] = {(s1, u1), (u2, u3), (u4, u5), (u6, t1)}.
Similarly, selecting inter-subcube edges v1v2 and v3t2 results in an s2-t2 simple
chain C[2] = {(s2, v1), (v2, v3), t2}. The two chains are disjoint. Let R = C[1]∪
C[2]. Then, we have R00 = {(s1, u1), (s2, v1), t2}, R01 = {(u2, u3), (u6, t1)},
and R1 = {(u4, u5), (v2, v3)}. If there exist BiDPC[R00 \ {t2}|G00, F00 ∪ {t2}],
BiDPC[R01|G01, F01], and BiDPC[R1|G1, F1], then we can construct a BiDPC
of G, namely P, by merging the three BiDPCs of subcubes with the selected
linking edges. Notice that only one fault-free vertex, a member of V b01, is not
covered by P.

The idea described above is formalized as a lemma. For a set of binary
strings P, we say a unit set X is P-separated if every element of X is contained
in Gp for some p ∈ P, i.e., X =

⋃
p∈PXp. We denote F(X) = X ∩ (V ∪E) and

K(X) = X ∩ (V × V), so X = F(X) ∪ K(X).

7

Lemma 5 (Merging Lemma). Let P be a set of binary strings such that {Vp :
p ∈ P} is a partition of V . Suppose that there exist k chains C[i], 1 ≤ i ≤ k,
such that

(a) C[i] � (si, ti) for each i, and C[i] and C[j] are disjoint for each i 6= j,

(b) R is P-separated, where R =
⋃k
i=1 C[i],

(c) for each p ∈ P, 0 ≤ β(Fp ∪Rp) ≤ β(G),

(d) for each p ∈ P, K(Rp) 6= ∅, and

(e) for each p ∈ P, there exists BiDPC[K(Rp)|Gp, Fp ∪ F(Rp)].

Then, there exists k-BiDPC[K|G,F].

Proof. Let Pp=BiDPC[K(Rp)|Gp, Fp ∪ F(Rp)] for p ∈ P, and let P =
⋃
p∈P Pp.

By (b), P is a set of disjoint paths joining each element of K(R). The existence
of P is guaranteed by (e). Hence, by (a), we can find fault-free paired many-
to-many disjoint paths joining S and T by merging vertices of F(R) and paths
in P using linking edges. We claim that it is a desired BiDPC. It will suffice
to show that F(R) and P together cover all the fault-free vertices except β(G)
black ones. By (c) and (d), F(Rp) and Pp together cover all the free vertices of
Vp except β(Fp ∪Rp) black ones in Vp (see G01 of Fig. 1). From (1), we obtain

β(R) =
∑k
i=1 β((si, ti)) = β(K). Thus, the number of free vertices that are not

covered by P is:∑
p∈P

β(Fp ∪Rp) = β(F) + β(R) = β(F) + β(K) = β(G).

Therefore, we have the claim.

We are to find chains joining source-sink pairs satisfying the Merging Lemma,
Lemma 5. Hereafter in this section and in the next section, we consider a
partition of G into two subcubes G0 and G1 that are isomorphic to Qm−1.
That is, we consider P = {0, 1}. For a vertex u, let N(u) denote the set of
neighbors of u and let ū denote the unique member of N(u) ∩ V1−p, where
p ∈ {0, 1} is such that u ∈ Vp. We say that ū is u’s mate. For a binary string p,
we define the following two functions.

hwp (K,F) = β(Fp0 ∪Kp0)− (kbp2 + kb,wp2 + β(Fp ∪Kp))

hbp(K,F) = −β(Fp0 ∪Kp0)− (kwp2 + kw,bp2)

We omit the subscription if p = ε. We will abbreviate hw(K,F) and hb(K,F)
respectively as hw(G) and hb(G) for simplicity. From β(G) = β(F0 ∪ K0) +
β(F1 ∪K1) + kw2 − kb2, we obtain the following representations.

hw(G) = β(F0 ∪K0)− (kb2 + kb,w2 + β(G)) (2)

= −β(F1 ∪K1)− (kw2 + kb,w2) (3)

hb(G) = −β(F0 ∪K0)− (kw2 + kw,b2) (4)

= β(F1 ∪K1)− (kb2 + kw,b2)− β(G)

8

Note that hw(G) > 0 and hb(G) > 0 cannot occur simultaneously since
hw(G) + hb(G) = −k2 − β(G) ≤ 0. We claim that we can assume hb(G) ≤ 0
without loss of generality. If hb(G) > 0 (hw(G) ≤ 0), then we consider an
automorphism of G that exchanges G0 and G1, i.e., a mapping of every vertex
to its mate while preserving its color. (Due to the assumption of β(G) ≥ 0,
it is necessary to keep the color of every vertex.) Let K̄ and F̄ be images
of K and F under the mapping, respectively. Then, the problem of finding
k-BiDPC[K|G,F] is equivalent to the problem of finding k-BiDPC[K̄|G, F̄].
Hence, it will suffice to show that hb(K̄, F̄) ≤ 0. From these definitions, we
obtain

hb(K̄, F̄) = −β(F̄0 ∪ K̄0)− (|K̄w
2 |+ |K̄w,b

2 |)
= −β(F1 ∪K1)− (kw2 + kb,w2) = hw(G). (5)

Since hw(G) ≤ 0, the claim is proved. Similarly, we obtain

hw(K̄, F̄) = β(F̄0 ∪ K̄0)− (|K̄b
2|+ |K̄b,w

2 |)− β(G)

= β(F1 ∪K1)− (kb2 + kw,b2)− β(G) = hb(G). (6)

Throughout this paper, we assume

hb(G) ≤ 0.

Then, there are two cases depending on whether hw(G) ≤ 0 or not.

3.1. Constructions for hw(G) ≤ 0 (hb(G) ≤ 0)

Hereafter in this paper, we assume K2 = {(si, ti) : 1 ≤ i ≤ k2}, so K0∪K1 =
{(si, ti) : k2 < i ≤ k}. Furthermore, we assume si ∈ V0 for every (si, ti) ∈ K2;
otherwise, it suffices to switch the roles of si and ti.

To prove Theorem 1, we distinguish four subcases. The first two are handled
in this section, and the remaining two will be handled in Section 4.

1. For each p ∈ {0, 1}, kp + k2 ≥ 1 and fp + 2(kp + k2) ≤ m− 1.

2. For some p ∈ {0, 1}, kp = k2 = 0, f1−p + 2k1−p ≤ m− 1, and fp ≤ m− 3.

3. For some p ∈ {0, 1}, kp + k2 ≥ 1 and fp + 2(kp + k2) = m.

4. For some p ∈ {0, 1}, kp = k2 = 0, f1−p + 2k1−p ≤ m− 1, and fp = m− 2.

Case 1. For each p ∈ {0, 1}, kp + k2 ≥ 1 and fp + 2(kp + k2) ≤ m− 1.
We build a {0, 1}-separated simple si-ti chain {(si, ui), (ūi, ti)} for each

(si, ti) ∈ K2, where uiūi is a free edge in E2.

Procedure BiDPC-A(G,K,F) (See Fig. 2a.)
/* Build chains C[i] = {(si, ui), (ūi, ti)} for 1 ≤ i ≤ k2 and C[j] = {(sj , tj)} for

j > k2. R =
⋃k
i=1 C[i]. */

1. Select k2 free edges uiūi for 1 ≤ i ≤ k2 such that ui ∈ V0 and

(a) Case −hw(G)− β(G) ≤ 0: uiūi ∈ Eb,w2 for each 1 ≤ i ≤ k2.

9

(b) Case −hw(G)−β(G) > 0: −hb(G) ones are from Eb,w2 and −hw(G)−
β(G) ones are from Ew,b2 .

2. Find BiDPC[K(R0)|G0, F0] and BiDPC[K(R1)|G1, F1], and merge them
using the linking edges uiūi for 1 ≤ i ≤ k2.

Lemma 6. Suppose hb(G) ≤ 0, f + 2k ≤ m, and m ≥ 4. Then, (a) there exist

k2 free edges in Eb,w2 if −hw(G) − β(G) ≤ 0 and (b) there exist −hb(G) free

edges in Eb,w2 and −hw(G)− β(G) free edges in Ew,b2 if −hw(G)− β(G) > 0.

Proof. Let ncp be the number of faulty vertices and terminals in V cp , where

c ∈ {b, w}. For example, nb0 = f b0 + 2kb0 + ko0 + kb2 + kb,w2 and nw1 = fw1 + 2kw1 +

ko1 + kw2 + kb,w2 .
To prove (a), it suffices to show f2 + nb0 + nw1 + k2 ≤ 2m−2. Notice that the

number of non-free edges in Eb,w2 is at most f2 + nb0 + nw1 and that 2m−2 is the

cardinality of Eb,w2 . Since nb0 = (f b0 + kb0 + kb2 + kb,w2) + (kb0 + ko0) and −hw(G)−
β(G) = (f b0 + kb0 + kb2 + kb,w2) − (fw0 + kw0), the inequality −hw(G) − β(G) ≤ 0

can be rewritten as f b0 + kb0 + kb2 + kb,w2 ≤ fw0 + kw0 . Hence,

nb0 = (f b0 + kb0 + kb2 + kb,w2) + (kb0 + ko0) ≤ (fw0 + kw0) + (kb0 + ko0) ≤ f0 + k0.

Since nw1 ≤ f1 + 2k1 + k2 and f + 2k ≤ m ≤ 2m−2, it follows

f2 +nb0 +nw1 + k2 ≤ f2 + (f0 + k0) + (f1 + 2k1 + k2) + k2 ≤ f + 2k ≤ m ≤ 2m−2.

To prove (b), we show the following:

f2 + nb0 + nw1 − hb(G) ≤ f + 2k ≤ m ≤ 2m−2. (7)

f2 + nw0 + nb1 − hw(G)− β(G) ≤ f + 2k ≤ m ≤ 2m−2. (8)

Notice that f2 + nb0 + nw0 + nb1 + nw1 ≤ f + 2k. From (4) and (2), we obtain

−hb(G) = fw0 + kw0 + kw2 + kw,b2 − f b0 − kb0 ≤ nw0 and −hw(G) − β(G) = f b0 +

kb0 + kb2 + kb,w2 − fw0 − kw0 ≤ nb0. By plugging them into (7) and (8), we deduce
(b).

Lemma 7. Suppose f + 2k ≤ m, m ≥ 4, hb(G) ≤ 0, and hw(G) ≤ 0. Also,
suppose kp + k2 ≥ 1 and fp + 2(kp + k2) ≤ m − 1 for any p ∈ {0, 1}. Then,
Procedure BiDPC-A constructs BiDPC[K|G,F].

Proof. It will suffice to show that every condition of the Merging Lemma is
satisfied. Conditions (a) and (b) are trivial from the construction. Notice that
they imply β(F1 ∪ R1) = β(G) − β(F0 ∪ R0). Thus, to prove (c), it suffices
to show 0 ≤ β(F0 ∪ R0) ≤ β(G). We observe β(F0 ∪ R0) = β(F0 ∪ K0) + α,

where α = (kw2 + kw,b2 − kb2 − kb,w2)/2 + β(U)/2, where U = {ui : 1 ≤ i ≤ k2}.
We distinguish two cases. Suppose for the first case that −hw(G) − β(G) ≤
0. Since hw(G) ≤ 0, it follows −β(G) ≤ hw(G) ≤ 0. From β(F0 ∪ R0) =

β(F0 ∪K0)− (kb2 + kb,w2) = hw(G) + β(G), we conclude that 0 ≤ β(F0 ∪R0) =

10

G0

s1 s2 s3

t1 t2 t3

u1 u2 u3

ū1 ū2 ū3

G1

(a) BiDPC-A

G0

u vs2 t2

v′u′

G1

s1

t1

(b) BiDPC-B

G0

G1

t1

y1 z1

z̄1

x2

y2 z2

x̄1

x1

s1

x̄2 z̄2

t2s2

(c) BiDPC-C

Figure 2: Illustrations of procedures in Section 3.

hw(G) + β(G) ≤ β(G). Suppose for the second case that −hw(G)− β(G) > 0.

Because β(U) = −2β(F0 ∪ K0) + (−kw2 − kw,b2 + kb2 + kb,w2), it follows α =
−β(F0 ∪K0). Hence, β(F0 ∪ R0) = 0. Therefore, we have condition (c). Since
|K(R0)| = k0 + k2 ≥ 1 and |K(R1)| = k1 + k2 ≥ 1, we have condition (d).
Finally, since f0 + 2(k0 + k2) ≤ m − 1 and f1 + 2(k1 + k2) ≤ m − 1, there
exists BiDPC[K(Rp)|Gp, Fp] for each p ∈ {0, 1} by the induction hypothesis.
Condition (e) is satisfied. This finishes the proof.

Case 2. For some p ∈ {0, 1}, kp = k2 = 0, f1−p+2k1−p ≤ m−1, and fp ≤ m−3.
Let us consider a more general situation for future use in Section 5. Let P′ be

a set of binary strings such that {Vq : q ∈ P′} is a partition of V . Suppose that
K is P′-separated. Let p, q ∈ P′ be such that every vertex of Vq has a neighbor
in Vp, fq + 2kq ≤ m − l(q), and fp + 2kp ≤ m − l(p) − 2. Suppose kq ≥ 1
and kp ≥ 0. Notice that we have the case condition if P′ = {0, 1}, p ∈ {0, 1},
q = 1− p, and kp = 0.

We utilize a closed chain C = {(u, v), (v′, u′)}, where u, v ∈ Vq, u′ ∈ N(u) ∩
Vp, and v′ ∈ N(v) ∩ Vp. Let (s, t) ∈ Kq. We merge C into an s-t chain in the
form of {(s, u), (u′, v′), (v, t)} so that the s-t path will eventually cover vertices
of Gp. Let Rq = (Kq \ (s, t))∪ {(s, u), (v, t)}. Then, we need to find f ′-fault k′-
BiDPC[K(Rq)|Gq, Fq∪F(Rq)], where it is possible that f ′+2k′ > m−l(q). The
following Procedure BiDPC-B builds such a BiDPC using an fq-fault kq-BiDPC.

Procedure BiDPC-B(G,K,F, q, p) (See Fig. 2b.)
/* Merge a closed chain C = {(u, v), (v′, u′)} into an s-t chain in the form of
{(s, u), (u′, v′), (v, t)}, where (s, t) ∈ Kq, u

′ ∈ N(u)∩Vp, and v′ ∈ N(v)∩Vp. */

1. Find Pq=fq-fault kq-BiDPC[Kq|Gq, Fq].
2. Find an edge uv on Pq such that uu′, vv′ /∈ F and both u′ and v′ are free,

where u′ ∈ N(u) ∩ Vp and v′ ∈ N(v) ∩ Vp. Let P = (s, Pu, u, v, Pv, t) be
the path of Pq that covers uv, where (s, t) ∈ Kq.

3. Find Pp=fp-fault (kp + 1)-BiDPC[Kp ∪ {(u′, v′)}|Gp, Fp].
4. Merge Pp and Pq \P , and two paths (s, Pu, u) and (v, Pv, t) using linking

edges uu′ and vv′.

11

Lemma 8. Suppose f + 2k ≤ m, m ≥ 4, hb(G) ≤ 0, and hw(G) ≤ 0. Also,
suppose k = k1−p, f1−p + 2k1−p ≤ m− 1, and fp ≤ m− 3 for p ∈ {0, 1}. Then,
applying BiDPC-B(G,K,F, 1− p, p) constructs BiDPC[K|G,F].

Proof. Let q = 1− p. Since fq + 2kq ≤ m− 1, there exists Pq by the induction
hypothesis. We claim the existence of an edge uv at Step 2. From k2 = 0 and
hb(G), hw(G) ≤ 0, we obtain 0 ≤ β(Fp ∪ Kp), β(Fq ∪ Kq) ≤ β(G). There are
2m−1−fwq −f bq −β(Fq∪Kq)−kq candidates for uv, i.e., edges in Pq. Since each

element of F2 ∪ Fwp ∪ F bp can block at most two candidates, there are at most

2(f2 + fwp + f bp) blocked candidates. Since fwq + f bq ≤ fq, β(Fq ∪Kq) ≤ fq + kq,

fwp + f bp ≤ fp, and f + k ≤ m− 1, it follows

2m−1 − fwq − f bq − β(Fq ∪Kq)− kq − 2(f2 + fwp + f bp)

≥ 2m−1 − 2(fq + kq + f2 + fp) (9)

= 2m−1 − 2(f + k) ≥ 2m−1 − 2(m− 1) ≥ 2.

Therefore, we have the claim.
Now, we show that the path set built at Step 4 is a desired BiDPC. Let

C[i] = {(si, ti)} if (s, t) 6= (si, ti). Let C[i] = {(si, u), (u′, v′), (v, ti)} if (s, t) =

(si, ti). Let R =
⋃k
i=1 C[i]. The Merging Lemma’s conditions (a), (b), and

(d) are obvious. We recall that 0 ≤ β(Fq ∪ Kq), β(Fp ∪ Kp) ≤ β(G). From
β((u, v)) = 0, we obtain β(Fp∪Rp) = β(Fp∪Kp) and β(Fq ∪Rq) = β(Fq ∪Kq).
Hence, we have condition (c). Since Pq covers 2m−1 − fwq − f bq − β(Fq ∪ Kq)
vertices and β(Kq) = β(Rq), two paths (s, Pu, u) and (v, Pv, t) and paths in
Pq\P together form BiDPC[K(Rq)|Gq, Fq∪F(Rq)]. Since fp+2(kp+1) ≤ m−1,
there exists Pp by the induction hypothesis. Condition (e) is satisfied. The proof
is finished.

3.2. Constructions for hw(G) > 0 (hb(G) ≤ 0)

We sketch our approach. First, we build chains by following the construction
of Step 1 of Procedure BiDPC-A. Then, we obtain a set of chains R such that
β(F0∪R0) = β(F0∪K0)−(kb2+kb,w2) = hw(G)+β(G) and β(F1∪R1) = −hw(G).
To meet condition (c) of the Merging Lemma, we add hw(G) black units to
G0 and the same number of white units to G1 in the form of closed chains
{(xi, zi), (z̄i, x̄i)}, where xi, zi ∈ V b0 and 1 ≤ i ≤ hw(G). For example, if there
exists a vertex pair (s, t) ∈ K(R0), such closed chains can be joined to an s-
t chain in the form of {(s, x1), (x̄1, z̄1), (z1, x2), . . . , (zhw(G), t)}. This approach
requires an f0-fault (k0+k2+hw(G))-BiDPC in G0, and the following Procedure
BiDPC-C builds it using an f0-fault (or (f0 + hw(G))-fault) (k0 + k2)-BiDPC.

Procedure BiDPC-C(G,K,F) (See Fig. 2c.)
/* Build chains C[i] = {(si, ui), (ūi, ti)} for 1 ≤ i ≤ k2, C[j] = {(sj , tj)} for
j > k2, then merge them with closed chains {(xi, zi), (z̄i, x̄i)} for 1 ≤ i ≤ hw(G).

R =
⋃k
i=1 C[i]. */

1. Select k2 free edges uiūi for 1 ≤ i ≤ k2, where ui ∈ V b0 . Let C[i] =
{(si, ui), (ūi, ti)} for 1 ≤ i ≤ k2 and let C[j] = {(sj , tj)} for j > k2.

12

2. Case f1 = f b1 and f2 + k1 + kw2 + kb,w2 = 0: Find P=f0-fault (k0 + k2)-
BiDPC[R0|G0, F0]. Let X = {xi : 1 ≤ i ≤ hw(G)} be a set of hw(G) free
vertices of V b0 that are not covered by P.

3. Case f1 > f b1 or f2 + k1 + kw2 + kb,w2 ≥ 1: Select hw(G) free edges xix̄i,
1 ≤ i ≤ hw(G), such that xi ∈ V b0 and let X = {xi : 1 ≤ i ≤ hw(G)}.
Then, find P=(f0 + hw(G))-fault (k0 + k2)-BiDPC[R0|G0, F0 ∪X].

4. For each xi ∈ X, choose a vertex yi ∈ N(xi) that is covered by P such
that (i) yi 6= yj if i 6= j, (ii) yi is not a sink, (iii) xiyi is fault-free, (iv)
zi /∈ {uj : 1 ≤ j ≤ k2}, (v) ziz̄i is fault-free, and (vi) z̄i is free, where zi
is the vertex next to yi in the direction of the sink in the path of P that
covers yi; in si-ui paths, uis are regarded as sinks.

5. For each P ∈ P, if P contains some yis, say P = (s, Pj0 , yj1 , zj1 , Pj1 , yj2 , zj2 ,
. . . , zjn , Pjn , t), then replace (s, t) with (s, xj1), (x̄j1 , z̄j1), (zj1 , xj2), . . .,
(zjn , t) at some C[j] such that (s, t) ∈ C[j]; and replace P with the paths
(s, Pj0 , yj1 , xj1), (zj1 , Pj1 , yj2 , xj2), . . ., (zjn , Pjn , t) in P.

6. Find P ′ = f1-fault (k1 + k2 + hw(G))-BiDPC[R1|G1, F1].

7. Merge P and P ′ by using linking edges xix̄i, ziz̄i, and uj ūj , where 1 ≤
i ≤ hw(G) and 1 ≤ j ≤ k2.

Lemma 9. Suppose f + 2k ≤ m, m ≥ 4, hb(G) ≤ 0, and hw(G) > 0. Also,
suppose k0 +k2 ≥ 1 and 2hw(G) ≤ f0 +f2 +2k0−1. Then, Procedure BiDPC-C
constructs BiDPC[K|G,F].

Proof. For Steps 1 through 3, we need to show the existence of k2 + hw(G) free

edges in Eb,w2 . Let ncp be the number of faulty vertices and terminals in V cp , where

c ∈ {b, w}. Then, our goal is to show (nb0+nw1 +f2)+(k2+hw(G)) ≤ 2m−2. Since
(nb0+nw1 +f2)+nw0 +nb1 ≤ f+2k, it suffices to show k2+hw(G) ≤ nw0 +nb1. Adding

k2 to both sides of (2) gives k2+hw(G) = fw0 +kw0 +kw2 +kw,b2 −β(G)−(f b0 +kb0).

We are done since fw0 + kw0 + kw2 + kw,b2 ≤ nw0 .
Next, we show the existence of P at Steps 2 and 3. Suppose that Step 2

is taken. We are to show f0 + 2(k0 + k2) ≤ m − 1. Suppose to the contrary
that f0 + 2(k0 + k2) = m. Then, f1 + f2 + k1 = 0. Then, by (3), we obtain

hw(G) = −kw2 −kb,w2 ≤ 0, a contradiction. Suppose instead that Step 3 is taken.
We are to show f0 + hw(G) + 2(k0 + k2) ≤ m− 1. From (3), f + 2k ≤ m, and

f1 > f b1 or f2 + k1 + kw2 + kb,w2 ≥ 1, we obtain

f0 + 2(k0 + k2) + hw(G) ≤ m− (f1 + f2)− 2k1 + hw(G)

= m− (f1 − f b1)− f2 − (2k1 − kb1)− (fw1 + kw1 + kw2 + kb,w2) ≤ m− 1.

We claim that we can choose yis at Step 4. Since yi is a neighbor of xi in
G0, there are m− 1 candidates for each yi. Each graph element in the following
may block at most one candidate of yi: (i) i−1 vertices in N(xi)∩V0 chosen as
yj for 1 ≤ j < i, (ii) k0 sink vertices in G0, (iii) fo0 faulty edges, (iv) k2 vertices
u1, u2, . . . , uk2 , (v) f2 faulty edges between V0 and V1, (vi) nw1 white faulty
vertices and terminals in G1, and (vii) fw0 white faulty vertices in G0. Notice

13

that i−1 ≤ hw(G)−1 for (i) and that vertices uj , 1 ≤ j ≤ k2, do not overlap to
any yi for (ii). They together block at most (hw(G)−1)+k0+fo0+k2+f2+nw1 +fw0
candidates. Since hw(G) = −fw1 − kw1 − (kw2 + kb,w2) + f b1 + kb1 by (3) and

nw1 = fw1 + kw1 + (k1 − kb1) + kw2 + kb,w2 , we obtain

(hw(G)− 1) + k0 + fo0 + k2 + f2 + nw1 + fw0

= f b1 + fo0 + fw0 + f2 + k0 + k1 + k2 − 1 ≤ f + k − 1 < m− 1.

Therefore, we have the claim.
It remains to check the conditions of the Merging Lemma. Conditions (a) and

(b) are obvious from the construction. Since β({(s, xj1), (zj1 , xj2), . . . , (zjn , t)}) =
β((s, t))−n, it follows β(F0∪R0) = β(G) and β(F1∪R1) = 0. Since k0 +k2 ≥ 1
and R1 contains a vertex pair (x̄1, z̄1), we have K(R0) 6= ∅ and K(R1) 6= ∅.
Conditions (c) and (d) are verified. Since Step 5 inserted hw(G) free ver-
tices of V b0 to P, at this point, P contains all the free vertices of V0 except
β(G) black ones. It still holds that P is a set of paths joining elements of
K(R0). Notice that K(R0) = R0. Hence, P is BiDPC[K(R0)|G0, F0 ∪ F(R0)].
Since 2hw(G) ≤ f0 + f2 + 2k0 − 1, it follows f1 + 2(k1 + k2 + hw(G)) ≤
m− (f0 + f2 + 2k0) + 2hw(G) ≤ m− 1. Thus, there exists P ′ by the induction
hypothesis. Condition (e) is satisfied. This finishes the proof.

The following Procedure BiDPC-C1 considers the case when k1+k2 ≥ 1 and
2hw(G) ≤ f1 + f2 + 2k1− 1. Its construction is symmetric to that of Procedure
BiDPC-C, and therefore its correctness proof is symmetric to that of Lemma 9,
too. Therefore, we omit the proof of Lemma 10 below.

Procedure BiDPC-C1(G,K,F)
/* Steps 1, 4, 5, and 7 are identical to the corresponding steps of Procedure
BiDPC-C. */

2. Case f0 = fw0 and f2 + k0 + kb2 + kb,w2 = 0: Find P=f1-fault (k1 + k2)-
BiDPC[R1|G1, F1]. Let X = {xi : 1 ≤ i ≤ hw(G)} be the set of hw(G)
free vertices of V w1 that are not covered by P.

3. Case f0 > fw0 or f2 + k0 + kb2 + kb,w2 ≥ 1: Select hw(G) free edges xix̄i,
1 ≤ i ≤ hw(G), such that xi ∈ V w1 and let X = {xi : 1 ≤ i ≤ hw(G)}.
Then, find P=(f1 + hw(G))-fault (k1 + k2)-BiDPC[R1|G1, F1 ∪X].

6. Find P ′ = f0-fault (k0 + k2 + hw(G))-BiDPC[R0|G0, F0].

Lemma 10. Suppose f + 2k ≤ m, hb(G) ≤ 0, hw(G) > 0, and m ≥ 4. Also,
suppose k1+k2 ≥ 1 and 2hw(G) ≤ f1+f2+2k1−1. Then, Procedure BiDPC-C1
constructs BiDPC[K|G,F].

Lemmas 9 and 10 above leave open the case when kp + k2 = 0 or 2hw(G) >
fp + f2 + 2kp − 1 for each p ∈ {0, 1}. This case will be considered in Section 5.

We close this section with a lemma which is useful to check conditions
2hw(G) ≤ fp + f2 + 2kp − 1 of Lemmas 9 and 10, where p ∈ {0, 1}.

14

Lemma 11. (a) fw0 ≤ 3f b0+fo0 +f2+4kb0+2ko0+2kb2+2kb,w2 +2β(G)−1 if and only

if 2hw(G) ≤ f0+f2+2k0−1. (b) f b1 ≤ 3fw1 +fo1 +f2+4kw1 +2ko1+2kw2 +2kb,w2 −1
if and only if 2hw(G) ≤ f1 + f2 + 2k1 − 1.

Proof. Let us show part (a). We recall that β(F0 ∪K0) = fw0 + kw0 − f b0 − kb0.
Substituting (2) into 2hw(G) ≤ f0 + f2 + 2k0 − 1 gives

2(fw0 + kw0 − (f b0 + kb0)− (kb2 + kb,w2 + β(G))) ≤ f0 + f2 + 2k0 − 1.

By rearranging it, we obtain (a). Similarly, we substitute (3) into 2hw(G) ≤
f1 + f2 + 2k1 − 1 to obtain (b).

4. Proof of Theorem 1 for fb ≤ 1

We begin by considering a special case that the total number of white faulty
vertices and white terminals is at most one, i.e., fw + ko + 2kw ≤ 1.

Lemma 12. Suppose β(G) ≥ 0, f + 2k ≤ m, and fw + ko + 2kw ≤ 1. Then,
there exists BiDPC[K|G,F].

Proof. Suppose fw + ko + 2kw = 0. Then, we have β(K) < 0 and β(F) ≤ 0,
which contradict β(G) ≥ 0. Now, suppose fw = 0 and ko + 2kw = 1. Since
β(G) = (fw + kw) − (f b + kb) ≥ 0, the only possibility is that β(G) = 0,
fw = f b = kw = kb = 0, k = ko = 1, and f = fo. Hence, Lemma 4 applies.
Suppose instead that fw = 1 and ko + 2kw = 0. Since β(G) ≥ 0, the only
possibility is that fw = 1, f b = 0, k = kb = 1, and β(G) = 0. Hence, Lemma 4
applies.

Hereafter in this section, due to Lemma 12 above, we assume fw+ko+2kw ≥
2. In what follows, we need the following assumptions.

(A1) Each of G0 and G1 contains at least one white faulty vertex or white

terminal. That is, fw0 +kw0 +ko0+kw2 +kw,b2 ≥ 1 and fw1 +kw1 +ko1+kw2 +kb,w2 ≥
1.

(A2) If kw2 = 0, then kw = 0.

(A3) If k2 = 1, and k0 = 0 or k1 = 0, then s1 6= t̄1, where K2 = {(s1, t1)}.
We do not lose any generality by our assumptions. There exist two white faulty
vertices and/or terminals w1 and w2; we choose (w1, w2) ∈ Kw whenever pos-
sible. It is obvious that w1 and w2 differ in at least two bits, say the ith bit
and the jth bit. Assuming either i = 1 or j = 1 establishes (A1) and (A2).
Suppose that (A3) is violated when i = 1 and when j = 1. Then, there exist
two source-sink pairs (s, t) and (s′, t′) such that, without loss of generality, s
and s′ are white, t and t′ are black, s and t differ in the ith bit only, and s′ and
t′ differ in the jth bit only. If s and s′ differ in the ith bit and the jth bit only,
then t = t′, a contradiction. Therefore, there exists an l such that 1 ≤ l ≤ m,
l /∈ {i, j}, and s and s′ differ in the lth bit. Consequently, by assuming l = 1

15

and assigning s and s′ respectively as w1 and w2, we obtain k0, k1 ≥ 1. In this
way, all assumptions are established.

Without loss of generality, we can assume hb(G) ≤ 0. Suppose otherwise.
Then, since hw(G) > 0 and hb(G) > 0 do not happen simultaneously, it follows
hb(G) > 0 and hw(G) ≤ 0. By exchanging G0 and G1, as described in Section 3,
we obtain hb(G) ≤ 0 and hw(G) > 0 (see (5) and (6)). Recall that this exchange
does not invalidate β(G) ≥ 0. Also, assumptions (A1), (A2), and (A3) still hold
true. With the aid of assumption (A1), we can easily handle the case when
hw(G) > 0.

Lemma 13. Suppose f + 2k ≤ m, m ≥ 4, f b ≤ 1, hb(G) ≤ 0, and hw(G) > 0.
Then, Procedure BiDPC-C1 constructs BiDPC[K|G,F].

Proof. We are to show k1 + k2 ≥ 1 and 2hw(G) ≤ f1 + f2 + 2k1 − 1. To show
k1 + k2 ≥ 1, suppose to the contrary that k1 + k2 = 0. Since G1 has no white
terminal, it follows fw1 ≥ 1 by (A1). Since hw(G) = f b1−fw1 > 0 by (3), it follows
f b1 ≥ 2, which contradicts f b ≤ 1. It remains to show 2hw(G) ≤ f1+f2+2k1−1.

From (A1), we obtain 2fw1 + 2kw1 + 2ko1 + 2kw2 + 2kb,w2 − 1 ≥ 1 ≥ f b1 . By
Lemma 11(b), we obtain 2hw(G) ≤ f1 + f2 + 2k1 − 1.

The rest of this section covers the case when hw(G) ≤ 0. There are four cases
discussed in Section 3.1. Since Cases 1 and 2 have already been considered, it
remains to consider Cases 3 and 4.
Case 3. For some p ∈ {0, 1}, kp + k2 ≥ 1 and fp + 2(kp + k2) = m.

We assume k1 + k2 ≥ 1 and f1 + 2(k1 + k2) = m (f = f1 and k = k1 + k2).
Otherwise, we exchange G0 and G1. We recall that this exchange does not
invalidate β(G) ≥ 0 and hb(G), hw(G) ≤ 0. From (A1) and f0 = 0, we obtain
k2 ≥ 1.

We follow the construction of Procedure BiDPC-A with some modifications.
Basically, we build simple chains {(si, ui), (ūi, ti)} for every (si, ti) ∈ K2, where
ui ∈ V0. Although G1 may not be f -fault k-bicoverable, we can use (f + 1)-
fault (k − 1)-bicoverability or (f − 1)-fault k-bicoverability of G1 instead. We
use k2-bicoverability of G0 if 2k2 < m, and Lemma 2 or 3 if 2k2 = m. In order
to use Lemma 3, we need β({(si, ui) : 1 ≤ i ≤ k2}) = 0 and two siuis forming
edges.
Case 3.1. k ≥ 2 and there exists an (si, ti) ∈ K2 such that t̄i is free.

Without loss of generality, we can assume that t̄1 is free. Recall that we
are assuming (si, ti) ∈ K2 and si ∈ V0 for 1 ≤ i ≤ k2. It will be useful
that {(s1, t̄1), t1} � (s1, t1). The detailed construction is given in the following
Procedure BiDPC-D.

Procedure BiDPC-D(G,K,F) (See Fig. 3a.)
/* Build chains C[1] = {(s1, t̄1), t1}, C[i] = {(si, ui), (ūi, ti)} for 2 ≤ i ≤ k2, and

C[j] = {(sj , tj)} for j > k2. R =
⋃k
i=1 C[i]. */

1. If (s1, t1) ∈ Ko
2 and there exists (si, ti) ∈ Kb

2∪Kw
2 such that t̄i is free, then

exchange (s1, t1) and (si, ti). If k2 ≥ 2, we assume that β(s2) = −β(s1)
or β(si) = β(s1) for every 2 ≤ i ≤ k2.

16

2. Select k2 − 1 free edges uiūi, 2 ≤ i ≤ k2, such that ui ∈ V0 and
(a) Case β(s1) = β(t1): β(si) = −β(ui) and if k2 ≥ 3, s2u2 and s3u3

form edges.
(b) Case β(s1) = −β(t1), k2 ≥ 2, and β(s2) = −β(s1): β(s2) = β(u2),

β(sj) = −β(uj) for j ≥ 3, and if k2 ≥ 4, s3u3 and s4u4 form edges.
3. Find P0=k2-BiDPC[K(R0)|G0, ∅] and P1=(f1 + 1)-fault (k1 + k2 − 1)-

BiDPC[K(R1)|G1, F1 ∪ {t1}]. Merge P0 and P1 with the linking edges.

Lemma 14. Suppose f + 2k ≤ m, f0 + f2 + k0 = 0, and k ≥ 2. Also, suppose
that there exists (s1, t1) ∈ K2 such that t̄1 is free. Then Procedure BiDPC-D
constructs BiDPC[K|G,F] if one of the following is satisfied:

• β(s1) = β(t1).
• β(s1) = −β(t1), there exists (s2, t2) ∈ K2 such that β(s2) = −β(s1). In

addition, f1 + k1 ≥ 1 or k2 ≥ 4.
• β(s1) = −β(t1), k1 ≥ 1, k2 = 1, and β(G) ≥ 1.

Proof. We claim the existence of free edges at Step 2. We need at most kw2 +kw,b2

free edges of Eb,w2 and at most kb2 + kb,w2 free edges of Ew,b2 . Since f0 = k0 = 0,

it follows kw2 + kw,b2 = −hb(G) and kb2 + kb,w2 = −hw(G)− β(G). By Lemma 6,
we have the claim. We further claim that we can sequentially choose u2 and u3
at Step 2(a). There are m − 1 candidates for each of u2 and u3 and at most
m − 2 of them are blocked by faulty vertices and terminals, as s2 (resp. s3)
blocks no candidate of u2 (resp. u3) and because s1 and t1 together block at
most one candidate of u2 and of u3. Although u2 and u3 should be distinct,
either s2 or u2 blocks at most one candidate for u3 since s2 and u2 have different
colors. Therefore, there remain at least one candidate of u3 after we choose u2.
The claim is proved. Similarly, we can pick up k2 − 1 free edges satisfying the
conditions of Step 2(b).

To show that the result of Step 3 is a desired BiDPC, we check conditions
of the Merging Lemma. Let us consider the first part, β(s1) = β(t1). From the
construction, conditions (a), (b), and (d) are obvious. Similar to the proof of
Lemma 7, condition (c) follows from β(F0∪R0) = 0 and conditions (a) and (b).
To verify condition (e), since F0 = F(R0) = ∅ and F(R1) = {t1}, it will suffice
to show the existence of P0 and P1. Since (f1 + 1) + 2(k1 + k2 − 1) < m, there
exists P1 by the induction hypothesis. The existence of P0 is guaranteed by the
induction hypothesis if f1 + k1 ≥ 1, by Lemma 3 if f1 + k1 = 0 and k2 ≥ 3,
and by Lemma 2 if f1 + k1 = 0 and k2 = 2. The proof for the second part is
similar. (The existence of P0 is from the induction hypothesis if f1 + k1 ≥ 1,
and from Lemma 3 if f1 + k1 = 0 and k2 ≥ 4.) Let us consider the third part.
Conditions (a), (b), and (d) are obvious. By (A1), s1 is white, so t1 is black
and β((s1, t̄1)) = 1. Since β(G) ≥ 1, it follows 0 ≤ β(R0) = 1 ≤ β(G) and
0 ≤ β(F1 ∪R1) = β(G)− 1 ≤ β(G). Thus, condition (c) is verified. There exist
P0 and P1 by the induction hypothesis. Hence, we have condition (e). This
finishes the proof.

By the selection of (s1, t1) in Step 1 of Procedure BiDPC-D, hereafter in this
section, we assume that t̄i is not free for each (si, ti) ∈ Kb

2∪Kw
2 . Lemma 14 above

17

s1

t1

s2 s3

t2 t3

u2 u3
t̄1

(a) BiDPC-D

t1

s3

t3

u3
s1

t2ū2

s2
u2

ū3

t̄1

(b) Lemma 15

s1

ū1
t1 t2ū2

s2 s3 s4

t3 t4

u4u3u1 u2

(c) BiDPC-E

v

s1

t1u
tj

v̄ū

sj

(d) BiDPC-F

Figure 3: Illustrations of the constructions in Section 4.

leaves open the following two cases: (i) f = 0, k = k2 ∈ {2, 3}, β(s1) = −β(t1),
and there exists (s2, t2) ∈ K2 such that β(s2) = −β(s1), and (ii) β(s1) = −β(t1)
and there exists no (s, t) ∈ K2 such that β(s) = −β(s1). Let us consider case (i).
Suppose k2 = 2. If β(G) = 0, then Lemma 2 applies. Let β(G) ≥ 1. Then, the
only possibility is that ko2 = kw2 = 1 and β(G) = 1, i.e., (s2, t2) ∈ Kw

2 . Since
t̄2 is not free, it follows that s1 is a black vertex, so t1 is a white vertex. This
implies that s̄2 is free. Thus, by exchanging G0 and G1, we come to the case
where there exists a source-sink pair (s, t) ∈ Kw

2 such that t̄ is free. It is the
case in which the first part of Lemma 14 is applicable. The following Lemma 15
considers when k2 = 3 (m = 6).

Lemma 15. Suppose f = 0, k = k2 = 3, and m = 6. Also, suppose that there
exist (s1, t1), (s2, t2) ∈ K2 such that t̄1 is free, β(s1) = −β(t1), and β(s2) =
−β(s1). Then, there exists BiDPC[K|G,F].

Proof. We build chains C[1] = {(s1, t̄1), t1}, C[2] = {(s2, u2), (ū2, t2)}, and
C[3] = {(s3, u3), (ū3, t3)}. First, select a free edge u3ū3 such that u3 ∈ V0
and s3u3 forms an edge. Then, find P0=1-BiDPC[{(t̄1, s2)}|G0, {s3, u3} ∪ F ′],
where F ′ = {s1t̄3} ∩ E. Let (t̄1, P1, s1, u2, P2, s2) be its unique path. Finally,
merge the three paths (t̄1, P1, s1), (u2, P2, s2), and (s3, u3) and P1=BiDPC

[K(R1)|G1,F(R1)] using the linking edges, where R =
⋃3
i=1 C[i] (see Fig. 3b).

The Merging Lemma’s conditions (a), (b), (c), and (d) can be verified with
ease. There exists P0 by the induction hypothesis. Since β((t̄1, s2)) = 0 and
β((s3, u3)) = 0, P0 is a t̄1-s2 Hamiltonian path of G0 \ {s3, u3}. Hence, three
paths (t̄1, P1, s1), (u2, P2, s2), and (s3, u3) form BiDPC[K(R0)|G0, F0 ∪F(R0)].
By the induction hypothesis, there exists P1, which is a 1-fault 2-BiDPC if
ū2 6= t2 and is a 2-fault 1-BiDPC otherwise. Hence, condition (e) is satisfied.
As a result, we have a desired BiDPC.

Now, we consider the case (ii), where β(s1) = −β(t1) and there exists no
(s, t) ∈ K2 such that β(s) = −β(s1). We distinguish two subcases: k2 ≥ 2 and
k2 = 1.

Suppose first that k2 ≥ 2. Since all the terminals in G0 share the same color
white by (A1), we have kb,w2 = kb2 = 0. If kw2 ≥ 1, by the choice of (s1, t1) in

Step 1 of Procedure BiDPC-D, we are done. Therefore, k2 = kw,b2 . We observe

18

that an edge uū is always free if ū is a free vertex such that ū ∈ N(t1)∩V1. From

(A1) and k2 = kw,b2 , we obtain f1 + k1 ≥ 1. The following Procedure BiDPC-E
and Lemma 16 below handle this case; we will use the procedure again in a later
case.

Procedure BiDPC-E(G,K,F) (See Fig. 3c.)
/* Builds chains C[i] = {(si, ui), (ūi, ti)} for 1 ≤ i ≤ k2, and C[j] = {(sj , tj)}
for j > k2. R =

⋃k
i=1 C[i]. */

1. Select a free edge u1ū1 such that ū1t1 is a fault-free edge in G1.

2. Select k2 − 2 free edges uiūi for 3 ≤ i ≤ k2 such that ui ∈ V0 and
β(ui) = −β(si).

3. Find P1=(f1 + 1)-fault (k − 1)-BiDPC[K1 ∪ {(ūi, ti) : 3 ≤ i ≤ k2} ∪
{(t1, t2)}|G1, F1 ∪ {ū1}]. Let P = (t1, ū2, Pu, t2) be P1’s t1-t2 path.

4. Find P0=k2-BiDPC[K(R0)|G0, ∅]. Merge P0, P1\P , and two paths (ū1, t1)
and (ū2, Pu, t2) using the linking edges.

Lemma 16. Suppose f + 2k ≤ m, f0 + f2 + k0 = 0, k2 ≥ 2, and f1 + k1 ≥ 1.
Suppose that there exist (s1, t1), (s2, t2) ∈ K2 such that β(s1) = −β(t1), β(s2) =
β(s1), and β(t2) = β(t1). Also, suppose that an edge uū is free if ū ∈ N(t1)∩V1
is free. Then, Procedure BiDPC-E constructs BiDPC[K|G,F].

Proof. The existence of free edges in Step 1 and 2 can be shown in a way similar
to the proof of Lemma 14. The Merging Lemma’s conditions (a), (b), (c), and
(d) can be verified with ease. Notice that β(R0) = 0 and β(F1∪R1) = β(G). Let
us verify condition (e). Since (f1 + 1) + 2(k− 1) ≤ m− 1, there exists P1 by the
induction hypothesis. Since β(K1 ∪{(ūi, ti) : 3 ≤ i ≤ k2}∪{(t1, t2), ū1}∪F1) =
β(G), P1 contains l = 2m−1−(f b+fw)−β(G)−1 vertices. Let us consider a set of
paths consists of all the paths in P1\P and two paths (ū1, t1) and (ū2, Pu, t2). It
contains l+ 1 vertices, and it is obviously a paired many-to-many disjoint paths
joining vertex pairs of K(R1). Hence, the path set is BiDPC[K(R1)|G1, F1].
There exists P0 by the induction hypothesis. Thus, (e) is verified. This finishes
the proof.

Suppose instead that k2 = 1. Since G0 contains no faulty vertex or terminal
other than s1, s1 is white and t̄1 is free by (A1) and (A3). By Lemma 14, there

remains only one case to be considered: k1 ≥ 1, k2 = kw,b2 = 1, and β(G) = 0.
If f1 = 0 and k1 = 1, then Lemma 2 applies. Hence, it only remains to consider
when f1 + 2k1 ≥ 3. The following Procedure BiDPC-F and Lemma 17 consider
this case.

Procedure BiDPC-F(G,K,F) (See Fig. 3d.)
/* Builds chains C[1] = {(s1, t̄1), t1}, C[j] = {(sj , u), (ū, v̄), (v, tj)} for some

j ≥ 2, and C[i] = {(si, ti)} for 2 ≤ i 6= j ≤ k. R =
⋃k
i=1 C[i]. */

1. Find P1=f1-fault (k−1)-BiDPC[K1|G1, F1]. Let P = (sj , Ps, u, t1, v, Pt, tj)
be the P1’s path containing t1.

19

2. Merge P1 \ P , paths (sj , Ps, u), (t1), (v, Pt, tj), linking edges uū, vv̄, and
t̄1t1, and P0=2-BiDPC[{(ū, v̄), (s1, t̄1)}|G0, ∅].

Lemma 17. Suppose f + 2k ≤ m, f0 + f2 + k0 = 0, k ≥ 2, k2 = 1, and
f1 + 2k1 ≥ 3. Also, suppose that there exists (s1, t1) ∈ Kw,b

2 such that t̄1 6= s1.
Then, Procedure BiDPC-F constructs BiDPC[K|G,F].

Proof. There exists P1 by the induction hypothesis. Notice that f1 +2(k−1) <
m. We claim that P1 covers t1. Notice that β((s1, t1)) = 0. Since β(G) = 0 and
β(F ∪K \(s1, t1)) = β(F ∪K), the path set P1 is a disjoint path cover of G1\F1.
Hence, we have the claim. Notice that P1 \ P and the three paths (sj , Ps, u),
(t1), and (v, Pt, tj) form a disjoint path cover of G1 \ F1. Since m ≥ 5, the
induction hypothesis guarantees the existence of P0. Verifying the conditions
of the Merging Lemma can be easily done using these facts.

Case 3.2. k ≥ 2 and t̄i is a terminal for any (si, ti) ∈ K2.
We claim k2 ≥ 2. Suppose to the contrary that k2 = 1 and t̄1 is not free.

The only possibility is that t̄1 = s1, which contradicts (A3). Hence, we have
the claim. We observe that for any ti such that ti ∈ V w1 and (si, ti) ∈ K2, t̄i is

a terminal. Hence, kw2 + kb,w2 ≤ kb2 + kb,w2 . A symmetric reasoning reveals that

kb2 + kw,b2 ≤ kw2 + kw,b2 . Therefore, kb2 = kw2 .

Suppose f1 +k1 = 0 and k2 = 2. Since kb2 = kw2 , it follows kw,b2 = kb,w2 = 1 or
kw2 = kb2 = 1 by (A1). Therefore, Lemma 2 applies. In what follows, we assume
that f1 + k1 ≥ 1 or k2 ≥ 3.

Suppose kb,w2 ≥ 2 or kw,b2 ≥ 2. Then, we rearrange source-sink pairs in K2

so that (s1, t1), (s2, t2) ∈ Kw,b
2 or (s1, t1), (s2, t2) ∈ Kb,w

2 . Notice that for any
(s, t) ∈ K2, an edge uū is free if ū is free, where ū ∈ N(t) ∩ V1. Hence, if
f1 + k1 ≥ 1, Procedure BiDPC-E constructs a desired BiDPC. Let us consider
a modified version of Procedure BiDPC-E that selects ui from N(si) ∩ V0 for
3 ≤ i ≤ k2 at Step 2. This modified version can be used to construct a desired
BiDPC when f1 + k1 = 0 and k2 ≥ 3.

Lemma 18. Suppose f + 2k ≤ m, f0 + f2 + k0 = 0, f1 + k1 = 0, and k2 ≥ 3.
Suppose that there exist (s1, t1), (s2, t2) ∈ K2 such that β(s1) = −β(t1), β(s2) =
β(s1), and β(t2) = β(t1). Also, suppose that uū is free if ū ∈ N(t1)∩V1 is free.
Then, the modified Procedure BiDPC-E constructs BiDPC[K|G,F].

Proof. The proof is similar to that of Lemma 16. However, the existence of P0

relies on Lemma 3 instead of the induction hypothesis. Notice that if k2 = 3,
s3u3 and either s1u1 or s2u2 form two edges in G0.

Suppose instead that kb,w2 ≤ 1 and kw,b2 ≤ 1. We claim that we have

kb,w2 , kw,b2 ≥ 1 or kb2, k
w
2 ≥ 1. If kb,w2 = kw,b2 = 1, we are done. If kb,w2 + kw,b2 ≤ 1,

then kw2 = kb2 ≥ 1 follows from k2 ≥ 2. Thus, we have the claim. By the claim,
we can assume without loss of generality that there exist (s1, t1), (s2, t2) ∈ K2

such that β(s1) = −β(s2) and β(t1) = −β(t2). The following Procedure BiDPC-
G and Lemma 19 consider the case when f1 + k1 ≥ 1 or k2 ≥ 4. The proof for
the case when f1 + k1 = 0 and k2 = 3 is given in Lemma 20 below.

20

s1

t1 t2

s2 s3 s4

t3 t4

u3 u4

ū1 ū2

(a) BiDPC-G

t3

s2

t1

s3

t2

s1

ū3 ū2

u1 u3 u2

ū1

(b) Lemma 20

t1

x
y

z̄

s1

z

(c) BiDPC-H

s1 t1

ū ȳ

x
yu

(d) BiDPC-I

Figure 4: Illustrations of the constructions in Section 4.

Procedure BiDPC-G(G,K,F) (See Fig. 4a.)
/* Build chains C[i] = {(si, ui), (ūi, ti)} for 1 ≤ i ≤ k2 and C[j] = {(sj , tj)} for

j > k2. R =
⋃k
i=1 C[i]. */

1. Select k2 − 2 free edges uiūi, 3 ≤ i ≤ k2, such that ui ∈ V0 and β(si) =
−β(ui). Let s3u3 and s4u4 form edges if k2 ≥ 4.

2. Find P1 = (k − 1)-BiDPC[K1 ∪ {(ūi, ti) : 3 ≤ i ≤ k2} ∪ {(t1, t2)}|G1, F1 ∪
F ′], where F ′ = {t1t2} ∩ E. Let P = (t1, P1, ū1, ū2, P2, t2) be its t1-t2
path.

3. Find k2-BiDPC[K(R0)|G0, ∅] and merge it with P1 \ P and two paths
(t1, P1, ū1) and (ū2, P2, t2) using the linking edges.

Lemma 19. Suppose f + 2k ≤ m, f0 + f2 + k0 = 0, k2 ≥ 2, and f1 + k1 ≥ 1
or k2 ≥ 4. Also, suppose that t̄i is not free for each (si, ti) ∈ K2 and there
exist (s1, t1), (s2, t2) ∈ K2 such that β(s1) = −β(s2) and β(t1) = −β(t2). Then,
Procedure BiDPC-G construct BiDPC[K|G,F].

Proof. The proof is similar to that of Lemma 16. Notice that, by the selection
of F ′, the length of the path P is greater than one. Since P is a path of odd
length, P contains at least four vertices. Hence, there exist an edge ū1ū2 on P
such that both u1ū1 and u2ū2 are free.

Lemma 20. Suppose f = 0, k = k2 = 3, and m ≥ 6. Also, suppose that t̄i is
not free for each (si, ti) ∈ K2. Then, there exists BiDPC[K|G,F].

Proof. It suffices to consider that si /∈ N(ti) for 1 ≤ i ≤ 3, otherwise Lemma 3
applies. Since kw2 = kb2, it follows kb2 = kw2 = ko2 = 1 or ko2 = 3. However, as will
be shown later, ko2 = 3 does not happen. Hence, without loss of generality, we
can assume (s1, t1) ∈ Ko

2 . Also, we can rearrange source-sink pairs so that t̄1 =
s3. Then, it follows t̄2 = s1 and t̄3 = s2. (See Fig. 4b.) We claim β(t1) = β(t2).
Suppose kb2 = kw2 = ko2 = 1. From (s1, t1) ∈ Ko

2 , it follows β(s2) = β(t2) and
β(s3) = β(t3). From this and two conditions t̄1 = s3 and t̄3 = s2, we obtain
β(t1) = −β(s3) = −β(t3) = β(s2) = β(t2). Suppose ko2 = 3. Then, we obtain

β(t1) = −β(s3) = β(t3) = −β(s2) = β(t2). From this, it follows k2 = kb,w2

or k2 = kw,b2 , which violates (A1). Thus, we have the claim. We use chains
C[i] = {(si, ui), (ūi, ti)} for 1 ≤ i ≤ 3. There exists a free vertex ū1 ∈ N(t1)∩V1.

21

Let F ′ = {t1t3, t3t2} ∩ E. There exists P1=1-BiDPC[{(t1, t2)}|G1, {ū1} ∪ F ′]
by the induction hypothesis. Let P = (t1, ū3, P3, t3, ū2, P2, t2) be P1’s unique
path. Since β(t1) = β(t2), the path (u1, P) is a Hamiltonian path of G1, so
three paths (ū1, t1), (ū3, P3, t3), (ū2, P2, t2) form BiDPC[K(R1)|G1, ∅], where

R =
⋃3
i=1 C[i]. By selection of F ′, it is guaranteed that ū2 and ū3 are free and

their mates are free. Since s3u3 and s2u2 form two edges in G0, there exists
3-BiDPC[K(R0)|G0, ∅] by Lemma 3. Since Fi ∪ F(Ri) = ∅ for i ∈ {0, 1}, the
condition (e) of the Merging Lemma is verified, and other conditions can be
verified easily.

Case 3.3. k = 1.
We recall that f = f1. By (A1), we have k = k2 = 1 and s1 is white. Due

to Lemma 4, we need to consider only the case where f b1 + fw1 ≥ 2. For a faulty
vertex x ∈ F1, we utilize a t1-x path in G1. Details are given in the following
Procedure BiDPC-H.

Procedure BiDPC-H(G,K,F) (See Fig. 4c.)
/* Builds a chain C[1] = {(s1, ȳ), (y, t1)} or {(s1, z̄), (z, t1)}. R = C[1]. */

1. Select a faulty vertex x ∈ F1.
2. Find 1-BiDPC[{(t1, x)}|G1, F1 \ x]. Let P = (t1, Pz, z, y, x) be its unique

path.
3. If x ∈ F b1 , then merge (t1, Pz, z, y) and an s1-ȳ Hamiltonian path of G0

using yȳ. If x ∈ Fw1 , merge (t1, Pz, z) and an s1-z̄ Hamiltonian path of G0

using zz̄.

Lemma 21. Suppose f + 2k ≤ m, m ≥ 4, f0 + f2 + k0 = 0, f b1 + fw1 ≥ 1, and
k = k2 = 1. Then, Procedure BiDPC-H constructs BiDPC[K|G,F].

Proof. Notice that P contains l = 2m−1 − (f b + fw − 1)− β({(t1, x)} ∪ (F \ x))
vertices. Suppose first that x ∈ F b1 . Then, we have β(x) = −1, so β(F \ x) =
β(F) + 1. If β(t1) = −1, then l = 2m−1 − (f b + fw) − β(F) + 1. Since
β(F) = β(G), the path (t1, Pz, z, y) contains 2m−1 − (f b + fw)− β(G) vertices.
Therefore, we can merge the path with an s1-ȳ Hamiltonian path of G0 in order
to obtain a desired BiDPC. If β(t1) = 1, then l = 2m−1 − (f b + fw) − β(F).
Since β(F) = β(G)− 1, the path (t1, Pz, z, y) contains 2m−1− (f b + fw)−β(G)
vertices. Again, we can merge the path with an s1-ȳ Hamiltonian path of G0

to obtain a desired BiDPC. The proof for x ∈ Fw1 is similar, and therefore is
omitted here.

Case 4. For some p ∈ {0, 1}, kp = k2 = 0, f1−p+2k1−p ≤ m−1, and fp = m−2.
Without loss of generality, we can assume that k0 = k2 = 0, f1+2k1 ≤ m−1,

and f0 = m − 2. Thus, we have k = k1 = 1 and f = f0 = m − 2. By (A1)
and (A2), we must have fw0 ≥ 1 and k = ko1. Without loss of generality, we can
assume that s1 is white and t1 is black. We use (m − 3)-fault 1-bicoverability
of G0.

Procedure BiDPC-I(G,K,F) (See Fig. 4d.)
/* Builds a chain C[1] = {(s1, ū), (u, y), (ȳ, t1)} if ȳ 6= s1 and {s1, (s̄1, u), (ū, t1)}
otherwise. */

22

1. Select a free edge uū such that u ∈ V w0 .

2. Find (m− 3)-fault 1-BiDPC[{(u, x)}|G0, F0 \ x] for an arbitrary x ∈ Fw0 .
Let P = (u, Py, y, x) be its unique path.

3. Merge a path (u, Py, y), linking edges uū and yȳ, and the following:

(a) 2-BiDPC[{(s1, ū), (ȳ, t1)}|G1, ∅] if ȳ 6= s1.
(b) 1-BiDPC[{(t1, ū)}|G1, {s1}] and the path (s1) if ȳ = s1.

Lemma 22. Suppose f + 2k ≤ m, m ≥ 4, k = ko1 = 1, f = f0 = m − 2,
and fw0 ≥ 1. Also, suppose that s1 is white and t1 is black. Then, Procedure
BiDPC-I constructs BiDPC[K|G,F].

Proof. The existence of uū at Step 1 is obvious. At Step 2, the existence of the
1-BiDPC is guaranteed by the induction hypothesis. Let us show that existence
of BiDPCs at Step 3. Notice that F1 = ∅. When ȳ 6= s1, since β((s1, ū)) =
β((ȳ, t1)) = 0, Lemma 2 applies. When ȳ = s1, since β((t1, ū)) = −1 and
β(s1) = 1, Lemma 4 applies. The proof of the correctness of our construction is
similar to that of Lemma 21. The path (u, Py, y) contains 2m−1−(f b+fw)−β(G)
vertices. Notice that β((F \ x) ∪ {(u, x)}) = β(F) = β(G). Thus, merging
the path (u, Py, y) and the 2-BiDPC of Step 3(a) results in BiDPC[K|G,F].
Similarly, merging the path (u, Py, y), the 1-BiDPC of Step 3(b), and a path
(s1) results in BiDPC[K|G,F].

5. Proof of Theorem 1 for fb ≥ 2

Contrary to the previous section, the case when hw(G) ≤ 0 can be han-
dled easily. So the major portion of this section is devoted to the case when
hw(G) > 0. When hw(G) > 0 and Procedures BiDPC-C and BiDPC-C1 are
not applicable, we solve a relaxed problem where the solution may contain addi-
tional closed chains (that are not joining source-sink pairs) and the condition (d)
of the Merging Lemma is ignored. Then, we postprocess the relaxed solution in
order to obtain chains satisfying every condition of the Merging Lemma.

By the same way as we got (A1), with no loss of generality, we can assume
that f b0 ≥ 1 and f b1 ≥ 1. We can further assume that hb(G) ≤ 0.

Lemma 23. Suppose f + 2k ≤ m, m ≥ 4, f b0 ≥ 1, f b1 ≥ 1, and hb(G) ≤ 0.
Then, Procedure BiDPC-A, BiDPC-B, BiDPC-C, or BiDPC-C1 can construct
BiDPC[K|G,F] unless

fw0 ≥ 3, f b0 ≥ 1, f b1 ≥ 1, hw(G) ≥ 2, and m ≥ 8. (10)

Proof. From f + 2k ≤ m and f0, f1 ≥ 1, we obtain fp + 2(kp + k2) ≤ m− 1 for
each p ∈ {0, 1}. Therefore, Lemma 7 or 8 applies if hw(G) ≤ 0.

We claim that if hw(G) > 0, then Lemma 9 or 10 applies unless hw(G) ≥ 2
and fw0 ≥ 3. Suppose hw(G) = 1. From (2), we obtain hw(G) = 1 ≤ fw0 + kw0 −
f b0 . Since f b0 ≥ 1, it follows 3 ≤ fw0 +kw0 +f b0 and 2hw(G) = 2 ≤ f0+f2+2k0−1.
Hence, if k0 + k2 ≥ 1, Lemma 9 applies. If k0 + k2 = 0, we have k1 = k ≥ 1.
Since f b1 ≥ 1, it follows f1 + f2 + 2k1 − 1 ≥ 2 = 2hw(G). Hence, Lemma 10

23

w3

G000 G01

w1

w2

b1

δ1 δ2γ1γ2

b2

G11G10

b3

G001

(a) First canonical form

w3

G000 G01

w1

w2

δ1 δ2γ1γ2

G11G10

b2

b1

b3

G001

(b) First canonical form (2)

G01

b3

δ̃1

δ̃2

w1

γ1 γ2

b2

δ1

δ2

w2

w3

b1

G11

(c) Second canonical form

Figure 5: Illustrations of constructions for the 6-tuple.

applies. Suppose instead that fw0 ≤ 2. Then, fw0 ≤ 3f b0 + 2β(G) − 1. From
Lemma 11(a), we obtain 2hw(G) ≤ f0 + f2 + 2k0 − 1. If k0 + k2 ≥ 1, then
Lemma 9 applies. If k0 + k2 = 0, then hw(G) = fw0 − f b0 − β(G) ≤ 1, so we are
done. Therefore, we have the claim.

Let fw0 ≥ 3, hw(G) ≥ 2, and m ≤ 7. Then, the only possibility is m = 7,
fw0 = 3, f b0 = f b1 = 1, hw(G) = 2, and k = kb1 = 1. It is the unique subcase of
m = 7 where the aforementioned lemmas are not applicable. To overcome this
problem, we flip color of every vertex so that f b = 3, fw = 2, and k = kw = 1,
and then partition G into two subcubes G′0 and G′1 each of which contains at
least one (new) black faulty vertex. This causes no problem since (i) β(G) still
remains zero, and (ii) if hb(G) > 0 at this point, it suffices to exchange G′0 and
G′1. Then, one of the lemmas should be applicable, i.e., Lemma 7 or 8 applies
when hw(G) ≤ 0 and Lemma 9 or 10 applies when hw(G) > 0 (fw0 ≤ fw = 2).
The proof is finished.

Hereafter, we assume (10). There exist three white faulty vertices w1, w2,
w3 ∈ Fw0 and two black faulty vertices b1 ∈ F b1 and b3 ∈ F b0 . From (3) and
hw(G) ≥ 2, it follows f b1 + kb1 ≥ 2. So, there exists b2 ∈ F b1 ∪Kb

1 other than b1.
The set {w1, w2, w3, b1, b2, b3} will be called the 6-tuple. We further assume the
following two conditions.

(B1) Either w3, b3 ∈ V000, w1 ∈ V001, and w2 ∈ V01 (see Fig. 5a)
or w1 ∈ V000, b3 ∈ V001, w2, w3 ∈ V01, fw00 = 1, and f b01 = 0 (see Fig. 5c).

(B2) If {b1, b2} ⊂ Fp ∪Kp for some p ∈ {10, 11}, then F b1 ∪Kb
1 = F bp ∪Kb

p.

We show that we do not lose any generality by our assumptions. It is safe to
assume that w1, b3 ∈ V00 and w2 ∈ V01. We distinguish two cases according to
whether w3 ∈ V00 or not. Suppose for the first case that w3 ∈ V00. Without
loss of generality, we can assume that w3, b3 ∈ V000 and w1 ∈ V001. We will
call this arrangement the first canonical form. Suppose for the second case
that w3 ∈ V01. Without loss of generality, we can assume that w1 ∈ V000 and
b3 ∈ V001. We will call this arrangement the second canonical form. If we
have the second canonical form and fw00 ≥ 2, then there exists w4 ∈ Fw00 such

24

that w4 6= w1. By renaming w4 as w3 (and vise versa), we can obtain the first
canonical form. We have a similar argument when f b01 ≥ 1. In this way, (B1)
is satisfied. For (B2), we avoid choosing b2 from F bp ∪ Kb

p if possible, where
p ∈ {10, 11} is such that b1 ∈ Vp.

Now, we define our relaxed problem. For a set of units X, let size(X) =
|F(X)| + 2|K(X)|. Let us define the notion of regular refinement. For a set of
units X = {x1, x2, . . . , xn} with β(X) ≥ 0, and a set of binary strings Q, we
say a set of units Y is a Q-regular refinement of X if Y can be partitioned into
F(X) and pairwise disjoint free and simple chains Y [1], Y [2], . . . , Y [n′] for some
n′ ≥ n such that

(a′) Y [i] � xi if xi ∈ K(X), Y [i] = ∅ if xi ∈ F(X), and Y [i] is a closed chain
if i > n;

(b′)
⋃n′

i=1 Y [i] is Q-separated;

(c′) for each p ∈ Q, 0 ≤ β(Yp) ≤ β(X);

(e′) for each p ∈ Q, size(Yp) ≤ size(X); and

(f′) if K(X) 6= ∅, then for each p ∈ Q, either
⋃n
i=1K(Y [i]p) 6= ∅ or size(Yp) ≤

size(X)− |K(X)|.
We observe similarities between the conditions of a regular refinement and those
of the Merging Lemma. Here, condition (d′) is intentionally omitted. For a set
of units X, we say X’s Q-regular refinement Y is strong if conditions (e′) and
(f′) hold true even if the term size(X) is replaced with size(X)− l(p). Our first
goal is to find a strong regular refinement of F ∪K.

5.1. Phase 1: Building regular refinements

Let us sketch the construction of regular refinements. Hereafter, P denotes
the set {000, 001, 01, 10, 11}. We will partition F ∪K into cells of non-negative
balances, then find P-regular refinements of all the cells. To find regular refine-
ments, we use divide-and-conquer approaches. First, we proceed with subset-by-
subset. Notice that Y [1]∪Y [2] is a P-regular refinement of X[1]∪X[2] for disjoint
unit sets X[1] and X[2] and their respective P-regular refinements Y [1] and Y [2]
that are disjoint. Second, we proceed with subcube-by-subcube. For example,
if a unit set X has a {0, 1}-regular refinement Y , where Y0 and Y1 respectively
have a {00, 01}-regular refinement Z contained in G0 and a {10, 11}-regular re-
finement Z ′ contained in G1, then Z ∪Z ′ is a {00, 01, 10, 11}-regular refinement
of X.

We begin by partitioning F ∪K into cells with non-negative balances. From
(2) and (3), we can observe that F ∪K can be partitioned as follows.

Type-1: β(G) singletons each containing a white unit in G0.

Type-2: fo + ko − ko2 singletons each containing a unit of balance zero.

Type-3: f b0 + kb0 − 1 sets {w, b}, where w and b respectively are a white
and a black unit in G0, and fw1 + kw1 sets {w′, b′}, where w′ and b′

respectively are a white and a black unit in G1.

Type-4: hw(G)− 2 sets {w, b}, where w ∈ Fw0 ∪Kw
0 and b ∈ F b1 ∪Kb

1.

25

Type-5: The 6-tuple {w1, w2, w3, b1, b2, b3}.
Type-6: kb2 sets {(s, t), w}, where (s, t) ∈ Kb

2 and w ∈ Fw0 ∪Kw
0 .

Type-7: kw2 sets {(s, t), b}, where (s, t) ∈ Kw
2 and b ∈ F b1 ∪Kb

1.

Type-8: kb,w2 sets {(s, t), w, b}, where (s, t) ∈ Kb,w
2 , w ∈ Fw0 ∪ Kw

0 , and
b ∈ F b1 ∪Kb

1.

Type-9: kw,b2 singletons {(s, t)}, where (s, t) ∈ Kw,b
2 .

We will construct a strong P-regular refinement of F ∪K as follows. Initially,
we let Z = F ∪K. For each cell of the partition, say X, we find its P-regular
refinement, say Y . Especially for the 6-tuple X, we find X’s strong P-regular
refinement, say Y ∗. Whenever a cell X is refined to its P-regular refinement Y ,
we update Z = (Z \X) ∪ Y . Therefore, after every cell is refined, Z becomes a
strong P-regular refinement of F ∪K.

We present five procedures. Procedures Regular-A and B consider sets of
types-1, 2, and 3. Procedures Regular-C and E respectively consider sets of
type-4; and types-6, 7, 8, and 9. Procedure Regular-D constructs the set Y ∗

that is a strong P-regular refinement of the 6-tuple.
Before we proceed to the detailed construction, let us give some notation.

For a vertex u, ũ denotes the u’s neighbor such that u and ũ differ in the second
bit; û denotes the mate of ũ (see Fig. 6c for an illustration). A depth-1 free
corner is a vertex u such that uū, ūû, ûũ, and ũu are all free with respect to
Z. A depth-2 free corner is a vertex u such that uu̇, u̇˜̇u, ˜̇uũ, and ũu are all free
with respect to Z, where u̇ is the u’s neighbor such that u and u̇ differ in the
third bit and ˜̇u is the common neighbor of ũ and u̇ other than u. We claim that
there exist enough number of free corners and edges that are free with respect
to Z for our construction. The existence proof is deferred to Lemma 24.

A type-3 set X = {w, b}, where w is a white unit and b is a black unit, is
bad if each of Gp0 and Gp1 contains either of w or b for some p ∈ {0, 1, 00};
otherwise it is good. Given a type-1 or 2, or a good type-3 set X contained in
Gp (or possibly a set of two vertex pairs with balances zero that are contained
in either G0 or G1), Procedure Regular-A returns X’s P-regular refinement
contained in Gp. It is assumed that the binary string p is a prefix of an element
of P such that X is contained in Gp. We enumerate elements of K(Xp2) as
(s′1, t

′
1), (s′2, t

′
2), . . . , (s′k′ , t

′
k′), where k′ denotes |K(Xp2)|. We assume that s′i ∈

Vp0 for each (s′i, t
′
i) ∈ K(Xp2).

Procedure Regular-A(G,Z,X, p) (See Fig. 6a)

0. If X = ∅, X ⊂ F o, or p ∈ P, then return X.

1. Select k′ edges uivi that are free with respect to Z for 1 ≤ i ≤ k′ such
that ui ∈ Vp0, vi ∈ Vp1, and

(a) −hbp(K(X),F(X)) ones are from Eb,wp2 and −hwp (K(X),F(X))−β(X)

ones are from Ew,bp2 .
(b) ui ∈ V00r if p = 0, where r ∈ {0, 1} is such that s′i ∈ V00(1−r).

2. Put Y = (X \ K(Xp2)) ∪ {(s′i, ui), (vi, t′i) : 1 ≤ i ≤ k′}.
3. Put Y ′=Regular-A(G,Z∪Y, Yp0, p0) and Y ′′=Regular-A(G,Z∪Y, Yp1, p1).

Return Y ′ ∪ Y ′′.

26

G01

s′1 t′1

t′1 t′2

s′1 s′2

G11G10

(a) Regular-A

G000 G01

G11

u

v′

w

b

G10

v

u′

(b) Regular-B

u
G000

G001

G01

v

ū

ũ

û
G11

v̄

w

b

(c) Regular-C

G01

t

u

ū

s

w

y

z

b

z̃

ỹ

(d) Regular-E

Figure 6: Illustrations for P-regular refinements.

The Regular-A procedure works as follows. It computes a {p0, p1}-regular
refinement of X at Steps 1 and 2, and then recursively refines it to a P-regular
one at Step 3. At Step 1, the selection of free edges (with respect to Z) is
very similar to that of free edges in Step 1(b) of Procedure BiDPC-A. From the
construction and the proof of Lemma 7, we can deduce that Y is a {p0, p1}-
regular refinement of X. It is obvious that Y is contained in Gp. For Step 0,
notice that if X is an empty set, a type-2 set consists of one faulty edge, or a set
contained in Gp for some p ∈ P, then it is a P-regular refinement of itself. We
claim that, when Step 3 is reached, each of Yp0 and Yp1 is (i) an empty set; (ii)
a type-1, 2, or a good type-3 set; or (iii) a set of two vertex pairs with balances
zero. The case (iii) may happen when X is a good type-3 set such that X ⊂ K02

or X ⊂ K12. Notice that each of Yp0 and Yp1 contains at most two units and
0 ≤ β(Yp0), β(Yp1) ≤ 1. Hence, it suffices to show that none of them is a bad
type-3 set. Since Y01, Y11, and Y10 cannot be bad by definition, it suffices to
check Yp0 when p = 0. If k′ ≥ 1, then (s′1, u1) is a vertex pair between V000 and
V001, so Y00 cannot be bad. When k′ = 0, we can check that Y00 is bad only
if X is bad, too. Thus, the claim is proved. Hence, Y ′ and Y ′′ are P-regular
refinements of Yp0 and Yp1, respectively. Notice that our usage of Z ∪ Y in
recursive calls guarantees that chains in Y ′ ∪ Y ′′ are free and disjoint. Also,
notice that Y ′ and Y ′′ are contained in Gp0 and Gp1, respectively. Therefore,
Y ′ ∪ Y ′′ is a P-regular refinement of X contained in Gp.

The Procedure Regular-A above will be utilized as a subroutine for other
procedures. We observe that for any type-1 set X, its regular refinement Y
satisfies β(Y0) = 1 and β(Y10) = β(Y11) = 0. Since cells of other types are of
balance zero, we will eventually have β(Z10) = β(Z11) = 0.

Given a bad type-3 set X, Procedure Regular-B returns its P-regular re-
finement Y by adding a closed chain. It is assumed that X = {w, b}, and
p ∈ {0, 1, 00} is such that each of Gp0 and Gp1 contains either w or b.

Procedure Regular-B(G,Z,X, p) (See Fig. 6b)

1. Case hwp (K(X),F(X)) = 1: Let u be a depth-l(p) free corner contained

in V bp0. If p = 0 and w is contained in Gr, where r ∈ {000, 001}, then u

should be chosen from V br .

27

2. Case hbp(K(X),F(X)) = 1: Let u be a depth-l(p) free corner contained
in V wp0. If p = 0 and b is contained in Gr, where r ∈ {000, 001}, then u
should be chosen from V wr .

3. Put Y = X∪{u, v, (v′, u′)}, where v, v′, and u′ respectively are the unique
members of N(u) ∩ Vp1, N(v) ∩ Vp′(1−q), and N(u) ∩ Vp′(1−q), where p′

denotes the prefix of p of length l(p)− 1 and q denotes p’s last bit.
4. (a) Case p = 00: Return Y .

(b) Case p = 0: Put Y ′=Regular-A(G,Z ∪ Y, Y1, 1) and Y ′′=Regular-
A(G,Z ∪ Y, Y00, 00). Return Y01 ∪ Y ′ ∪ Y ′′.

(c) Case p = 1: Put Y ′=Regular-A(G,Z ∪ Y, Y0, 0). Return Y1 ∪ Y ′.
The Regular-B procedure works as follows. Steps 1, 2, and 3 add a closed

chain {u, v, (v′, u′)}. When Step 4 is reached, it is easily seen that Y is a
{p0, p1, p′(1 − q)}-regular refinement of X. Notice that Yp0 and Yp1 are good
type-3 sets and Yp′(1−q) is a type-2 set. Step 4 further refines Y into a P-regular
one.

The Procedure Regular-C returns a P-regular refinement of a type-4 cell X
by adding a closed chain that contributes one black unit to G0 and one white
unit to G1. We assume that X = {w, b}, w ∈ Fw0 ∪ Kw

0 , and b ∈ F b1 ∪ Kb
1.

Without loss of generality, we can assume that if w ∈ K02 and w = (s, t), then
s ∈ V00 and that if b ∈ K12 and b = (s′, t′), then s′ ∈ V11.

Procedure Regular-C(G,Z,X) (See Fig. 6c)

1. Select two depth-1 free corners u ∈ V b00 and v ∈ V b01 such that u ∈ V b000 if
w is contained in G000, and u ∈ V b001 otherwise.

2. (a) Case w is in G00: Put Y = {(v, ũ), u, w}.
(b) Case w is in G01: Put Y = {w, v, (ṽ, u)}.
(c) Case w ∈ K02: Put Y = {(s, u), (v, t)}, where w = (s, t).

3. (a) Case b is in G10: Put Y = Y ∪ {b, ū, (û, v̄)}.
(b) Case b is in G11: Put Y = Y ∪ {(ū, v̂), v̄, b}.
(c) Case b ∈ K12 and w /∈ K02: Put Y = Y ∪ {(s′, v̄), (ū, t′)}, where

b = (s′, t′).
(d) Case b ∈ K12 and w ∈ K02: Put Y = Y ∪ {b, (ū, v̄)}.

4. Put Y ′=Regular-A(G,Z∪Y, Y00, 00). Put Y ′′=Regular-A(G,Z∪Y, Y1, 1).
Return Y01 ∪ Y ′ ∪ Y ′′.

The selection of u at Step 1 prevents Y00 from being a bad type-3 set. Notice
that Steps 2(a), 2(b), 3(a), and 3(b) construct a v-u chain in G0 and a ū-v̄ chain
in G1. When Step 4 is reached, Y is a {00, 01, 1}-regular or {00, 01, 10, 11}-
regular refinement of X. Step 4 further refines it to a P-regular one.

The Procedure Regular-D returns a set Y ∗, a strong P-regular refinement of
the 6-tuple X, using two chains each of which contributes one black unit to G0

and one white unit to G1. We assume that if b2, an element of X, is a member
of K12, then s ∈ V11 and t ∈ V10, where b2 = (s, t). If b2 ∈ F b1 ∪Kb

12, then the
refinement Y ∗ will have a single chain, which is an s-t chain if b2 ∈ Kb

12 (see
Fig. 5a) and a closed chain if b2 ∈ F b1 (see Fig. 5b). If b2 ∈ Kb

10 or b2 ∈ Kb
11,

then Y ∗ will have an s-t chain and a closed chain (see Fig. 5c).

Procedure Regular-D(G,Z,X) (See Fig. 5)

28

1. Select four depth-1 free corners γ1, γ2, δ1, and δ2 such that γ1, γ2 ∈ V b001
and δ1, δ2 ∈ V b01 for the first canonical form and γ1, γ2 ∈ V b000 and δ1, δ2 ∈
V b011 for the second canonical form.

2. Put C=Regular-C(G,Z, {w1, b1}) and C ′=Regular-C(G,Z, {w2, b2}), where
we use γ1 and δ1 for C, and γ2 and δ2 for C ′ instead of selecting u and v,
respectively.

3. Put Y ∗ = C1 ∪ C ′1 ∪D, where D = {(γ1, γ2), (δ2, δ1)} if the 6-tuple is in
the first canonical form; D = {(γ1, γ2), δ2, (δ̃2, δ̃1), δ1} otherwise.

4. Put Y ∗ = (Y ∗ \ K(C1)) ∪ {(y, x) : (x, y) ∈ K(C1)}.
5. Return Y ∗.

The Regular-D procedure works as follows. Steps 1 and 2 construct two
chains C and C ′. Step 3 merges the two chains into a set Y ∗. At this point,
Y ∗0 contains a γ1-γ2 chain and a δ2-δ1 chain, and Y ∗1 contains a γ̄1-δ̄1 chain. At
Step 4, in order to merge these three chains into a δ2-γ2 chain, we convert the
γ̄1-δ̄1 chain into a δ̄1-γ̄1 chain by taking the reverse of ordered pairs. Now, the
δ2-γ2 chain and a γ̄2-δ̄2 chain in Y ∗1 , if exists, collectively form a closed chain or
we obtained an s-t chain if b2 = (s, t) and b2 ∈ K12.

It is straightforward to check that Y ∗ is a string P-regular refinement of
X. For example, let us think of a case when we have the first canonical form,
b1 ∈ F b11, and b2 ∈ Kb

12 (see Fig. 5a). Let b2 = (s, t), where s ∈ V b11 and t ∈ V b10.
The resulted set Y ∗ is partitioned into Y ∗000 = {w3, b3}, Y ∗001 = {w1, (γ1, γ2)},
Y ∗01 = {w2, (δ2, δ1)}, Y ∗10 = {(γ̄2, t), (δ̂1, γ̄1)}, and Y ∗11 = {b1, δ̄1, (s, δ̄2)}. Condi-
tions (a′), (b′), and (c′) can be checked easily. From size(Y ∗000) = 2 < 7− l(000),
size(Y ∗001) = 3 < 7− l(001), size(Y ∗01) = 3 < 7− l(01), size(Y ∗10) = 4 < 7− l(10),
and size(Y ∗11) = 4 < 7− l(11), we conclude that Y ∗ is a strong P-regular refine-
ment of X. Other cases can be checked similarly.

In Phase 2, it will be useful that Y ∗ has a chain that contains vertex pairs in
both G10 and G11 unless both b1 and b2 are contained in either G10 or G11 (see
Fig. 5). By (B2), it occurs only when all the black units in G1 are contained in
either G10 or G11.

Given a type-6, 7, 8, or 9 set X, the following Procedure Regular-E returns
a set Y that is a P-regular refinement of X.

Procedure Regular-E(G,Z,X) (See Fig. 6d)

1. Select an edge uū that is free with respect to Z, such that u ∈ V b0r and

(a) Case (s, t) /∈ Kw
2 : r ∈ {0, 1} is such that s ∈ V0(1−r).

(b) Case (s, t) ∈ Kw
2 : r ∈ {0, 1} is such that t ∈ V1(1−r).

2. (a) Case (s, t) ∈ Kb,w
2 , (ū, t) is in G1p, and b is in G1(1−p) for some

p ∈ {0, 1}: Select two edges yỹ and zz̃ that are free with respect to
Z, such that y, z ∈ V b1p. Put Y = {b, w, (s, u), (ū, y), (ỹ, z̃), (z, t)}.

(b) Case otherwise: Put Y = X0 ∪X1 ∪ {(s, u), (ū, t)}.
3. Put Y ′=Regular-A(G,Z ∪ Y, Y0, 0) and Y ′′=Regular-A(G,Z ∪ Y, Y1, 1).

Return Y ′ ∪ Y ′′.

29

Step 1 prevents Y0 and Y1 from being bad with the unique exception that is
handled in Step 2(a). Step 2(a) constructs a set Y that is a {0, 10, 11}-regular
refinement of X such that Y0, Y10, and Y11 are not bad. Step 2(b) builds a set
Y that is a {0, 1}-regular refinement of X such that neither Y0 nor Y1 is a bad
type-3 set. Then, at Step 3, Y is refined to a P-regular one.

Now, it is the turn to show that these constructions are possible.

Lemma 24. There exist enough number of edges that are free with respect to
Z and free corners for Procedures Regular-A, B, C, D, and E.

Proof. It suffices to show that there remain free corners after all the cells are
refined, which implies the abundance of inter-subcube edges that are free with
respect to Z. We have Z =

⋃
p∈P Zp ∪ F ′, where F ′ is the set of faulty edges

contained in no Gp for p ∈ P. By condition (e′), for each p ∈ P, size(Zp) ≤
size((F ∪K) \F ′)− l(p) = size(F ∪K)− |F ′| − l(p). Hence, size(Z) = |U(Z)| ≤
5 · size(F ∪ K) − 5|F ′| − (3 + 3 + 2 + 2 + 2) + |F ′| ≤ 5 · size(F ∪ K) − 12.
Let us count depth-1 free corners in V b000. There are 2m−4 candidates, i.e.,
vertices in V b000. Faulty graph elements and terminals together block at most
size(F ∪ K) (= |U(F ∪ K)| = f + 2k) candidates. We observe that for each
u ∈ U(Z)\U(F∪K), where umust be a nonterminal vertex, there exists a linking
edge uv for some v ∈ {ū, ũ, u̇}, which implies v ∈ U(Z). Since u and v together
can block at most one candidate, vertices in U(Z)\U(F ∪K) additionally block
at most |U(Z) \ U(F ∪K)|/2 = 2 · size(F ∪K)− 6 = 2(f + 2k)− 6 candidates.
If m ≥ 9, then 2m−4 − (f + 2k) − (2(f + 2k) − 6) ≥ 2m−4 − 3m + 6 ≥ 11, so
we are done. If m = 8, then 2m−4 − 3m+ 6 ≥ −2. However, this bound is not
tight because colors and locations of vertices are not considered. For example,
let us think of the case where we have the first canonical form. It is regarded
that two faulty vertices w3 and w1 block two candidates and γ1, γ2, δ1, δ2, and
their four neighbors block four candidates. However, we can observe that they
do not block any candidates (see Fig. 5a). Therefore, there remain at least four
non-blocked candidates. By the same manner, we can show that there remain
at least two free corners of other kinds. The proof is finished.

Remark 1. Concerned with the strong P-regular refinement Z of F ∪K con-
structed in Phase 1, it is worth noting that size(Zp) ≤ size(F ∪ K) − l(p) ≤
m−l(p) for every p ∈ P, and size(Zq) ≤ size(F ∪K)−l(q)−|K| ≤ m−l(q)−|K|
for each q ∈ P such that no si-ti chain for 1 ≤ i ≤ k has a vertex pair contained
in Zq.

Remark 2. Furthermore, every linking edge of Z between G0 and G1 joins a
vertex in V b0 and V w1 . In addition, for every closed chain C, there exist p, q ∈ P
(depending on C) such that Zp ∩ K(C) 6= ∅ and Zq ∩ K(C) 6= ∅.

5.2. Phase 2: Postprocessing

Now, we have a set Z that is a strong P-regular refinement of F ∪K. We will
remove the additional closed chains and let chains joining the original source-
sink pairs collectively have vertex pairs in every subcube.

30

We denote by C[i], where 1 ≤ i ≤ n for some n ≥ k, a chain constructed in
Phase 1. We assume that C[i] is an si-ti chain for 1 ≤ i ≤ k and is an additional

closed chain for i > k. We denote R =
⋃k
i=1 C[i] and L =

⋃n
i=k+1 C[i], so

Z = F ∪R ∪ L. Let Φp = m− l(p)− size(Zp). By condition (f′), if K(Rp) = ∅,
then Φp ≥ k (see Remark 1).

Although the condition Φp ≥ 0 is necessary to apply the induction hypoth-
esis to Gp, it is stronger than what we actually need. We know that Φp ≥ 0
and K(Zp) 6= ∅ imply the existence of Pp=BiDPC[K(Zp)|Gp,F(Zp)], but the
converse is not always true. Let us say that the set Z is fine if (i) it satisfies
conditions (a′), (b′), and (c′) of P-regular refinement with respect to F ∪K, (ii)
the existence of Pp is guaranteed for each p ∈ P such that K(Zp) 6= ∅, and (iii)
size(Zp) ≤ size(F ∪K)− l(p)− |K| for each p ∈ P such that K(Zp) = ∅. If Z is
a strong P-regular refinement of F ∪K, then Z is fine by definition. In order to
obtain a fine set Z with fewer additional closed chains, we use four operations:
CycleMerge, Stretch, Propagate, and Join.

We use an undirected graph H for analysis, where the vertex set V (H) = P
and pq is an edge of H if there exist some C[i], 1 ≤ i ≤ n, that passes through
both Gp and Gq via vertex pairs, i.e., K(C[i]p) 6= ∅ and K(C[i]q) 6= ∅.

We remove additional closed chains by merging them into chains joining
source-sink pairs. The following Operation CycleMerge repeatedly merges a
closed chain into some other chain, which is possibly an additional closed chain.

Operation CycleMerge(p)

1. Repeat until no more update is possible.

(a) Choose two chains C[i] and C[j] such that 1 ≤ i ≤ n, j > k,
K(C[i]p) 6= ∅, and K(C[j]p) 6= ∅. Let (u, v) ∈ K(C[i]p) and (x, y) ∈
K(C[j]p).

(b) Update C[i] = (C[i] \ (u, v)) ∪ (C[j] \ (x, y)) ∪ {(u, y), (x, v)}.
(c) Put C[j] = ∅.

The CycleMerge operation decreases the number of additional closed chains
by one at every iteration of the main loop. After CycleMerge(p) is applied, if
K(Rp) 6= ∅ (resp. K(Rp) = ∅), then there remains no (resp. at most one) addi-
tional closed chain C[j] having vertex pairs in Gp. Provided Φp ≥ 0, applying
CycleMerge(p) preserves the strong P-regular refinement property and the fine
set property as shown below. Also, the connected components of H remain
unchanged.

Lemma 25. Suppose that p ∈ P, Φp ≥ 0, and Z is a strong P-regular refinement
of F ∪K. If CycleMerge(p) is applied, then (a) Z remains a strong P-regular
refinement of F ∪K and (b) the connected components of H remain unchanged.

Proof. To prove part (a), we show that the conditions (a′) through (f′) still
hold true. Let us represent C[i] and C[j] respectively as {C1, (u, v), C2} and
{C3, (x, y), C4}, where C1 through C4 are sequences of vertices and vertex pairs.
The exchange of Step 1(b) inserts C[j] into C[i] in the form of {C1, (u, y), C4, C3,
(x, v), C2}. It is obvious that if 1 ≤ i ≤ k, then C[i] remains an si-ti chain and

31

that if i > k, then C[i] remains a closed chain that does not join any source-sink
pair. Also, it can be easily seen that C[i] remains free, simple, and disjoint to
other chains. Notice that the set of linking edges of C[j] is merged into that of
C[i]. Since two vertex pairs (u, y) and (x, v) are contained in Gp, it is obvious
that R∪L is still P-separated. Notice that for each p ∈ P, the values of size(Zp)
and β(Zp) are preserved. The proof of part (a) is finished. The part (b) is
obvious since no edge of H is removed and a new edge qr can be added only if
there exist edges qp and pr in H.

Lemma 26. Suppose that p ∈ P, Φp ≥ 0, and Z is a fine set. If CycleMerge
(p) is applied, then (a) Z remains a fine set and (b) the connected components
of H remain unchanged.

Proof. The proof is similar to that of Lemma 25. Notice that if q ∈ P and q 6= p,
then Zq remains unchanged. Hence, if the existence of BiDPC[K(Zq)|Gq,F(Zq)]
was guaranteed before applying CycleMerge(p), then it is still guaranteed. For
Gp, the induction hypothesis applies since Φp ≥ 0.

As the first step of Phase 2, we apply CycleMerge(p) for every p ∈ P. By
Lemma 25, Z remains a strong P-regular refinement of F∪K. At this point, if we
have K(Rp) 6= ∅ for every p ∈ P, then there remains no additional closed chains.
That is, L = ∅ and F ∪R is fine. Therefore, we can obtain BiDPC[K|G,F] by
finding BiDPC[K(Rp)|Gp, Fp ∪F(Rp)] for every p ∈ P and merging them using
the linking edges.

Let us sketch our construction in view of the graph H. It is assumed that
CycleMerge(p) is applied for each p ∈ P. Let p, q ∈ P be such that pq is an
edge in H. Suppose K(Rp) 6= ∅. Then, K(Lp) = ∅. There exists a chain C[i]
such that K(C[i]p) 6= ∅ and K(C[i]q) 6= ∅, where 1 ≤ i ≤ n. Since K(Lp) = ∅,
it follows 1 ≤ i ≤ k. Thus, K(Rq) 6= ∅. In this way, we deduce that if p and
q are connected in H, then either K(Rp),K(Rq) 6= ∅ or K(Rp) = K(Rq) = ∅.
Therefore, we are done if H becomes connected or there exists some p ∈ P such
that K(Rp) 6= ∅ for each connected component of H.

Let us describe Operation Stretch. A subchain {x, (y, z)} is (p, q)-stretchable
if p, q ∈ P; x ∈ Vp; y, z ∈ Vq; Φp ≥ 1; Φq ≥ 0; and {x, (y, z)} ⊂ C[i] for some
1 ≤ i ≤ n, where xy is a linking edge. Given a (p, q)-stretchable subchain
{x, (y, z)}, the following operation ‘stretches’ the vertex x into a vertex pair
(x, x′), where x′ ∈ Vp.
Operation Stretch(x, (y, z))

1. Select x′ ∈ Vp such that β(x′) = β(x) and x′y′ is free with respect to Z,
where y′ ∈ N(x′) ∩ Vq.

2. Update C[i] = (C[i] \ {x, (y, z)}) ∪ {(x, x′), (y′, z)}.
3. Apply CycleMerge(p).

Lemma 27. Suppose that Z is fine. Let {x, (y, z)} be a (p, q)-stretchable sub-
chain. Let P and Q be the connected components of H containing p and q,
respectively. If Stretch(x, (y, z)) is applied, then (a) Z remains a fine set and
(b) P ∪Q becomes a connected component of H.

32

Proof. The proof for part (a) is similar to that in Lemma 25. At Step 2, the
condition (f′) may be invalidated in Gp. Notice that we have Φp ≥ 0 since
Φp is decreased by one, and we obtained K(Zp) 6= ∅. Thus, the existence
of BiDPC[K(Zp)|G,F(Zp)] is guaranteed by the induction hypothesis. The
existence of the edge x′y′ is due to the proof of Lemma 24. The part (b) is
obvious.

The following Operation Propagate uses the Procedure BiDPC-B.

Operation Propagate(q, p)

1. Identical to Steps 1 and 2 of BiDPC-B(G,K(Z),F(Z), q, p).

2. Update C[i] = (C[i] \ (s, t)) ∪ {(s, u), (u′, v′), (v, t)}, where 1 ≤ i ≤ n is
such that (s, t) ∈ C[i].

3. Apply CycleMerge(p).

Lemma 28. Suppose that Z is fine, Φq ≥ −5, Φp ≥ 2, and every vertex of Vq
has a neighbor in Vp, where p, q ∈ P. Let P and Q be the connected components
of H containing p and q, respectively. If Propagate(q, p) is applied, then (a) Z
remains a fine set and (b) P ∪Q becomes a connected component of H.

Proof. At Step 1 of Procedure BiDPC-B, there exists Pq since Z is fine. We
claim the existence of the edge uv required in the Procedure BiDPC-B. In the
proof of Lemma 8, (9) is a lower bound of the number of nonblocked candidates
for uv. Notice that fo ≤ m − 7. By substituting 2m−1, fq + kq, f2, and fp
respectively by 2m−l(q), m− l(q) + 5, m− 7, and m− l(p)− 2 at (9), we obtain
2m−l(q)−6m+ 2l(p) + 2l(q) + 8. Since p, q ∈ P, it follows 2m−l(q)−6m+ 2l(p) +
2l(q) + 8 ≥ 2m−3 − 6m+ 18 ≥ 2. The claim is proved. Part (a) is obvious from
the construction and the proof of Lemma 8. Notice that Φp ≥ 0 since Φp is
decreased by two. Part (b) is obvious.

We remark that there exists a simple construction when k ≥ 2. In this case,
Propagate operation can be repeatedly applied to make the graph H connected.
Since applying Propagate(q, p) decreases Φq by two, the condition Φq ≥ −5
indicates that we can apply Propagate(q, p) for a fixed q at least three times,
where p, q ∈ P and p is not fixed. For example, suppose that K(R000) 6= ∅,
and K(Rp) = ∅ for each p ∈ P \ 000. Let us apply Propagate(000, 001),
Propagate(000, 01), and Propagate(000, 10). Notice that we do not need to
find BiDPC[K(Z000)|G000,F(Z000)] each time and that the third application
is possible since the first two do not make Φ000 < −4. Finally, applying
Propagate(01, 11) makes H connected, and it is finished.

A subchain {x, α} is (p, q)-joinable if all of the following are satisfied: (i)
{x, α} ⊂ C[j] for some j > k, and α is a vertex y or a vertex pair (y, z),
where xy is a linking edge; (ii) p, q ∈ P, x ∈ Vp, y ∈ Vq (or y, z ∈ Vq), and
Φp ≥ 0; (iii) Φq ≥ 1 if α = y and Φq ≥ 0 if α = (y, z); (iv) β(Zp) = 0, k = 1,
β(s1) = β(t1) = −β(x), C[1] = {(s1, t1)}, and K(Zp) = {(s1, t1)}; and (v) the
edge uu′ is free with respect to Z if u ∈ N(t1) ∩ Vp is free with respect to Z,
where u′ ∈ N(u) ∩ Vq.

33

Given a (p, q)-joinable subchain {x, α}, the following operation joins the
closed chain C[j] that contains {x, α} into the chain C[1]. This operation is
designed to cover special cases where Stretch and Propagate operations are not
suitable.

Operation Join(x, α)

1. Find P=BiDPC[{(s1, x)}|Gp,F(Zp) \ x]. Let P = (s1, Pu, u, t1, Px, x) be
its s1-x path.

2. Case α = (y, z): Put C[1] = {(s1, u), (u′, z)}∪(C[j]\{x, (y, z)})∪{(x, t1)},
where u′ ∈ N(u) ∩ Vq. Put C[j] = ∅.

3. Case α = y: Put C[1] = {(s1, u), (u′, y)}∪ (C[j]\{x, y})∪{(x, t1)}, where
u′ ∈ N(u) ∩ Vq. Put C[j] = ∅.

4. Apply CycleMerge(q).

Lemma 29. Suppose that Z is fine. Let {x, α} be a (p, q)-joinable subchain.
Let P and Q be connected components of H containing p and q, respectively. If
Join(x, α) is applied, then (a) Z remains a fine set and (b) P ∪Q or one of its
superset becomes a connected component of H.

Proof. The Join operation works as follows. The existence of P is guaranteed by
the induction hypothesis. Since β(Zp) = 0 and β((s1, t1)) + β(x) = β((s1, x)),
P is a Hamiltonian path of Gp \ (F(Zp) \x). Hence, the path P has the form of
(s1, Pu, u, t1, Px, x). Since s1 and t1 have the same color, it follows u 6= s1. At
this point, u, u′, and uu′ are free with respect to Z. Notice that the chain C[j]
with the subchain {x, (y, z)} (resp. {x, y}) removed is a z′-x′ chain (resp. a y′-x′

chain), namely D, where z′ ∈ N(z) (resp. y′ ∈ N(y)) and x′ ∈ N(x). Steps 2
and 3 merge C[j] into the s1-t1 chain in the form of {(s1, u), (u′, z), D, (x, t1)}
(resp. {(s1, u), (u′, y), D, (x, t1)}). Now, the s1-t1 chain C[1] passes through Gp
and Gq via vertex pairs. For the proof of part (a), conditions (a′) and (b′) are
obvious from the arguments above. Since β({(s1, u), (x, t1)}) = β({(s1, t1), x})
and β(u′) = β(y), condition (c′) follows. The two paths (s1, Pu, u) and (t1, Px, x)
form BiDPC[K(Zp)|Gp,F(Zp)], and the existence of BiDPC[K(Zq)|Gq,F(Zq)]
is guaranteed by the induction hypothesis. Notice that Zr is not changed in any
r ∈ P \ {p, q}. Therefore, part (a) is proved. Let us consider part (b). If α is
a vertex pair, P ∪ Q becomes a connected component of H. However, when α
is a vertex, P ∪Q ∪ {r ∈ P : K(C[j]r) 6= ∅} becomes a connected component of
H.

Now, we will apply these operations to construct BiDPC[K|G,F].

Lemma 30. Suppose that f + 2k ≤ m and (10) is true. Then, there exists
BiDPC[K|G,F].

Proof. Let Z be the strong P-regular refinement of F∪K constructed in Phase 1.
Apply CycleMerge(p) for every p ∈ P. If K(Rp) 6= ∅ for each p ∈ P, then L = ∅
and F ∪R is a strong P-regular refinement of F ∪K. Therefore, we can obtain
a desired BiDPC by finding BiDPC[K(Rp)|Gp, Fp ∪ F(Rp)] for every p ∈ P

34

and merging them using the linking edges. Thus, in what follows, we assume
that H has at least two connected components: one contains p ∈ P such that
K(Rp) 6= ∅ and the other does not. We will show that Stretch, Propagate,
and Join operations can be applied to make H connected or every connected
component of H contains some p ∈ P such that K(Rp) 6= ∅, where p varies by the
connected component. We distinguish two cases according to which canonical
form is being used.
Case 1. The 6-tuple is in the first canonical form.

By Procedure Regular-D, H has a connected component that is a superset of
{001, 01, 1(1−i)}, where i ∈ {0, 1} (see Fig.s 5a and 5b). Also, K(R000) = ∅ only
if Φ000 ≥ 2. This is because size(Y ∗000) = 2 ≤ size(X)− l(000)− |K(X)| − 2 for
the strong P-regular refinement Y ∗ of the 6-tuple X and size(Y ′000) ≤ size(X ′)−
|K(X ′)| for the P-regular refinement Y ′ of any cell X ′ other than the 6-tuple.
Similarly, we have K(R01) = ∅ only if Φ01 ≥ 2. We distinguish three subcases
according to the partition of P that is determined by H’s connected components.
Case 1.1. There are two connected components {001, 01, 10, 11} and {000}, or
{001, 01, 1(1− i)} and {000, 1i}.

Suppose K(R000) 6= ∅. Then, we have K(R01) = ∅, so Φ01 ≥ 2. By
Lemma 28, applying Propagate(000, 01) suffices. Otherwise, we have K(R000) =
∅, K(R001) 6= ∅, and Φ000 ≥ 2. Therefore, applying Propagate(001, 000) suffices.
Case 1.2. There are two connected components {000, 001, 01, 1(1 − i)} and
{1i}.

Since 10 and 11 are disconnected in H, due to the construction of Procedure
Regular-D, we deduce F b1 ∪Kb

1 = F b1i ∪Kb
1i. There exists a subchain {x, (x̃, z)}

in R ∪ L such that x ∈ V w1i and z ∈ V1(1−i), where xx̃ is a linking edge. (For
example, when i = 0, Y ∗ contains {γ̄2, (γ̂2, δ̄2)} (see Fig. 5b), where γ̄2, γ̂2, and
δ̄2 respectively correspond to x, x̃, and z.) The existence of such a subchain
is preserved under the CycleMerge operation. Note that this property holds
without regard to the canonical form being used.

Suppose K(R1i) = ∅. Then, Φ1i ≥ 1. Hence, {x, (x̃, z)} is (1i, 1(1 − i))-
stretchable, so Lemma 27 applies. Suppose instead that K(R1i) 6= ∅. Then,
K(R1(1−i)) = ∅ and Φ1(1−i) ≥ k. If Φ1i ≥ 1, we apply Stretch(x, (x̃, z)). If
Φ1(1−i) ≥ 2, we apply Propagate(1i, 1(1 − i)). Lemmas 27 and 28 guarantee
their correctness. Let Φ1i = 0 and Φ1(1−i) = 1. We claim that {x, (x̃, z)}
is (1i, 1(1 − i))-joinable. By Lemma 29, provided the claim is true, applying
Join(x, (x̃, z)) suffices. Notice that our construction does not change Z0.

Let us prove the claim. We use the subchain {x, (x̃, z)}. That is, α = (x̃, z).
The conditions (i) through (iii) of (p, q)-joinability, where p = 1i and q = 1(1−i)
are obvious by the arguments above. Recall that we have β(Z10) = β(Z11) =
0 at the end of Phase 1. Since CycleMerge operation preserves β(Z10) and
β(Z11), we still have β(Z1i) = 0. Supposing k ≥ 2 leads to Φ1(1−i) ≥ 2, which
contradicts Φ1(1−i) = 1. Thus, k = k1i = 1. Suppose to the contrary that there
exists a source-sink pair (s, t) ∈ Kw

1i ∪Ko
1i. If (s, t) ∈ Kw, then there exists a

type-3 good cell {(s, t), b} that is refined in Phase 1, where b ∈ F b1i ∪Kb
1i; recall

that F b1i∪Kb
1i = F b1 ∪Kb

1. We observe that such a type-3 set contributes at least
three to Φ1(1−i), which is a contradiction. In a similar way, we can show that

35

supposing (s, t) ∈ Ko leads to a contradiction. Hence, we have β(s1) = β(t1) =
−β(x). From (s1, t1) ∈ Kb

1i, we observe that C[1] = {(s1, t1)} when Phase 1 is
terminated. Suppose to the contrary that we had K(L1i) 6= ∅ when Phase 2 is
reached. It implies that, by Remark 2, 1i and some p ∈ P\1i are connected in H,
which is a contradiction. Hence, we conclude that K(L1i) = ∅, C[1] = {(s1, t1)},
and K(Z1i) = {(s1, t1)}. The condition (iv) is verified. Suppose, to the contrary,
that a vertex u ∈ N(t1) ∩ V1i is free with respect to Z and uũ is not. Then,
u is a white vertex. Since each member of F o12 contributes one to Φ1(1−i),
uũ must be fault-free. There is no possibility of ũ being a faulty vertex or a
terminal since F b1 = F b1i and k = k1i = 1. The remaining possibility is that
ũ ∈ U(Z) \ (F ∪S ∪T). Since ũ is a black vertex in G1, it always appears in the
form of a linking edge uũ in the construction of Phase 1, by Remark 2. Recall
that the set of linking edges is preserved under CycleMerge operations. Hence,
u is not free with respect to Z, which is a contradiction. The condition (v) is
verified. Therefore, we have the claim.
Case 1.3. There are three connected components {001, 01, 1(1− i)}, {1i}, and
{000}.

We first handle G0, then apply the construction of Case 1.2 to G1. Suppose
K(R000) 6= ∅ and K(R01) 6= ∅. Then, we have (i) K(Rp) 6= ∅ for any p ∈
{000, 001, 01, 1(1− i)}. Suppose otherwise. If K(R000) = ∅, i.e., Φ000 ≥ 2, then
we apply Propagate(001, 000). If K(R000) 6= ∅, i.e., K(R01) = ∅ and Φ01 ≥ 2,
then we apply Propagate(000, 01). By doing so, we obtain that (ii) H contains
two connected components {001, 01, 1(1 − i), 000} and {1i}, which is the same
as Case 1.2. For applying the construction of Case 1.2, there is essentially
no difference between (i) and (ii). It is finished if K(Rp) 6= ∅ for each p ∈ P;
otherwise, applying the construction of Case 1.2 establishes this condition. Since
the construction of Case 1.2 does not change Z0, the constructions in G0 and
G1 can be done independently.
Case 2. The 6-tuple is in the second canonical form.

By Procedure Regular-D, H has a connected component that is a superset
of {000, 001, 1(1− i)} for some i ∈ {0, 1}. There are four subcases.
Case 2.1. There are two connected components {000, 001, 10, 11} and {01}.

There exist subchains {δ2, (δ̃2, z)} and {δ1, α} in R ∪ L, where z ∈ V001 and
α is either a vertex δ̄1 or a vertex pair (δ̄1, z

′), where z′ ∈ V11 (see Fig. 5c).
They stem from Y ∗ of the 6-tuple. Suppose K(R01) = ∅. Then, Φ01 ≥ 1, so
{δ2, (δ̃2, z)} is (01, 001)-stretchable. Hence, Lemma 27 applies. Suppose instead
that K(R01) 6= ∅. If Φ01 ≥ 1, we apply Stretch(δ2, (δ̃2, z)). If Φ11 ≥ 2, we apply
Propagate(01, 11). Lemmas 27 and 28 guarantee their correctness. It remains to
consider the case where Φ01 = 0 and Φ11 = 1. In this case, applying Join(δ1, α)
suffices. We can show that {δ1, α} is (01, 11)-joinable with arguments similar
to the ones in Case 1.2. Notice that there was no type-1 cell in Phase 1 since
a type-1 cell consists of a faulty vertex (resp. a source-sink pair) contributes
1 (resp. 2) to Φ11. From this and Φ11 = 1, we obtain β(Z01) = 0. Also,
from the case condition and k = k01, we can deduce that for each white vertex
v ∈ U(Z) \ (F ∪ S ∪ T) in V11, there always exists a linking edge vv̄.
Case 2.2. There are two connected components {000, 001, 01, 1(1 − i)} and

36

{1i}.
The proof for this case is identical to that of Case 1.2.

Case 2.3. There are two connected components {000, 001, 1(1−i)} and {1i, 01}.
By the construction of Procedure Regular-E, there is no possibility of being

k2 ≥ 1. Hence, k2 = 0 and there exists an additional closed chain that contains
vertex pairs in G1i and in G01. Such a chain exists only if Procedure Regular-C
is invoked with a type-4 cell {w, b}, where w is a white unit in G00 and b is a
black unit in G1(1−i). By (B1), w is a source-sink pair. Therefore, it suffices
to consider when K(R01) = ∅ and Φ01 ≥ 1. Since there exists a (01, 001)-
stretchable subchain {δ2, (δ̃2, z)}, where z ∈ V001, applying Stretch(δ2, (δ̃2, z))
suffices.
Case 2.4. There are three connected components {000, 001, 1(1− i)}, {1i}, and
{01}.

If Φ1i ≥ 1, then there exists a (1i, 1(1 − i))-stretchable subchain {x, (x̃, z)}
for some x ∈ V w1i and z ∈ V1(1−i). If Φ01 ≥ 1, then there exists a (01, 001)-

stretchable subchain {δ2, (δ̃2, z′)} for some z′ ∈ V001. Notice that Φ1i = 0 only
if k = k1i and that Φ01 = 0 only if k = k01. Thus, both Φ1i = 0 and Φ01 = 0
cannot occur simultaneously. If Φ1i ≥ 1 and Φ01 ≥ 1, applying Stretch(x, (x̃, z))
and Stretch(δ2, (δ̃2, z

′)) suffices. Suppose Φ1i = 0 and Φ01 ≥ 1. Then, k = k1i.
Proceeding with the construction of Case 1.2, we apply Propagate(1i, 1(1− i)) if
Φ1(1−i) ≥ 2 and we apply Join(x, (x̃, z)) if Φ1i = 0 and Φ1(1−i) = 1. If K(Rp) 6= ∅
is obtained for every p ∈ P, then it is finished. If not, the only possibility is
that H has two connected components {000, 001, 10, 11} and {01}. It still holds
Φ01 ≥ 1 since Z0 remains unchanged. Hence, there exists a (01, 001)-stretchable
subchain {δ2, (δ̃2, z′)}, so we apply Stretch(δ2, (δ̃2, z

′)). Now, suppose Φ1i ≥ 1
and Φ01 = 0. Then, k = k01. Let β(Z01) = 0. Then, there exists a (01,
11)-joinable subchain {δ1, α}, where α = δ̄1 or α = (δ̄1, z

′′) for some z′′ ∈ V11.
The existence proof is similar to the proof in Case 1.2, and therefore omitted
here. Sequently, we apply Join(δ2, α). When i = 1, the Join operation makes H
connected since the subchain {δ1, α} is a subset of a closed chain (stems from
Y ∗) that passes G000, G001, and G01 via vertex pairs. When i = 0, there exists
a (10, 11)-stretchable chain {x, (x̃, z′)} that stems from Y ∗. Hence, Lemma 27
applies. Let β(Z01) ≥ 1. Notice that β(Z01) > 0 implies the existence of type-1
cells in Phase 1. From this and k = k01, we obtain Φ10,Φ11 ≥ 2. So applying
Propagate(01, 11) and Propagate(11, 10) suffices. This finishes the proof.

6. Conclusion

We proved that the hypercube Qm with at most f faulty graph elements
removed has a paired many-to-many bipartite k-disjoint path cover for any k ≥ 1
subject to f + 2k ≤ m. We presented a constructive proof using two strategies:
a traditional divide-and-conquer approach using two Qm−1s that span Qm and
a relaxation using three Qm−2s and two Qm−3s that span Qm. We believe that
this relaxation technique may apply for proving similar problems.

37

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, 2nd printing, Springer, 2008.

[2] R. Caha and V. Coubek, “Spanning multi-paths in hypercubes,” Discrete
Math. 307 (2007) 2053–2066.

[3] X.-B. Chen, “Many-to-many disjoint paths in faulty hypercubes,” Infor-
mation Sciences 179 (2009) 3110–3115.

[4] X.-B. Chen, “Paired many-to-many disjoint path covers of hypercubes with
faulty edges,” Inf. Process. Lett. 112 (2012) 61–66.

[5] T. Dvořák, “Hamiltonian cycles with prescribed edges in hypercubes,”
SIAM Journal on Discrete Mathematics 19 (2005) 135–144.

[6] T. Dvořák and P. Gregor, “Partitions of faulty hypercubes into paths with
prescribed endvertices,” SIAM Journal on Discrete Mathematics 22(4)
(2008) 1448–1461.

[7] P. Gregor and T. Dvořák, “Path partitions of hypercubes,” Inf. Process.
Lett. 108(6) (2008) 402–406.

[8] J. Fink and P. Gregor, “Long paths and cycles in hypercubes with faulty
vertices,” Information Sciences 179 (2009) 3634–3644.

[9] J.-S. Fu, “Fault-tolerant cycle embedding in the hypercube,” Parallel Com-
puting 29 (2003) 821-832.

[10] J.-S. Fu, “Longest fault-free paths in hypercubes with vertex faults,” In-
formation Sciences 176 (2006) 759–771.

[11] S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho, “Hamiltonian-laceability of star
graphs,” Networks 36 (2000) 225–232.

[12] S.-Y. Hsieh and P.-Y. Yu, “Fault-free mutually independent Hamiltonian
cycles in hypercubes with faulty edges,” Journal of Combinatorial Opti-
mization 13(2) (2007) 153–162.

[13] S.-Y. Hsieh and Y.-F. Weng, “Fault-tolerant embedding of pairwise inde-
pendent Hamiltonian paths on a faulty hypercube with edge faults,” Theory
of Computing Systems 45(2) (2009) 407–425.

[14] S. Jo, J.-H. Park, and K.Y. Chwa, “Paired 2-disjoint path covers and
strongly Hamiltonian laceability of bipartite hypercube-like graphs,” In-
formation Sciences 242 (2013) 103–112.

[15] C.-D. Park and K.Y. Chwa, “Hamiltonian properties on the class of
hypercube-like networks,” Inf. Process. Lett. 91(1) (2004) 11–17.

38

[16] J.-H. Park, “One-to-many disjoint path covers in a graph with faulty ele-
ments,” in Proc. of the International Computing and Combinatorics Con-
ference COCOON 2004, 2004, pp. 392–401.

[17] J.-H. Park and H.-C. Kim, “Longest paths and cycles in faulty star graphs,”
Journal of Parallel and Distributed Computing 64(11) (2004) 1286–1296.

[18] J.-H. Park, H.-C. Kim, and H.-S. Lim, “Many-to-many disjoint path covers
in hypercube-like interconnection networks with faulty elements,” IEEE
Trans. Parallel and Distrib. Syst. 17(3) (2006) 227–240.

[19] J.-H. Park, H.-C. Kim, and H.-S. Lim, “Many-to-many disjoint path covers
in the presence of faulty elements,” IEEE Trans. Comput. 58(4) (2009)
528–540.

[20] C.-H. Tsai, J.J.M. Tan, T. Liang, and L.-H. Hsu, “Fault-tolerant hamilto-
nian laceability of hypercubes,” Inf. Process. Lett. 83(6) (2002) 301–306.

[21] C.-H. Tsai, “Linear array and ring embeddings in conditional faulty hyper-
cubes,” Theor. Comput. Sci. 314(3) (2004) 431–443.

[22] C.-H. Tsai, J.J.M. Tan, and L.-H. Hsu, “The super-connected property of
recursive circulant graphs,” Inf. Process. Lett. 91(6) (2004) 293–298.

[23] C.-H. Tsai, “Embedding various even cycles in the hypercube with mixed
link and node failures,” Applied Mathematics Letters 21(8) (2008) 855–
860.

[24] Y.-C. Tseng, “Embedding a ring in a hypercube with both faulty links and
faulty nodes,” Inf. Process. Lett. 59 (1996) 217–222.

39

