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Abstract

A k-disjoint path cover (k-DPC for short) of a graph is a set of k internally
vertex-disjoint paths from given sources to sinks that collectively cover every
vertex in the graph. In this paper, we establish a necessary and sufficient
condition for the cube of a connected graph to have a 3-DPC joining a
single source to three sinks. We also show that the cube of a connected
graph always has a 3-DPC joining arbitrary two vertices.
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1. Introduction

Given an undirected graph G, a path cover of G is a set of paths that
collectively cover all vertices of G. It is called a disjoint path cover (DPC
for short) if every vertex of G, possibly except terminal vertices, belongs
to exactly one path. Given two disjoint terminal vertex sets S = {s} and
T = {t1, t2, . . . , tk}, a one-to-many k-disjoint path cover is a disjoint path
cover made of k paths, each joining a pair of source s and sink ti, i = 1, . . . , k.
A graph G is called one-to-many k-coverable if |V (G)| ≥ k + 1 and there
exists a one-to-many k-DPC for any S and T . When S = {s} and T = {t}, a
disjoint path cover made of k paths, each joining s and t is named a one-to-
one k-disjoint path cover. A graph G is said to be one-to-one k-coverable if
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|V (G)| ≥ 2 and there exists a one-to-one k-DPC for any s and t. The other
possible type of the disjoint path cover is a many-to-many k-disjoint path
cover, whose k disjoint paths collectively join two disjoint terminal vertex
sets of cardinality k. Since this article deals only with the first two kinds
of k-DPCs, refer to, for example, [22, 23] for details of the many-to-many
k-DPC.

The disjoint path cover naturally arises in various applications such
as software testing, database design, and code optimization [2, 19]. It is
also deeply related to the full utilization of nodes in interconnection net-
works [22]. Several special classes of graphs have been studied in terms of
the existence of desired disjoint path covers: hypercubes [6, 8, 13], recursive
circulants [16, 22, 23], and hypercube-like graphs [22, 23]. The many-to-
many 2-disjoint path cover problem with respect to the cubes of connected
graphs was also studied recently [21].

Notice that the existence of a disjoint path cover for a given graph
is greatly affected by its vertex connectivity. For instance, a graph is k-
connected if and only if it has k disjoint paths of many-to-many type, re-
spectively connecting arbitrary k distinct sources and arbitrary k distinct
sinks, where, if a source coincides with a sink, then such source itself is
regarded as a path. Furthermore, Menger’s theorem and the Fan Lemma
indicate such strong relationship [3]. When the vertex connectivity is not
high enough, one way of enhancing the probability of the existence of a dis-
joint path cover of a graph is to increase the connectivity by adding more
edges: given a graph G and a positive integer d, the dth power Gd of G is
the graph made of the vertex set V (G) and the edge set E(Gd), augmented
in such a way that (u, v) ∈ E(Gd) if and only if there is a path of length at
most d in G joining u and v. Particularly, G2 are G3 are called the square
and the cube of G, respectively.

This paper aims to investigate the structure of the cubes of connected
graphs with respect to one-to-many and one-to-one 3-disjoint path covers
which we will collectively call as single-source 3-disjoint path covers. In
particular, we establish a necessary and sufficient condition for the cube of
a connected graph to have a 3-DPC joining a single source to three sinks.
Based on this result, we also show that the cube of every connected graph
of order at least four is one-to-one 3-coverable.

2. Preliminaries

In addition to the vertex connectivity, the disjoint path cover is easily as-
sociated with the concept of hamiltonicity. A hamiltonian path between two
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vertices in a graph is actually a 1-DPC regardless of its type. By definition,
a graph of order at least three is one-to-many 2-coverable if and only if it is
hamiltonian-connected, where a graph is said to be hamiltonian-connected
if every pair of vertices are joined by a hamiltonian path. Furthermore, a
graph is one-to-one 2-coverable if and only if it is hamiltonian. A hamilto-
nian path/cycle passing through prescribed edges may also be constructed
by finding a disjoint path cover as suggested in [21, 22, 23].

There have been extensive works on the hamiltonicity of graphs. Here,
we briefly review those that are concerned with the squares and the cubes of
graphs. It was shown that the square of every 2-connected graph is hamil-
tonian [10, 12]. In fact, it is hamiltonian-connected and is 1-hamiltonian
provided its order is at least four [4]. Several aspects of the hamiltonicity of
the square of a connected graph were discussed in [1, 7, 9]. Also, some inter-
esting properties on the pancyclicity and panconnectedness of the square of
a connected graph were studied in [11]. Given a tree, its square was shown to
be hamiltonian if and only if the tree is a caterpillar [14]. The square of a tree
also has a hamiltonian path if and only if the tree is a horsetail as revealed
in [24]. The fact that the cube of every connected graph is hamiltonian-
connected was proved independently in [26, 15]. It was also shown that the
cube of a connected graph having order at least four is 1-hamiltonian [5].
Trees and connected graphs whose cubes are 1-hamiltonian-connected were
characterized respectively in [18, 25], while connected graphs whose cubes
are p-hamiltonian for p ≤ 3 were classified in [17, 25]. In [20], strong hamil-
tonian properties of the cube of a 2-edge-connected graph were also studied.

Before proceeding to our main results, we shall first introduce some ba-
sic terminologies and two fundamental properties of the cube of a connected
graph. An edge of a graph G is called a bridge if its removal increases the
number of connected components (refer to Figure 1 for a pictorial illustra-
tion). A bridge is said to be nontrivial if neither of its two end vertices is of
degree one. A vertex of G is called a pure bridge vertex if each of its incident
edges is a nontrivial bridge. Furthermore, a set of three mutually adjacent
vertices, each having a degree of at least three, is called a pure bridge trian-
gle if every edge that is incident with exactly one of the triangular vertices
is a nontrivial bridge.

Among several hamiltonian properties of the cubes of connected graphs,
the following two play key roles in developing our results.

Lemma 1 (Sekanina [26] and Karaganis [15]). The cube of every con-
nected graph is hamiltonian-connected.
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Figure 1: In this connected graph, the seven nontrivial bridges are represented by dotted
lines. Also, there are three pure bridge vertices v7, v8, and v15, and one pure bridge
triangle {v9, v10, v14}.

Lemma 2 (Schaar [25]). Given three vertices s, t, and vf of a connected
graph G, there exists an s-t hamiltonian path in G3 \ vf if and only if (a)
{s, t, vf} 6⊆ N [v] for any pure bridge vertex v of G and (b) {s, t, vf} does not
form a pure bridge triangle of G.

Here, NG(v), or N(v) if the graph G is clear in the context, denotes
the open neighbor of vertex v ∈ V (G), i.e. NG(v) = {u ∈ V (G) : (u, v) ∈
E(G)}, while NG[v], or N [v], represents the closed neighbor, i.e. NG[v] =
NG(v) ∪ {v}. Then, we naturally define NG(X) =

⋃
v∈X NG(v) \ X and

NG[X] = NG(X) ∪ X for a given vertex set X ⊆ V (G). Also, the usual
notations, δG(v) and dG(u, v), are used to denote the degree of vertex v in
G and the distance between vertices u and v in G, respectively. Finally, we
will call a vertex a nonterminal vertex if it does not belong to any terminal
vertex set.

3. Single-Source Three-Disjoint Path Covers

From the fact that the cube of a connected graph is hamiltonian-
connected, we easily see that it always has a one-to-many 2-DPC for any
selection of source and sinks, meaning that it is one-to-many 2-coverable,
and thus is one-to-one 2-coverable. Unlike the 2-DPC case, the cube of a
connected graph contains a one-to-many 3-DPC only when certain condi-
tions are met between terminal vertices. In this section, we make efforts
to find the exact conditions that guarantee the existence of one-to-many
3-DPC in the cube of a connected graph.

Lemma 3 (Necessity for one-to-many 3-DPC). Given a connected
graph G, consider arbitrary terminal sets S = {s} and T = {t1, t2, t3}.
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If G3 has a one-to-many 3-DPC joining S and T , then C1: there exists no
pure bridge vertex v in G such that T ⊆ NG[v] and s /∈ NG[v], and C2: T
does not form a pure bridge triangle in G such that s /∈ NG[T ].

Proof. Suppose that there exists a one-to-many 3-DPC in G3 even though
T ⊆ NG[v] and s /∈ NG[v] for some pure bridge vertex v of G with d ≡
δG(v) ≥ 2. Since v is a pure bridge vertex, G\v has d connected components,
in which s belongs to a component containing a neighbor of v, named v1.
Furthermore, for the other d−1 connected components, there is at least one
nonterminal vertex per component that is not in NG(v)\v1. Then, the three
paths in the one-to-many 3-DPC originating from s should collectively have
at least d− 1 edges in G3, each ending up in such a vertex because each of
the d− 1 connected components must be visited. However, these edges can
only start from vertices in the nonterminal set NG[v] \ T and its cardinality
is d− 2, we are led to a contradiction.

Suppose now that there exists a one-to-many 3-DPC in G3 even though
T forms a pure bridge triangle in G such that s /∈ NG[T ]. Consider the graph
G\{(t1, t2), (t2, t3), (t3, t1)}, where we name the three connected components
Gi so as to ti ∈ V (Gi), i = 1, 2, 3, and assume w.l.o.g. that s belongs to
G1. We first claim that no single path in the one-to-many 3-DPC passes
through all the nonterminal vertices of G2 and G3. To prove it, assume,
for a contradiction, that a path in the 3-DPC does. Then, the path can
be represented as (x1 = s, x2, · · · , xl = vi, xl+1 = w, · · · , xn = tj) for some
sink tj , where w is the first nonterminal vertex in the path that is in H, the
subgraph of G induced by V (G2) ∪ V (G3), thus implying vi ∈ NG1(t1) and
w ∈ NG2(t2)∪NG3(t3). Now, since each of t2 and t3 is a pure bridge vertex in
H, by Lemma 2, there is neither a w-t2 hamiltonian path in H3\t3 nor a w-t3
hamiltonian path in H3\t2. Furthermore, for H ′, the subgraph of G induced
by V (H)∪{t1}, there does not exist a w-t1 hamiltonian path in H ′3\{t2, t3}
because, otherwise, both the two just mentioned hamiltonian paths would
exist. This means that the tail of the path from w, (w, xl+2, · · · , xn−1, tj),
must contain at least one path segment, all of whose vertices are in V (G1)\t1.
Since removing such a path segment from the tail still forms a legitimate
path in G3, we can build an s-tj path, by repeatedly deleting such a path
segment, that, once arriving at w, traverses all and only the nonterminal
vertices of H before terminating at tj . However, the existence of such a w-tj
tail leads to a contradiction to Lemma 2, proving our claim.

Now, assume that G \ T has d connected components, where s belongs
to a component containing a neighbor of t1, named v1. Similarly as before,
for the remaining d − 1 connected components, there exists at least one
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Figure 2: Illustration of the proof of Lemma 3.

nonterminal vertex per component that does not belong to NG(T ) \ v1.
Then, the three paths in the one-to-many 3-DPC should collectively have
at least d − 1 edges in G3, each ending up in such a vertex because each
of the d − 1 connected components must be visited. Note that these edges
can only start from vertices in the nonterminal set NG(T ) whose cardinality
is d. However, since at least two paths in the one-to-many 3-DPC must
visit H, as implied by the claim made in the proof, at least two of the d
vertices must be consumed for connecting such paths, leaving at most d− 2
free vertices in NG(T ). Since we need at least d− 1 free vertices, we have a
contradiction. This completes the entire proof. �

It is interesting to discover the fact that the two conditions, C1 and
C2, in the above lemma also form the sufficient condition for the cube of a
connected graph to have a one-to-many 3-DPC.

Theorem 1 (One-to-many 3-DPC). Given terminal sets S = {s} and
T = {t1, t2, t3} of a connected graph G, G3 has a one-to-many 3-DPC joining
S and T if and only if both the two conditions, C1 and C2, of Lemma 3 are
satisfied.

Proof. The necessity part is due to Lemma 3. The sufficiency part
proceeds by induction on the number of vertices of G, |V (G)|, assuming
|V (G)| ≥ 5 as the base case of |V (G)| = 4 is trivial. The first step of
the proof is to select a sink ti from T such that all the other terminals in
{s, t1, t2, t3} \ ti exist in a same connected component of G \ ti. Consider a
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spanning tree of G. Then, its smallest subtree containing all the four termi-
nals have at least two leaves that are terminals. Since at least one of them
should be a sink, we can always find a candidate for ti. In case that there
are more than one such sinks, ti is selected as follows: (i) choose the sink
that has minimum number of incident edges that are not nontrivial bridges,
and (ii) if there is still a tie between sinks, choose any of them that has max-
imum number of incident edges that are nontrivial bridges. Now, assume
w.l.o.g. that t1 has been selected. Then, let us denote by H the connected
component of G \ t1 containing s, t2, and t3, and by H ′ the subgraph of
G induced by V (G) \ V (H), where all the edges between the two disjoint
subgraphs H and H ′ are incident to t1. In addition, let us define a vertex
set W as follows:

W =

{
{w ∈ V (H) : dG(t1, w) ≤ 2} if |V (H ′)| ≥ 2,
{w ∈ V (H) : dG(t1, w) ≤ 3} if |V (H ′)| = 1, i.e. V (H ′) = {t1}.

The second step of the proof is to make a claim that, once proven, will
immediately lead to a proof of the sufficiency part in a constructive way.
The claim is that at least one of the following two statements is true: (i)
s ∈W , and (ii) there exists a nonterminal vertex t′1 ∈W such that S = {s}
and the new sink set {t′1, t2, t3} satisfy both the two conditions C1 and C2
with respect to H. Once this claim is proved, we can always construct a
one-to-many 3-DPC of G3 joining S and T as follows. First, consider a v-t1
hamiltonian path in H ′3 for some neighbor v of t1 if |V (H ′)| ≥ 2, which is
guaranteed to exist by Lemma 1, or a one-vertex path t1 if |V (H ′) = 1|.
If s ∈ W , by the definition of the set W , we can build an s-t1 path by
connecting s to the above path in H ′3, forming a desired one-to-many 3-
DPC of G3 together with a one-to-many 2-DPC of H3 joining {s} and
{t2, t3}, which exists due to the fact that H3 is hamiltonian-connected. If
there is a nonterminal vertex t′1 ∈W described in the statement (ii), by the
induction hypothesis, there is a one-to-many 3-DPC of H3, joining {s} and
{t′1, t2, t3}. Then, by replacing the s-t′1 path with the s-t1 path, obtained by
combining the s-t′1 path with the path covering H ′3, we get a desired result.

The final step of the proof is to prove the claim. Suppose, for a contra-
diction, that (a) s /∈ W , and (b) for every nonterminal vertex w ∈ W , if
any, {s} and {w, t2, t3} break either of the two conditions with respect to
H (note that the two conditions cannot be violated simultaneously because
no triple of vertices that form a pure bridge triangle can be contained in the
closed neighbor of a pure bridge vertex). Then, there are three cases:

Case 1: For a nonterminal vertex w ∈ W , {s} and {w, t2, t3} violates
C1 with respect to H. In this case, {w, t2, t3} ⊆ NH [v] and s /∈ NH [v] for
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Figure 3: Illustration of Case 1 in the proof of Theorem 1.

some pure bridge vertex v of H. Let Z be the set of all pure bridge vertices z
such that {t2, t3} ⊆ NH [z]. We can see that (i) if v 6∈ {t2, t3}, then Z = {v},
and (ii) if v ∈ {t2, t3}, either Z = {v} or Z = {t2, t3}, depending on whether
both t2 and t3 are pure bridge vertices or not. First, consider the case of
|Z| = 1, i.e. Z = {v} whether v ∈ {t2, t3} or not (Figure 3a). Every edge of
G from t1 to H may have the other end in either V (H) \NH [v], NH(v), or
{v}. For an edge (t1, u) ∈ E(G) with u ∈ V (H) \NH [v], which cannot be s
due to the hypothesis (a), {s} and {u, t2, t3} become to satisfy C1 and C2 for
the nonterminal vertex u ∈W , which contradicts the hypothesis (b). For an
edge (t1, u) ∈ E(G) with u ∈ NH(v), since v is a pure bridge vertex, there
must be an edge (u, u′) such that u′ ∈ V (H)\NH [v] and thus u′ (6= s) ∈W ,
which also leads to a contradiction to (b) with the sink set {u′, t2, t3}. So,
the only possibility left is that (t1, v) ∈ E(G) is the unique edge from t1 to
H, where |V (H ′)| ≥ 2 because, otherwise, there would exist a nonterminal
vertex u′ ∈ V (H) \NH [v] with u′ ( 6= s) ∈ W , which would cause the same
contradiction. Hence, (v, t1) is a nontrivial bridge of G, implying that v is
in fact a pure bridge vertex of G such that T ⊆ NG[v] and s /∈ NG[v]. This
contradicts to the condition C1 of the theorem.

Second, consider the next case of |Z| = 2, i.e. Z = {t2, t3}, where both
t2 and t3 are pure bridge vertices (Figure 3b). Now, every edge of G from t1
to H may have the other end in either V (H) \NH [{t2, t3}], NH({t2, t3}), or
{t2, t3}. For an edge (t1, u) ∈ E(G) for some u in the first two vertex sets, the
same reasoning as above leads us to a contradiction. So, the only possible
edges from t1 to H are (t1, t2) and (t1, t3). Suppose that only one such edge
(t1, tj) exists for some j = 2, 3. Then, if |V (H ′)| = 1, there always exists a
vertex u′ ∈ V (H) \ NH [{t2, t3}] with dG(t1, u

′) = 3 and thus u′(6= s) ∈ W ,
such that the sink set {u′, t2, t3} leads to a contradiction to (b) again. If
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|V (H ′)| ≥ 2, tj is a pure bridge vertex of G such that T ⊆ NG[tj ] and
s /∈ NG[tj ], contradicting the hypothesis of the theorem. Finally, suppose
that both (t1, t2) and (t1, t3) exist. In this case, since t1, t2, and t3 form a
triangle in G, t2 or t3 also might have been chosen instead of t1 in the first
step of this proof. Since t1 was chosen, t1 should have exactly two incident
edges that are not nontrivial bridges of G and at least one incident edge
that is a nontrivial bridge of G. This implies that T forms a pure bridge
triangle of G and s /∈ NG[T ] due to (a), contradicting the condition C2 of
the theorem.

Case 2: For a nonterminal vertex w ∈ W , {s} and {w, t2, t3} violates
C2 with respect to H. In this case, {w, t2, t3} forms a pure bridge triangle
of H such that s /∈ NH [{w, t2, t3}]. Clearly, it is impossible to have a
pure bridge vertex z of H such that {t2, t3} ⊆ NH [z]. Therefore, for any
nonterminal vertex w′ ∈ V (H), {s} and {w′, t2, t3} satisfy the condition C1.
Furthermore, for a neighbor u ∈ V (H) of t1, define u′ to be a neighbor of
u in V (H) \ {w, t2, t3} if u ∈ {w, t2, t3}, or u itself, otherwise. Then, since
u′(6= w) may not form a pure bridge triangle in H with t2 and t3, for the
vertex u′ ( 6= s) ∈ W , {s} and {u′, t2, t3} satisfy the condition C2 as well as
C1, which contradicts (b).

Case 3: There exists no nonterminal vertex in W . The definition of W
entails that |W | ≥ 2 if |V (H ′)| ≥ 2, or |W | ≥ 3, otherwise. Since s /∈W due
to (a), we have that |V (H ′)| ≥ 2 and W = {t2, t3}. Furthermore, if (t1, t2) ∈
E(G), then δG(t2) = 2 with (t2, t3) ∈ E(G), and (t1, t3) /∈ E(G) because,
otherwise, W must contain at least one extra vertex with distance two from
t1. Similarly, if (t1, t3) ∈ E(G), then δG(t3) = 2 with (t3, t2) ∈ E(G), and
(t1, t2) /∈ E(G). In either case, there exists a pure bridge vertex v of G such
that T ⊆ NG[v] and s /∈ NG[v], which contradicts the condition C1 of the
theorem. This completes the entire proof. �

Corollary 1. For a connected graph G with four or more vertices, G3 is
one-to-many 3-coverable if and only if there exists neither a pure bridge
vertex nor a pure bridge triangle in G.

From Theorem 1, we can derive another interesting fact that the cube
of a connected graph always has a one-to-one 3-DPC for any selection of
source and sink.

Theorem 2 (One-to-one 3-DPC). For every connected graph G with
four or more vertices, G3 is one-to-one 3-coverable.
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Proof. Given a pair of source s and sink t, define a vertex set W = {w ∈
V (G) : 1 ≤ dG(t, w) ≤ 3}, where it is obvious that |W | ≥ 3. We claim
that we can always find two nonterminal vertices t2 and t3 in W such that
{s} and {t, t2, t3} satisfy the two conditions in Theorem 1. If the claim is
true, any one-to-many 3-DPC of G3 joining these terminal sets may easily
be transformed into a one-to-one 3-DPC of G3 by extending the s-t2 and
s-t3 paths to t, proving the theorem. For a proof of the claim, we consider
three classes of cases that embrace all cases. Firstly, if no edge incident to
t is a nontrivial bridge, it suffices to choose any two vertices in W other
than s because t must be incident to at least one nontrivial bridge to break
any of the conditions of Theorem 1. Secondly, if every edge incident to t
is a nontrivial bridge, t has two neighbors, u and v, which have respective
neighbors u′ and v′ other than t. Then, by selecting u and v′ if s /∈ {u, v′},
or u′ and v otherwise, the two conditions in Theorem 1 can be satisfied.
Finally, in the remaining class, there always exist two neighbors of t, u and
v, such that (t, u) is a nontrivial bridge whereas (t, v) is not a nontrivial
bridge. If s /∈ {u, v}, it is enough to choose u and v. If s ∈ {u, v}, we
consider a neighbor u′ (6= t) of u. If u is not a pure bridge vertex, we choose
the two vertices in {u, v, u′} \ s. Otherwise, we select the two vertices in
{u, v, u′′} \ s for some neighbor u′′ (6= u) of u′. In any case, it is clear that
the two conditions in Theorem 1 are satisfied. �

4. Concluding Remarks

In this article, we have established a necessary and sufficient condition
for the cube of a connected graph to have a one-to-many 3-DPC joining given
terminal sets. We have also shown that the cube of every connected graph
of order at least four is one-to-one 3-coverable. The proofs are constructive,
and hence may be used effectively to design a divide-and-conquer algorithm
for finding a one-to-many 3-DPC, which can easily be modified to build
a one-to-one 3-DPC through a simple reduction process. Another class of
graphs that exposes an interesting connectivity structure is the square of
a 2-connected graph. We conjecture that every such graph is one-to-many
3-coverable, which remains to be proved in future work.
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and hamiltonian cycles in the square of a graph,” Discrete Mathematics
207(1), pp. 263-269, 1999.

[2] K. Asdre and S.D. Nikolopoulos, “The 1-fixed-endpoint path cover
problem is polynomial on interval graphs,” Algorithmica 58(3), pp.
679-710, 2010.

[3] J.A. Bondy and U.S.R. Murty, Graph Theory, 2nd printing, Springer,
2008.

[4] G. Chartrand, A.M. Hobbs, H.A. Jung, S.F. Kapoor and C.St.J.A.
Nash-Williams, “The square of a block is hamiltonian connected,” Jour-
nal of Combinatorial Theory Ser. B 16, pp. 290-292, 1974.

[5] G. Chartrand and S.F. Kapoor, “The cube of every connected graph is
1-hamiltonian,” J. Res. Nat. Bur. Standards 73B, pp. 47-48, 1969.

[6] X.-B. Chen, “Many-to-many disjoint paths in faulty hypercubes,” In-
formation Sciences 179(18), pp. 3110-3115, 2009.

[7] G.L. Chia, S.-H. Ong, and L.Y. Tan, “On graphs whose square have
strong hamiltonian properties,” Discrete Mathematics 309(13), pp.
4608-4613, July 2009.
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